A Geometric Correction Method Based on Pixel Spatial Transformation

Total Page:16

File Type:pdf, Size:1020Kb

A Geometric Correction Method Based on Pixel Spatial Transformation 2020 International Conference on Computer Intelligent Systems and Network Remote Control (CISNRC 2020) ISBN: 978-1-60595-683-1 A Geometric Correction Method Based on Pixel Spatial Transformation Xiaoye Zhang, Shaobin Li, Lei Chen ABSTRACT To achieve the non-planar projection geometric correction, this paper proposes a geometric correction method based on pixel spatial transformation for non-planar projection. The pixel spatial transformation relationship between the distorted image on the non-planar projection plane and the original projection image is derived, the pre-distorted image corresponding to the projection surface is obtained, and the optimal view position is determined to complete the geometric correction. The experimental results show that this method can achieve geometric correction of projective plane as cylinder plane and spherical column plane, and can present the effect of visual distortion free at the optimal view point. KEYWORDS Geometric Correction, Image Pre-distortion, Pixel Spatial Transformation. INTRODUCTION Projection display technology can significantly increase visual range, and projection scenes can be flexibly arranged according to actual needs. Therefore, projection display technology has been applied to all aspects of production, life and learning. With the rapid development of digital media technology, modern projection requirements are also gradually complicated, such as virtual reality presentation with a high sense of immersion and projection performance in various forms, which cannot be met by traditional plane projection, so non-planar projection technology arises at the right moment. Compared with traditional planar projection display technology, non-planar projection mainly includes color compensation of projected surface[1], geometric splicing and brightness fusion of multiple projectors[2], and geometric correction[3]. The geometric correction studied in this paper takes into account that in non-planar projection, the geometric structure of the projection surface will affect the visual perception of the original projected image on the projection surface, greatly affecting the projection effect. Existing geometric correction methods, such as Sajadi[4-5] proposed a geometric correction method suitable for cylinders. This method uses the camera to extract the edge of the cylindrical projection surface, and calculates the camera and projector parameters according to the structural characteristics of the cylindrical surface and the edge information iteratively. Steimle[6] proposed a flexible surface projection technology, which focuses on using surface fitting to obtain the functional expression __________________ Xiaoye Zhang, Shaobin Li, Lei Chen, School of Information and Communications Engineering Communication University of China Beijing, China 302 of the projected surface. A key step is to automatically obtain the 3d key point position of the projected surface through the depth camera, without manually setting markers or visible textures. Bermano[7] proposed a dynamic real-time facial enhancement system, which USES infrared cameras to shoot performers' faces, assigns different fusion features to specific facial features, and deforms the 3D motion capture BlendShape model and markers detected in 2D images to achieve accurate projection. The above methods mostly use the auxiliary equipment to complete the geometric correction, which greatly limits the usage scenario. Considering that the basic unit of image composition is pixel, and the distortion of the projected image is caused by the change of pixel position and size of the original projection image due to the structure of the projection surface, therefore it is an intuitive geometric correction method to directly correct the position of distorted pixels on the projection plane and correct them back to the ideal position. PRICIPLE OF GEOMETRIC CORRECTION Pixel Spatial Transformation In order to deduce the spatial transformation relationship of pixels intuitively, this paper takes the spherical projection surface shown in Figure 1 as an example to illustrate the relationship among distorted image, original projection image and pre-distorted image on the projection surface. As shown in Figure 1, it is a spherical projection system. In the figure, the projector is at O point, following the perspective projection principle, and the vertex of the apparent cone is O point. The surface KLMNS is the spherical projection surface, and the plane KLMN is the virtual plane set before the projection to facilitate subsequent calculation. Figure 1. Spherical Projection System. When the projector at Point O projects the image, the projection line OAA' of pixel P passes through the virtual plane KLMN and the actual projection surface KLMNS successively, and the intersection point is A and A' respectively. The image formed by all pixel points on the virtual plane is not distorted, and there is only a scaling relationship between the projected image on the virtual plane and the original projection image. If the scaled image on the virtual plane is directly vertically mapped to the actual projection plane behind, the correct projected image will be obtained, that is, the vertical mapping point B of point A is the ideal position of pixel point P. 303 But in fact, after perspective projection, the pixel position is distorted, that is A' is the actual position of pixel P. Therefore, the geometric correction can be achieved by correcting the actual position A' of pixel P to the ideal position B of pixel P. However, both points A' and B are on the sphere, which means the two points are offset in the three directions of XYZ, so the quantitative calculation is complicated. According to the perspective projection principle, point B also has a corresponding expected position point C on the virtual plane KLMN, and the corresponding backward projection line is OCB. Therefore, the position relation of A' and B is converted to the corresponding A and C of these two points on the virtual plane, and then the transformation function is calculated. In order to express the geometric transformation relationship more clearly, the OCB projection line was used to intercept the cross-section along the X-axis, as shown in Figure 2. And the overall top view with projection line OCB, as shown in Figure 3: Figure 2. Projection line OCB section. Figure 3. Spherical projection system. According to Figure 2, triangle similarity can be obtained as follows: According to Figure 3, the line segment OCB (OC'B') is the OBB' plane in Figure 2. Also according to the triangle similarity, we can get: So there is: When the coordinate value is substituted, it is: 304 Point A is the vertical mapping point of point B, so the X and Y coordinates of point A and B are the same. B’’ and C’’ are mapping point of point O, so the Y coordinates of these 3 points are the same. B’, C’ and O are on the same horizontal plane, so the X coordinates of these 3 points are the same. Line BB’’ is parallel to the XY plane, which means perpendicular to the Z axis, so the Z coordinates of B and B’’ are the same. Moreover, point B is on the spherical projection surface, so if we know that the equation of the sphere is function f, then the Z coordinates of B’’ can be represented by f and coordinates of point A. Denotes d as the distance between point O and the virtual plane, i.e the Z coordinates of point O. So we can get: Then we can get the relationship of point A and C: Pixel Spatial Transformation After the position of each pixel on the pre-distorted image is determined, the pixel gray value (RGB chromaticity value) is also considered. Pre-distortion directly results in the change of image size, squeezing or stretching of pixels, and obvious change of pixel position. As shown in Figure 4. is the original rectangle and the result of direct pre-distortion. Figure 4. Initial pre-distored effect based on cylinder. In the pre-distorted image obtained, the pixel position does not necessarily fall at the integer pixel. Moreover, the reference point of pixel transformation during image pre-distortion is determined based on the virtual plane closer to the projector, so the effective pixel area is also reduced. Therefore, it is necessary to fill the entire effective pixel area with pixel interpolation and restore it to the size of the original image, so that the pre-distorted image has the same gray value information and size consistent with the original image. Traditional image interpolation is mainly used for image scaling[8]. The most adjacent point interpolation, bilinear interpolation and bi-cubic interpolation are commonly used. The difference is that the number of points required is different. 305 There are two interpolation operations in this paper, one is to obtain the pixel gray value of the pre-distorted image, and the other is to restore the size of the original pre-distorted image. Since the shape of the initial pre-distortion image is different from the original image, it is no longer suitable for the traditional interpolation method, so the two interpolation operations are slightly different. Bilinear interpolation method is used in both two interpolation methods in this paper, as shown in Figure 5. Figure 5. Bilinear interpolation. For point on the original image, its pre-distorted coordinates is . Due to point Q coordinates are not necessarily an integer, and the effective pixel region of the original image becomes smaller, so there may be multiple pixel points corresponding to the pixel points in the original image in an integer pixel grid of the pre-distorted image, so in order to establish contact with integer coordinates, round coordinates of Q down, respectively for and , therefore point Q is located in a rectangular area, as shown in Figure 6: Figure 6. Location of point Q. The distance between point Q and the integer coordinate in both directions is used as the weight of adjacent points. Experimental Results The experiment was carried out in Unity.
Recommended publications
  • Chapter 3 Image Formation
    This is page 44 Printer: Opaque this Chapter 3 Image Formation And since geometry is the right foundation of all painting, I have de- cided to teach its rudiments and principles to all youngsters eager for art... – Albrecht Durer¨ , The Art of Measurement, 1525 This chapter introduces simple mathematical models of the image formation pro- cess. In a broad figurative sense, vision is the inverse problem of image formation: the latter studies how objects give rise to images, while the former attempts to use images to recover a description of objects in space. Therefore, designing vision algorithms requires first developing a suitable model of image formation. Suit- able, in this context, does not necessarily mean physically accurate: the level of abstraction and complexity in modeling image formation must trade off physical constraints and mathematical simplicity in order to result in a manageable model (i.e. one that can be inverted with reasonable effort). Physical models of image formation easily exceed the level of complexity necessary and appropriate for this book, and determining the right model for the problem at hand is a form of engineering art. It comes as no surprise, then, that the study of image formation has for cen- turies been in the domain of artistic reproduction and composition, more so than of mathematics and engineering. Rudimentary understanding of the geometry of image formation, which includes various models for projecting the three- dimensional world onto a plane (e.g., a canvas), is implicit in various forms of visual arts. The roots of formulating the geometry of image formation can be traced back to the work of Euclid in the fourth century B.C.
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • Documenting Carved Stones by 3D Modelling
    Documenting carved stones by 3D modelling – Example of Mongolian deer stones Fabrice Monna, Yury Esin, Jérôme Magail, Ludovic Granjon, Nicolas Navarro, Josef Wilczek, Laure Saligny, Sébastien Couette, Anthony Dumontet, Carmela Chateau Smith To cite this version: Fabrice Monna, Yury Esin, Jérôme Magail, Ludovic Granjon, Nicolas Navarro, et al.. Documenting carved stones by 3D modelling – Example of Mongolian deer stones. Journal of Cultural Heritage, El- sevier, 2018, 34 (November–December), pp.116-128. 10.1016/j.culher.2018.04.021. halshs-01916706 HAL Id: halshs-01916706 https://halshs.archives-ouvertes.fr/halshs-01916706 Submitted on 22 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328759923 Documenting carved stones by 3D modelling-Example of Mongolian deer stones Article in Journal of Cultural Heritage · May 2018 DOI: 10.1016/j.culher.2018.04.021 CITATIONS READS 3 303 10 authors, including: Fabrice Monna Yury Esin University
    [Show full text]
  • Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface
    Robert Collins CSE486, Penn State Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface y x Robert Collins CSE486, Penn State Review : Forward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u M M V ext Y proj y Maff v W Z U X Mint u V Y v W Z U M u V m11 m12 m13 m14 v W m21 m22 m23 m24 m31 m31 m33 m34 Robert Collins CSE486, PennWorld State to Camera Transformation PC PW W Y X U R Z C V Rotate to Translate by - C align axes (align origins) PC = R ( PW - C ) = R PW + T Robert Collins CSE486, Penn State Perspective Matrix Equation X (Camera Coordinates) x = f Z Y X y = f x' f 0 0 0 Z Y y' = 0 f 0 0 Z z' 0 0 1 0 1 p = M int ⋅ PC Robert Collins CSE486, Penn State Film to Pixel Coords 2D affine transformation from film coords (x,y) to pixel coordinates (u,v): X u’ a11 a12xa'13 f 0 0 0 Y v’ a21 a22 ya'23 = 0 f 0 0 w’ Z 0 0z1' 0 0 1 0 1 Maff Mproj u = Mint PC = Maff Mproj PC Robert Collins CSE486, Penn StateProjection of Points on Planar Surface Perspective projection y Film coordinates x Point on plane Rotation + Translation Robert Collins CSE486, Penn State Projection of Planar Points Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Punchline: For planar surfaces, 3D to 2D perspective projection reduces to a 2D to 2D transformation.
    [Show full text]
  • Projections in Context
    Projections in Context Kaye Mason and Sheelagh Carpendale and Brian Wyvill Department of Computer Science, University of Calgary Calgary, Alberta, Canada g g ffkatherim—sheelagh—blob @cpsc.ucalgary.ca Abstract sentation is the technical difficulty in the more mathematical as- pects of projection. This is exactly where computers can be of great This examination considers projections from three space into two assistance to the authors of representations. It is difficult enough to space, and in particular their application in the visual arts and in get all of the angles right in a planar geometric projection. Get- computer graphics, for the creation of image representations of the ting the curves right in a non-planar projection requires a great deal real world. A consideration of the history of projections both in the of skill. An algorithm, however, could provide a great deal of as- visual arts, and in computer graphics gives the background for a sistance. A few computer scientists have realised this, and begun discussion of possible extensions to allow for more author control, work on developing a broader conceptual framework for the imple- and a broader range of stylistic support. Consideration is given mentation of projections, and projection-aiding tools in computer to supporting user access to these extensions and to the potential graphics. utility. This examination considers this problem of projecting a three dimensional phenomenon onto a two dimensional media, be it a Keywords: Computer Graphics, Perspective, Projective Geome- canvas, a tapestry or a computer screen. It begins by examining try, NPR the nature of the problem (Section 2) and then look at solutions that have been developed both by artists (Section 3) and by com- puter scientists (Section 4).
    [Show full text]
  • Projector Pixel Redirection Using Phase-Only Spatial Light Modulator
    Projector Pixel Redirection Using Phase-Only Spatial Light Modulator Haruka Terai, Daisuke Iwai, and Kosuke Sato Abstract—In projection mapping from a projector to a non-planar surface, the pixel density on the surface becomes uneven. This causes the critical problem of local spatial resolution degradation. We confirmed that the pixel density uniformity on the surface was improved by redirecting projected rays using a phase-only spatial light modulator. Index Terms—Phase-only spatial light modulator (PSLM), pixel redirection, pixel density uniformization 1 INTRODUCTION Projection mapping is a technology for superimposing an image onto a three-dimensional object with an uneven surface using a projector. It changes the appearance of objects such as color and texture, and is used in various fields, such as medical [4] or design support [5]. Projectors are generally designed so that the projected pixel density is uniform when an image is projected on a flat screen. When an image is projected on a non-planar surface, the pixel density becomes uneven, which leads to significant degradation of spatial resolution locally. Previous works applied multiple projectors to compensate for the local resolution degradation. Specifically, projectors are placed so that they illuminate a target object from different directions. For each point on the surface, the previous techniques selected one of the projectors that can project the finest image on the point. In run-time, each point is illuminated by the selected projector [1–3]. Although these techniques Fig. 1. Phase modulation principle by PSLM-LCOS. successfully improved the local spatial degradation, their system con- figurations are costly and require precise alignment of projected images at sub-pixel accuracy.
    [Show full text]
  • How Useful Is Projective Geometry? Patrick Gros, Richard Hartley, Roger Mohr, Long Quan
    How Useful is Projective Geometry? Patrick Gros, Richard Hartley, Roger Mohr, Long Quan To cite this version: Patrick Gros, Richard Hartley, Roger Mohr, Long Quan. How Useful is Projective Geometry?. Com- puter Vision and Image Understanding, Elsevier, 1997, 65 (3), pp.442–446. 10.1006/cviu.1996.0496. inria-00548360 HAL Id: inria-00548360 https://hal.inria.fr/inria-00548360 Submitted on 22 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. How useful is pro jective geometry 1 1 1 2 P Gros R Mohr L Quan R Hartley 1 LIFIA INRIA RhoneAlp es avenue F Viallet Grenoble Cedex France 2 GE CRD Schenectady NY USA In this resp onse we will weigh two dierent approaches to shap e recognition On the one hand we have the use of restricted camera mo dels as advo cated in the pap er of Pizlo et al to give a closer approximation to real calibrated cameras The alternative approach is to use a full pro jective camera mo del and take advantage of the machinery of pro jective geometry Ab out the p ersp ective pro jection Before discussing the usefulness
    [Show full text]
  • Chapter 5 Reconstruction from Two Calibrated Views
    This is page 109 Printer: Opaque this Chapter 5 Reconstruction from Two Calibrated Views We see because we move; we move because we see. – James J. Gibson, The Perception of the Visual World In this chapter we begin unveiling the basic geometry that relates images of points to their 3-D position. We start with the simplest case of two calibrated cam- eras, and describe an algorithm, first proposed by the British psychologist H.C. Longuet-Higgins in 1981, to reconstruct the relative pose (i.e. position and ori- entation) of the cameras as well as the locations of the points in space from their projection onto the two images. It has been long known in photogrammetry that the coordinates of the projec- tion of a point and the two camera optical centers form a triangle (Figure 5.1), a fact that can be written as an algebraic constraint involving the camera poses and image coordinates but not the 3-D position of the points. Given enough points, therefore, this constraint can be used to solve for the camera poses. Once those are known, the 3-D position of the points can be obtained easily by triangula- tion. The interesting feature of the constraint is that although it is nonlinear in the unknown camera poses, it can be solved by two linear steps in closed form. Therefore, in the absence of any noise or uncertainty, given two images taken from calibrated cameras, one can in principle recover camera pose and position of the points in space with a few steps of simple linear algebra.
    [Show full text]
  • Cs-174-Lecture-Projections.Pdf
    Transformations in the pipeline ModelView Matrix OCS WCS VCS glTranslatef() gluLookAt() CCS … Modeling Viewing Projection transformation transformation transformation Viewport Perspective transformation division NDCS DCS (e.g. pixels) Background (reminder) Line (in 2D) • Explicit • Implicit • Parametric Background (reminder) Plane equations Implicit Parametric Explicit Reminder: Homogeneous Coordinates Projection transformations Introduction to Projection Transformations [Hill: 371-378, 398-404. Foley & van Dam: p. 229-242 ] Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane. R3R2 or R4R3 homogenous coordinates. Basic projections Parallel Perspective Taxonomy Examples A basic orthographic projection x’ = x y’ = y z’ = N Y Matrix Form N Z I A basic perspective projection Similar triangles x’/d = x/(-z) -> x’ = x d/(-z) y’/d = y/(-z) => y’ = y d/(-z) z’ = -d In matrix form Matrix form of x’ = x d/(-z) y’ = y d/(-z) z’ = -d Moving from 4D to 3D Projections in OpenGL Camera coordinate system Image plane = near plane Camera at (0,0,0) Looking at –z Image plane at z = -N Perspective projection of a point In eye coordinates P =[Px,Py,Pz,1]T x/Px = N/(-Pz) => x = NPx/(-Pz) y/Px = N/(-Pz) => y = NPy/(-Pz) Observations • Perspective foreshortening • Denominator becomes undefined for z = 0 • If P is behind the eye Pz changes sign • Near plane just scales the picture • Straight line -> straight line Perspective projection of a line Perspective Division, drop fourth coordinate Is it a line? Cont’d next slide Is it a line?
    [Show full text]
  • Three Dimensional Occlusion Mapping Using a Lidar Sensor
    Freie Universität Berlin Fachbereich Mathematik und Informatik Masterarbeit Three dimensional occlusion mapping using a LiDAR sensor von: David Damm Matrikelnummer: 4547660 Email: [email protected] Betreuer: Prof. Dr. Daniel Göhring und Fritz Ulbrich Berlin, 30.08.2018 Abstract Decision-making is an important task in autonomous driving. Especially in dy- namic environments, it is hard to be aware of every unpredictable event that would affect the decision. To face this issue, an autonomous car is equipped with different types of sensors. The LiDAR laser sensors, for example, can create a three dimensional 360 degree representation of the environment with precise depth information. But like humans, the laser sensors have their lim- itations. The field of view could be partly blocked by a truck and with that, the area behind the truck would be completely out of view. These occluded areas in the environment increase the uncertainty of the decision and ignoring this uncertainty would increase the risk of an accident. This thesis presents an approach to estimate such areas from the data of a LiDAR sensor. Therefore, different methods will be discussed and finally the preferred method evalu- ated. Statement of Academic Integrity Hereby, I declare that I have composed the presented paper independently on my own and without any other resources than the ones indicated. All thoughts taken directly or indirectly from external sources are properly denoted as such. This paper has neither been previously submitted to another authority nor has it been published yet. August 30, 2018 David Damm Contents Contents 1 Introduction 1 1.1 Motivation .
    [Show full text]
  • IMAGE-BASED MODELING TECHNIQUES for ARTISTIC RENDERING Bynum Murray Iii Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2010 IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING Bynum Murray iii Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Fine Arts Commons Recommended Citation Murray iii, Bynum, "IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING" (2010). All Theses. 777. https://tigerprints.clemson.edu/all_theses/777 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Arts Digital Production Arts by Bynum Edward Murray III May 2010 Accepted by: Timothy Davis, Ph.D. Committee Chair David Donar, M.F.A. Tony Penna, M.F.A. ABSTRACT This thesis presents various techniques for recreating and enhancing two- dimensional paintings and images in three-dimensional ways. The techniques include camera projection modeling, digital relief sculpture, and digital impasto. We also explore current problems of replicating and enhancing natural media and describe various solutions, along with their relative strengths and weaknesses. The importance of artistic skill in the implementation of these techniques is covered, along with implementation within the current industry applications Autodesk Maya, Adobe Photoshop, Corel Painter, and Pixologic Zbrush. The result is a set of methods for the digital artist to create effects that would not otherwise be possible.
    [Show full text]
  • A New Extended Perspective System for Architectural Drawings
    A New Extended Perspective System for Architectural Drawings José Vitor Correia 1, Luís Romão 1, Susana Rosado Ganhão 1, Manuel Couceiro da Costa 1, Ana Santos Guerreiro 1, Diogo Pereira Henriques 1, Sara Garcia 1, Carlos Albuquerque 2, Maria Beatriz Carmo 2, Ana Paula Cláudio 2, Teresa Chambel 2, Robin Burgess 2, Christian Marques 2 1Faculty of Architecture, Technical University of Lisbon, Portugal {correia,lromao,srosado,mcoucy,anacsg,sgarcia,diogo.ph}@fa.utl.pt 2Faculty of Science, University of Lisbon, Portugal [email protected],{bc,apc,tc}@di.fc.ul.pt {robinburgess.dev,christian.marques}@gmail.com Abstract. This paper presents the work carried out by a multidisciplinary team of researchers, gathering knowledge in architecture, drawing, geometry, math- ematics and computation. The research was directed in order to create a compu- tational tool for architectural visualization - a new digital perspectograph - with the use of a new theoretical and operative approach to linear perspective. A new kind of projection surface, a parametric one, is added to the perspective concept under current tools. The mutations of this surface are explained and a set of graphical outputs is shown. A workshop with architecture students took place to help test and validate the concept and the computational prototype. Keywords: Linear perspective, visualization, drawing, perspectograph 1 Introduction Perspective principles determine the fundamental geometric structure of draw- ings when these aim to be graphical simulations of direct visual experience. If we take “visual experience” in a broad sense - not just the result of a static gaze, but an overall product of dynamic visual perception and also visually based cognition - the notion of perspective has to be more inclusive.
    [Show full text]