Squaring the Circle in Panoramas

Total Page:16

File Type:pdf, Size:1020Kb

Squaring the Circle in Panoramas Squaring the Circle in Panoramas Lihi Zelnik-Manor1 Gabriele Peters2 Pietro Perona1 1. Department of Electrical Engineering 2. Informatik VII (Graphische Systeme) California Institute of Technology Universitat Dortmund Pasadena, CA 91125, USA Dortmund, Germany http://www.vision.caltech.edu/lihi/SquarePanorama.html Abstract and conveying the vivid visual impression of large panora- mas. Such mosaics are superior to panoramic pictures taken Pictures taken by a rotating camera cover the viewing with conventional fish-eye lenses in many respects: they sphere surrounding the center of rotation. Having a set of may span wider fields of view, they have unlimited reso- images registered and blended on the sphere what is left to lution, they make use of cheaper optics and they are not be done, in order to obtain a flat panorama, is projecting restricted to the projection geometry imposed by the lens. the spherical image onto a picture plane. This step is unfor- The geometry of single view point panoramas has long tunately not obvious – the surface of the sphere may not be been well understood [12, 21]. This has been used for mo- flattened onto a page without some form of distortion. The saicing of video sequences (e.g., [13, 20]) as well as for ob- objective of this paper is discussing the difficulties and op- taining super-resolution images (e.g., [6, 23]). By contrast portunities that are connected to the projection from view- when the point of view changes the mosaic is ‘impossible’ ing sphere to image plane. We first explore a number of al- unless the structure of the scene is very special. When all C ternatives to the commonly used linear perspective projec- pictures share the same center of projection , we can con- tion. These are ‘global’ projections and do not depend on sider the viewing sphere, i.e., the unit sphere centered in C image content. We then show that multiple projections may , and identify each pixel in each picture with the ray con- C coexist successfully in the same mosaic: these projections necting with that pixel and passing through the surface are chosen locally and depend on what is present in the pic- of the viewing sphere, as well as through the physical point tures. We show that such multi-view projections can pro- in the scene that is imaged by that pixel. By detecting and duce more compelling results than the global projections. matching visual features in different images we may regis- ter automatically the images with respect to each other. We may then map every pixel of every image we collected to 1. Introduction the corresponding point of the viewing sphere and obtain a spherical image that summarizes all our information on As we explore a scene we turn our eyes and head and the scene. This spherical image is the most natural repre- capture images in a wide field of view. Recent advances in sentation: we may represent this way a scene of arbitrary storage, computation and display technology have made it angular width and if we place our head in C, the center of possible to develop ‘virtual reality’ environments where the the sphere, we may rotate it around and capture the same user feels ‘immersed’ in a virtual scene and can explore it by images as if we were in the scene. moving within it. However, the humble still picture, painted What is left to be done, in order to obtain our panorama- or printed on a flat surface, is still a popular medium: it on-a-page, is projecting the spherical image onto a picture is inexpensive to reproduce, easy and convenient to carry, plane. This step is unfortunately not obvious – the surface store and display. Even more importantly, it has unrivaled of the sphere may not be flattened onto a page without some size, resolution and contrast. Furthermore, the advent of in- form of distortion. The choice of projection from the sphere expensive digital cameras, their seamless integration with to the plane has been dealt with extensively by painters and computers, and recent progress in detecting and matching cartographers. An excellent review is provided in [9]. informative image features [4] together with the develop- The best known projection is linear perspective (also ment of good blending techniques [7, 5] have made it possi- called ‘gnomonic’ and ‘rectilinear’). It may be obtained by ble for any amateur photographer to produce automatically projecting the relevant points of the viewing sphere onto a mosaics of photographs covering very wide fields of view tangent plane, by means of rays emanating from the cen- 1 ter of the sphere C. Linear perspective became popular amongst painters during the Renaissance. Brunelleschi is credited with being the first to use correct linear perspec- tive. Alberti wrote the first textbook on linear perspective describing the main construction methods [1]. It is believed by many to be the only ‘correct’ projection because it maps lines in 3D space to lines on the 2D image plane and be- cause when the picture is viewed from one special point, the ‘center of projection’ of the picture, the retinal image that is Figure 1. Perspective distortions. Left: Five pho- obtained is the same as when observing the original scene. tographs of the same person taken by a rotating cam- A further, somewhat unexpected, virtue is that perspective era, after rectification (removing spherical lens dis- pictures look ‘correct’ even if the viewer moves away from tortion). Right: An overlay of the five photographs af- the center of projection, a very useful phenomenon called ter blackening everything but the person’s face shows ‘robustness of perspective’ [18, 22]. that spherical objects look distorted under perspec- Unfortunately, linear perspective has a number of draw- tive projection even at mild viewing angles. For ex- backs. First of all: it may only represent scenes that are ample, here, the centers of the faces in the corners ◦ at most 180 wide: as the field of view becomes wider, are at ∼ 20◦ horizontal eccentricity. the area of the tangent plane dedicated to representing one degree of visual angle in the peripheral portion of the pic- ture becomes very large compared to the center, and even- 2 Global Projections tually becomes unbounded. Second, there is an even more stringent limit to the size of the visual field that may be What are the alternatives to linear perspective? represented successfully using linear perspective: beyond ◦ ◦ An important drawback of linear perspective is the ex- widths of 30 -40 architectural structures (parallelepipeds cessive scaling of sizes at high eccentricities. Consider and cylinders) appear to be distorted, despite the fact that a painter taking measurements in the scene by using her their edges are straight [18, 14]. Furthermore, spheres that thumb and using these measurements to scale objects on are not in the center of the viewing field project to el- the canvas. She takes angular measurements in the scene lipses onto the image plane and appear unnatural and dis- and translates them into linear measurements onto the can- torted [18] (see Fig 1). Renaissance painters knew of these vas. This construction is called Postel projection [9]. It shortcomings and adopted a number of corrective mea- avoids the ‘explosion’ of sizes in the periphery of the pic- sures [14], some of which we will discuss later. ture. Along lines radiating from the point where the picture The objective of this paper is discussing the difficulties plane touches the viewing sphere, it actually maps lengths and opportunities that are connected to the projection from on the sphere to equal lengths in the image. Lines that run viewing sphere to image plane, in the context of digital im- orthogonal to those (i.e., concentric circles around the tan- age mosaics. We first argue that linear perspective is not the gent point) will be magnified at higher eccentricities, but only valid projections, and explore a number of alternatives much less than by linear perspective. The Postel projection which were developed by artists and cartographers. These is close to the cartographic stereographic projection. The are ‘global’ projections and do not depend on image con- stereographic projection is obtained by using the pole oppo- tent. We explore experimentally the tradeoffs of these pro- site to the point of tangency as the center of projection. jections: how they distort architecture and people and how Consider now the situation in which we wish to repre- well do they tolerate wide fields of view. We then show that sent a very wide field of view. A viewer contemplating a multiple projections may coexist successfully in the same wide panorama will rotate his head around a vertical axis in mosaic: these projections are chosen locally and depend on order to take in the full view. Suppose now that the view what is seen in the pictures that form the mosaic. We show has been transformed into a flat picture hanging on a wall experimentally that the such a content based approach often and consider a viewer exploring that picture: the viewer will produces more compelling results than the traditional ap- walk in front of the picture with a translatory motion that is proach which utilizes geometry only. We conclude with a parallel to the wall. If we replace rotation around a vertical discussion of the work that lies ahead. axis with sideways translation in front of the picture we ob- In this paper we do not address issues of image reg- tain a family of projections which are popular with cartog- istration and image blending. In all our experiments the raphers. Wrap a sheet of paper around the viewing sphere computation of the transformations of the input images to forming a cylinder that touches the sphere at the equator.
Recommended publications
  • An Analytical Introduction to Descriptive Geometry
    An analytical introduction to Descriptive Geometry Adrian B. Biran, Technion { Faculty of Mechanical Engineering Ruben Lopez-Pulido, CEHINAV, Polytechnic University of Madrid, Model Basin, and Spanish Association of Naval Architects Avraham Banai Technion { Faculty of Mathematics Prepared for Elsevier (Butterworth-Heinemann), Oxford, UK Samples - August 2005 Contents Preface x 1 Geometric constructions 1 1.1 Introduction . 2 1.2 Drawing instruments . 2 1.3 A few geometric constructions . 2 1.3.1 Drawing parallels . 2 1.3.2 Dividing a segment into two . 2 1.3.3 Bisecting an angle . 2 1.3.4 Raising a perpendicular on a given segment . 2 1.3.5 Drawing a triangle given its three sides . 2 1.4 The intersection of two lines . 2 1.4.1 Introduction . 2 1.4.2 Examples from practice . 2 1.4.3 Situations to avoid . 2 1.5 Manual drawing and computer-aided drawing . 2 i ii CONTENTS 1.6 Exercises . 2 Notations 1 2 Introduction 3 2.1 How we see an object . 3 2.2 Central projection . 4 2.2.1 De¯nition . 4 2.2.2 Properties . 5 2.2.3 Vanishing points . 17 2.2.4 Conclusions . 20 2.3 Parallel projection . 23 2.3.1 De¯nition . 23 2.3.2 A few properties . 24 2.3.3 The concept of scale . 25 2.4 Orthographic projection . 27 2.4.1 De¯nition . 27 2.4.2 The projection of a right angle . 28 2.5 The two-sheet method of Monge . 36 2.6 Summary . 39 2.7 Examples . 43 2.8 Exercises .
    [Show full text]
  • Viewing in 3D
    Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » «
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • Perspective Projection
    Transform 3D objects on to a 2D plane using projections 2 types of projections Perspective Parallel In parallel projection, coordinate positions are transformed to the view plane along parallel lines. In perspective projection, object position are transformed to the view plane along lines that converge to a point called projection reference point (center of projection) 2 Perspective Projection 3 Parallel Projection 4 PROJECTIONS PARALLEL PERSPECTIVE (parallel projectors) (converging projectors) One point Oblique Orthographic (one principal (projectors perpendicular (projectors not perpendicular to vanishing point) to view plane) view plane) Two point General (Two principal Multiview Axonometric vanishing point) (view plane parallel (view plane not parallel to Cavalier principal planes) to principal planes) Three point (Three principal Cabinet vanishing point) Isometric Dimetric Trimetric 5 Perspective v Parallel • Perspective: – visual effect is similar to human visual system... – has 'perspective foreshortening' • size of object varies inversely with distance from the center of projection. Projection of a distant object are smaller than the projection of objects of the same size that are closer to the projection plane. • Parallel: It preserves relative proportion of object. – less realistic view because of no foreshortening – however, parallel lines remain parallel. 6 Perspective Projections • Characteristics: • Center of Projection (CP) is a finite distance from object • Projectors are rays (i.e., non-parallel) • Vanishing points • Objects appear smaller as distance from CP (eye of observer) increases • Difficult to determine exact size and shape of object • Most realistic, difficult to execute 7 • When a 3D object is projected onto view plane using perspective transformation equations, any set of parallel lines in the object that are not parallel to the projection plane, converge at a vanishing point.
    [Show full text]
  • Anamorphosis: Optical Games with Perspective’S Playful Parent
    Anamorphosis: Optical games with Perspective's Playful Parent Ant´onioAra´ujo∗ Abstract We explore conical anamorphosis in several variations and discuss its various constructions, both physical and diagrammatic. While exploring its playful aspect as a form of optical illusion, we argue against the prevalent perception of anamorphosis as a mere amusing derivative of perspective and defend the exact opposite view|that perspective is the derived concept, consisting of plane anamorphosis under arbitrary limitations and ad-hoc alterations. We show how to define vanishing points in the context of anamorphosis in a way that is valid for all anamorphs of the same set. We make brief observations regarding curvilinear perspectives, binocular anamorphoses, and color anamorphoses. Keywords: conical anamorphosis, optical illusion, perspective, curvilinear perspective, cyclorama, panorama, D¨urermachine, color anamorphosis. Introduction It is a common fallacy to assume that something playful is surely shallow. Conversely, a lack of playfulness is often taken for depth. Consider the split between the common views on anamorphosis and perspective: perspective gets all the serious gigs; it's taught at school, works at the architect's firm. What does anamorphosis do? It plays parlour tricks! What a joker! It even has a rather awkward dictionary definition: Anamorphosis: A distorted projection or drawing which appears normal when viewed from a particular point or with a suitable mirror or lens. (Oxford English Dictionary) ∗This work was supported by FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, projects UID/MAT/04561/2013, UID/Multi/04019/2013. Proceedings of Recreational Mathematics Colloquium v - G4G (Europe), pp. 71{86 72 Anamorphosis: Optical games.
    [Show full text]
  • Anamorphic Projection: Analogical/Digital Algorithms
    Nexus Netw J (2015) 17:253–285 DOI 10.1007/s00004-014-0225-5 RESEARCH Anamorphic Projection: Analogical/Digital Algorithms Francesco Di Paola • Pietro Pedone • Laura Inzerillo • Cettina Santagati Published online: 27 November 2014 Ó Kim Williams Books, Turin 2014 Abstract The study presents the first results of a wider research project dealing with the theme of ‘‘anamorphosis’’, a specific technique of geometric projection of a shape on a surface. Here we investigate how new digital techniques make it possible to simplify the anamorphic applications even in cases of projections on complex surfaces. After a short excursus of the most famous historical and contemporary applications, we propose several possible approaches for managing the geometry of anamorphic curves both in the field of descriptive geometry (by using interactive tools such as Cabrı` and GeoGebra) and during the complex surfaces realization process, from concept design to manufacture, through CNC systems (by adopting generative procedural algorithms elaborated in Grasshopper). Keywords Anamorphosis Anamorphic technique Descriptive geometry Architectural geometry Generative algorithms Free form surfaces F. Di Paola (&) Á L. Inzerillo Department of Architecture (Darch), University of Palermo, Viale delle Scienze, Edificio 8-scala F4, 90128 Palermo, Italy e-mail: [email protected] L. Inzerillo e-mail: [email protected] F. Di Paola Á L. Inzerillo Á C. Santagati Department of Communication, Interactive Graphics and Augmented Reality, IEMEST, Istituto Euro Mediterraneo di Scienza e Tecnologia, 90139 Palermo, Italy P. Pedone Polytechnic of Milan, Bulding-Architectural Engineering, EDA, 23900 Lecco, Italy e-mail: [email protected] C. Santagati Department of Architecture, University of Catania, 95125 Catania, Italy e-mail: [email protected] 254 F.
    [Show full text]
  • Constructing 3D Perspective Anamorphosis Via Surface Projection
    Bridges 2018 Conference Proceedings Constructing 3D Perspective Anamorphosis via Surface Projection Tiffany C. Inglis D2L, Waterloo, ON, Canada; [email protected] Abstract 3D perspective anamorphoses, as defined in this paper, are 3D objects that create anamorphic illusions when viewed from a particular perspective. We present an algorithm of constructing 3D perspective anamorphoses by projecting onto surfaces. Introduction An anamorphosis is an object that looks distorted unless viewed in a special way. The method of distortion characterizes two main categories of anamorphic illusions: perspective (viewed from a particular perspec- tive) and mirror (viewed through a mirror). The object of distortion also falls into two types: 2D images and 3D models. Figure 1 shows an example from each category. Odeith’s [3] and Orosz’s [4] work are both 2D anamorphoses since they are 2D drawings that “come to life” (either by appearing 3D or revealing hid- den images) when viewed from a certain angle or through a mirror. 3D anamorphoses include Hamaekers’s sculpture [5] depicting an impossible triangle with curved edges, and De Comite’s´ sculpture [1] also using curved edges to create the illusion of a polygonal structure in the spherical mirror. A 2D anamorphosis is essentially an image projected onto some surface either via perspective projection or mirror reflection. For simple surfaces and mirrors, the design can be drawn manually using distorted grids. With more complex inputs, dedicated software such as Anamorph Me! [2] can automatically apply the necessary distortions. An artist may also use a projector in combination with projection mapping software to directly project their designs onto surfaces with complex geometry.
    [Show full text]
  • From 3D World Into a 2D Screen
    CS488 From 3D world into a 2D screen Luc RENAMBOT 1 Transformations • We talked about 2D and 3D transformations and how those transformations affect objects in the scene • We discussed how polygons are usually formed into hierarchies of more meaningful objects • We discussed how fonts are handled 2 3D Graphics • We are going to talk about how we convert a set of polygons (object) in a 3D world into an image on a 2D screen 3 General 3D Concepts • Taking 2D objects and mapping onto a 2D screen is pretty straightforward • The window is the same plane as the 2D world • Now we are taking 3D objects and mapping them onto a 2D screen 4 General 3D Concepts • Here is where the advantage of separating the model world from its rendered image becomes more obvious • The easiest way to think about converting 3D world into 2D image is the way we do it in real life - with a camera 5 General 3D Concepts • Lets say we have an object in the real world (e.g. the Sears Tower.) The tower is a 3D object • You can move around the tower, on the ground, on the water, in the air, and take pictures of it, converting it to a 2D image • Depending on where you put the camera and the settings on the camera, and other factors such as light levels, you get different looking images 6 General 3D Concepts • In computer graphics, we have a synthetic camera taking still or moving pictures of a synthetic environment • While this synthetic camera gives you a much wider range of options than a real camera, you will find it is VERY easy to take a picture of nothing at all 7 Transformations
    [Show full text]
  • From 3D to 2D: Orthographic and Perspective Projection—Part 1
    I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 • History • Geometrical Constructions • Types of Projection • Projection in Computer Graphics Andries van Dam September 13, 2001 3D Viewing I 1/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection • A painting based on a mythical tale as told by Pliny the Elder: a Corinthian man traces the shadow of his departing lover detail from The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell p.1) Andries van Dam September 13, 2001 3D Viewing I 2/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC is earliest known technical drawing in existence Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) • Vitruvius, a Roman architect, published specifications of plan and elevation drawings, and perspective. Illustrations for these writings have been lost Andries van Dam September 13, 2001 3D Viewing I 3/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Perspective • || lines converge (in 1, 2, or 3 axes) to a vanishing point • Objects farther away are more foreshortened (i.e., smaller) than closer ones • Example: perspective cube edges same size, with farther ones smaller parallel edges converging Andries van Dam September 13, 2001 3D Viewing I 4/34 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Early Perspective
    [Show full text]
  • Three Dimensional Graphics: Projections and Transformations
    Lecture 1: Three Dimensional graphics: Projections and Transformations Device Independence We will start with a brief discussion of two dimensional drawing primitives. At the lowest level of an operating sys- tem we have device dependent graphics methods such as: SetPixel(XCoord,YCoord,Colour); DrawLine(xs,ys,xf,yf); which draw objects using pixel coordi- nates. However it is clearly desirable that we create any graphics application in a device independent way. If we can do this then we can re-size a picture, or transport it to a different operating sys- tem and it will fit exactly in the window where we place it. Many graphics APIs Figure 1: Normalisation transformation provide this facility, and it is a straight- forward matter to implement it using a world coordinate system. This defines the coordinate values to be applied to the window on the screen where the graphics image will be drawn. Typically it will use a method of the kind: SetWindowCoords(Wxmin,Wymin,Wxmax,Wymax); WXMin etc are real numbers whose units are application dependent. If the application is to produce a visuali- sation of a house then the units could be meters, and if it is to draw accurate molecular models the units will be µm. The application program uses drawing primitives that work in these units, and converts the numeric values to pixels just before the image is rendered on the screen. This makes it easy to transport it to other systems or to upgrade it when new graphics hardware becomes available. There may be other device characteristics that need to be accounted for to achieve complete device independence, for example aspect ratios.
    [Show full text]
  • Viewing in 3D Common Coordinate Systems
    Common Coordinate Viewing in 3D Systems (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker) • Object space – local to each object • World space – common to all objects • Eye space / Camera space – derived from view frustum • Screen space – indexed according to hardware attributes y Specifying the Viewing v Up Coordinates P u w • Viewing Coordinates system, [u, P 0 v, w], describes 3D objects with x z respect to a viewer. ane pl ew Vi • A viewing plane (projection plane) is set up perpendicular to • P =(x ,y ,z ) is a point where a 0 0 0 0 w and aligned with (u,v). camera is located. • P is a point to look-at. • To set a view plane we have to • N=(P -P)/|P -P| is the view-plane specify a view-plane normal 0 0 vector, N, and a view-up vector, normal vector. Up, (both, in world coordinates): • Up is the view up vector, whose projection onto the view-plane is directed up. • How to form Viewing How to form Viewing coordinate system coordinate system : Up N UpuN w ; u ; v wuu N N UpuN • The transformation, M, from world-coordinate into viewing- coordinates is: ªu u u 0ºª1 0 0 x º « x y z » 0 « » w N / || N || « v v v 0» 0 1 0 y0 M x y z « » «w w w 0»«0 0 1 z » « x y z »« 0 » First, normalize the look-at vector to form the w-axis ¬« 0 0 0 1¼»¬0 0 0 1 ¼ Create V perpendicular to U and W Create U perpendicular to Up and W V Up Up W W U U u UpuW V W U U |UpuW | Projections • Viewing 3D objects on a 2D display requires a mapping from 3D to 2D.
    [Show full text]
  • Engineering and Computer Drawing
    Educational Institution «BELARUSIAN STATE TECHNOLOGICAL UNIVERSITY» G. I. Kasperov, A. L. Kaltygin, V. I. Gil ENGINEERING AND COMPUTER DRAWING Texts of lectures for students majoring in 1-40 01 02-03 «Information Systems and Technologies» Мinsk 2014 73 Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Г. И. Касперов, А. Л. Калтыгин, В. И. Гиль ИНЖЕНЕРНАЯ И МАШИННАЯ ГРАФИКА Тексты лекций для студентов специальности 1-40 01 02-03 «Информационные системы и технологии» Минск 2014 2 УДК [004.92+744](075.8)=111 ББК 30.11я73 K22 Reviewed and approved by the publishing board of Belarusian State Technological University. Peer-review by: S. E. Belsky, head of the department of machine elements and hoisting and conveying equipment, educational institution «Belarusian State Technological University» PhD (Engineering), assistant professor; V. A. Stoler, head of the department of engineering graphics,educational institution «Belarusian State University of Informatics and Radio Electronics» PhD (Engineering), assistant professor Kasperov, G. I. K22 Engineering and computer graphics : texts of lectures for students of Information Systems and Technologies programme» / G. I. Kas- perov, А. L. Kaltygin, V. I. Gil. – Мinsк : BSTU, 2014. – 76 p. In the texts of lectures in accordance with the programs outlined projection method, allowing to build the image of spatial geometric images on the plane, considered how to solve basic problems in the drawing and right images on the drawing details. Examples are given in order to facilitate independent graphic works by students. УДК [004.92+744](075.8)=111 ББК 30.11я73 © EI «Belarusian State Technological University», 2014 3 INTRODUCTION Engineering and computer graphics are among the disciplines that form the basis of overall engineering training of specialists.
    [Show full text]