Symbol- Und Abkürzungsverzeichnis

Total Page:16

File Type:pdf, Size:1020Kb

Symbol- Und Abkürzungsverzeichnis Untersuchung des Beitrags von ETV6/RUNX1 zur Entstehung akuter lymphatischer Leukämie (ALL) im Kindesalter Inauguraldissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Biologie, Chemie und Pharmazie der Freien Universität Berlin vorgelegt von Kerstin Hasse Berlin, Dezember 2012 1. Gutachter: Prof. Hartmut Oschkinat Forschungsinstitut für Molekulare Pharmakologie, Berlin 2. Gutachter: Prof. Burghardt Wittig Institut für Molekularbiologie und Bioinformatik der FU Berlin Tag der Disputation: 19. November 2012 Inhaltsverzeichnis Symbol- und Abkürzungsverzeichnis ...................................................I 1. Einleitung und Zielsetzung ................................................................1 1.1. Leukämien ................................................................................................... 1 1.2. ALL im Kindesalter....................................................................................... 2 1.2.1. Immunphänotypen der ALL........................................................... 3 1.2.2. Zytogenetische und molekulargenetische Veränderungen bei ALL ...................................................................................................... 4 1.3. Molekulare Pathogenese von Leukämien.................................................... 7 1.4. Die Transkriptionsfaktoren ETV6 und RUNX1 ............................................. 8 1.4.1. Transkriptionsfaktor ETV6............................................................. 8 1.4.1.1. Genstruktur von ETV6................................................................... 8 1.4.1.2. ETV6-Protein und Funktion........................................................... 9 1.4.1.3. Veränderung von ETV6 bei Leukämien ...................................... 12 1.4.2. Transkriptionsfaktor RUNX1 ....................................................... 14 1.4.2.1. Genstruktur von RUNX1 ............................................................. 14 1.4.2.2. RUNX1-Protein und Funktion...................................................... 15 1.4.2.3. Veränderung von RUNX1 bei Leukämien ................................... 19 1.5. Der chimäre Transkriptionsfaktor ETV6/RUNX1........................................ 21 1.5.1. Fusionsgen ETV6/RUNX1 .......................................................... 21 1.5.2. ETV6/RUNX1-Fusionsprotein ..................................................... 22 1.5.3. Funktion und Einfluss von ETV6/RUNX1 auf Leukämien............ 23 1.6. t(12;21) bei ALL im Kindesalter.................................................................. 25 1.7. Fragestellung und Zielsetzung................................................................... 26 2. Material und Methoden.....................................................................28 2.1. Material...................................................................................................... 28 2.1.1. Chemikalien und Verbrauchsmaterialien..................................... 28 2.1.2. Bakterienstämme und Zelllinien .................................................. 28 2.1.3. Medien und Agarplatten für E. coli .............................................. 29 2.1.4. Plasmidvektoren ......................................................................... 30 2.1.5. Antikörper und Antiseren............................................................. 31 2.2. Molekularbiologische Techniken................................................................ 31 2.2.1. Anzucht von E. coli Bakterienkulturen......................................... 31 2.2.2. Methoden zur Isolierung von DNA .............................................. 32 2.2.2.1. Plasmidisolierung mit dem QIAprep Spin Miniprep Kit................ 32 2.2.2.2. Plasmidisolierung mit dem JetStar Kit von Genomed ................. 32 2.2.2.3. Isolierung genomischer DNA mit dem Generation Capture Column Kit von Qiagen ............................................................................ 32 2.2.3. Amplifizierung von DNA durch Polymerase-Ketten-Reaktion (PCR) .................................................................................................... 32 2.2.4. Aufreinigung von PCR-Fragmenten ............................................ 33 2.2.5. Real time quantitative PCR ......................................................... 33 2.2.6. Auftrennung von Nukleinsäuren durch horizontale Agarose- Gelelektrophorese....................................................................... 35 2.2.7. Klonierung von DNA-Fragmenten ............................................... 35 2.2.7.1. In-Fusion-PCR-Klonierung .......................................................... 35 2.2.7.2. Creator-Rekombination ............................................................... 37 2.2.8. Das Creator-kompatible onkoretrovirale Vektorsystem RevTet-ON .................................................................................................... 39 2.2.9. Transformation............................................................................ 40 2.2.10. Spezifische Spaltung von DNA mit Restriktionsendonukleasen.. 40 2.2.11. DNA-Sequenzierung ................................................................... 40 2.2.11.1. Sequenzierreaktion ..................................................................... 40 2.2.11.2. Aufreinigung der Sequenzierreaktion.......................................... 41 2.2.11.3. Acrylamid-Gelelektrophorese zur Sequenzierung....................... 41 2.2.12. Präparation von RNA .................................................................. 41 2.2.12.1. Präparation von Gesamt-RNA .................................................... 41 2.2.12.2. Präparation Gesamt- und micro RNA.......................................... 41 2.2.13. cDNA-Erststrangsynthese durch Reverse Transkription............. 42 2.2.14. Quantifizierung von Nukleinsäuren und Proteinen ...................... 42 2.2.14.1. Quantifizierung von Nukleinsäuren ............................................. 42 2.2.14.2. Quantifizierung von Proteinen..................................................... 43 2.2.15. Isolierung von Proteinen ............................................................. 43 2.2.16. Nachweis von Proteinen im Western Blot ................................... 45 2.2.16.1. SDS-Polyacrylamid-Gelelektrophorese....................................... 45 2.2.16.2. Proteintransfer auf PVDF-Membran............................................ 46 2.2.16.3. Immunfärbung............................................................................. 46 2.3. Zellkultur / Heterologe Expression ............................................................. 47 2.3.1. Kultivierung der Zellen ................................................................ 47 2.3.2. Transiente Transfektion .............................................................. 48 2.3.3. Selektion stabiler Zellen .............................................................. 49 2.3.4. Reinigung vitaler Zellen mit Ficoll-Dichtegradientenzentrifugation .................................................................................................... 50 2.3.5. Beschichtung von Zellkulturplatten mit Retronectin .................... 50 2.3.6. Infektion von Zielzellen................................................................ 50 2.3.6.1. Produktion und Aufreinigung der Viren ....................................... 51 2.3.6.2. Infektion adhärenter Zellen ......................................................... 51 2.3.6.3. Infektion von Suspensionszellen in Retronectin-beschichteten Zellkulturplatten........................................................................... 51 2.3.6.4. Ko-Kultur von PT67 und BaF3 .................................................... 52 2.3.6.5. Infektion im 96-Well-Format ........................................................ 52 2.3.7. Isolierung von Klonen durch limitierte Verdünnung der Zellen .... 52 2.4. Zellbiologische Methoden .......................................................................... 53 2.4.1. Proliferations- und Zytotoxizitätsmessung mit dem MTS-Assay .53 2.4.2. Apoptose- und Nekrosedetektion mittels Annexin V-Markierung und Propidiumiodidfärbung ......................................................... 54 2.4.3. Analyse der Zellzyklusverteilung mittels Propidiumiodidfärbung.54 2.4.4. Durchflusszytometrische Analyse von Zelloberflächenproteinen 54 2.4.5. Quantifizierung sekretierter Proteine mittels Sandwich-ELISA.... 55 2.5. Genexpressionsanalyse mit Oligonukleotidarrays ..................................... 55 2.5.1. cDNA-Synthese, Hybridisierung und Fluoreszenzdetektion........ 55 2.5.2. Statistische Auswertung.............................................................. 56 2.5.3. Analyse von Bindungsstellen für Transkriptionsfaktoren............. 57 2.6. Proteomanalyse......................................................................................... 58 2.6.1. 2D-Gelelektrophorese................................................................. 58 2.6.1.1. Isoelektrische Fokussierung........................................................ 58 2.6.1.2. SDS-PAGE ................................................................................. 59 2.6.1.3. Silberfärbung............................................................................... 59 2.6.2. Quantifizierung der Proteinspots mit Delta2D ............................. 60 2.6.3. Identifizierung der Proteine mittels MALDI-TOF.......................... 60 2.6.4.
Recommended publications
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide Identification and Analysis of Prognostic Features in Human Cancers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Genome-wide identification and analysis of prognostic features in human cancers Joan C. Smith1,2 and Jason M. Sheltzer1* 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. 2. Google, Inc., New York, NY 10011. * Lead contact; to whom correspondence may be addressed. E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Clinical decisions in cancer rely on precisely assessing patient risk. To improve our ability to accurately identify the most aggressive malignancies, we constructed genome-wide survival models using gene expression, copy number, methylation, and mutation data from 10,884 patients with known clinical outcomes. We identified more than 100,000 significant prognostic biomarkers and demonstrate that these genomic features can predict patient outcomes in clinically-ambiguous situations. While adverse biomarkers are commonly believed to represent cancer driver genes and promising therapeutic targets, we show that cancer features associated with shorter survival times are not enriched for either oncogenes or for successful drug targets.
    [Show full text]
  • The Association of Single Nucleotide Polymorphisms in Intronic Regions of Islet Cell Autoantigen 1 and Type 1 Diabetes Mellitus
    THE ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISMS IN INTRONIC REGIONS OF ISLET CELL AUTOANTIGEN 1 AND TYPE 1 DIABETES MELLITUS by Carrie Lynn Blout B.S., Dickinson College, 2004 Submitted to the Graduate Faculty of Department of Human Genetics – Genetic Counseling the University of Pittsburgh in partial fulfillment of the requirements for the degree of Masters of Science University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH THE GRADUATE SCHOOL OF PUBLIC HEALTH This thesis was presented by Carrie Lynn Blout It was defended on March 30, 2006 and approved by Committee Member: Elizabeth Gettig, MS, CGC Associate Professor of Human Genetics Director, Genetic Counseling Program Graduate School of Public Health University of Pittsburgh Committee Member: John W. Wilson, PhD Assistant Professor Department of Biostatistics Graduate School of Public Health University of Pittsburgh Committee Member: Michael M. Barmada, Ph.D. Associate Professor of Human Genetics Director, Human Genetics Department Computational Resources Division Graduate School of Public Health University of Pittsburgh Thesis Advisor: Massimo Pietropaolo, M.D. University of Pittsburgh Physicians Faculty UPMC Department of Pediatrics Rangos Research Center Genetic Immunology University of Pittsburgh ii THE ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISMS, LOCATED WITHIN INTRONIC REGIONS OF ISLET CELL AUTOANTIGEN 1 AND TYPE 1 DIABETES MELLITUS Carrie L. Blout, M.S. University of Pittsburgh, 2006 Type 1 diabetes mellitus is a multifactorial autoimmune disease caused by a combination of genetic and environmental factors. Further knowledge and understanding about the genes which play a role in type 1 diabetes has a clear public health significance in that it will aid in the prediction, treatment and a possible cure.
    [Show full text]
  • Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
    Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs).
    [Show full text]
  • 1) (As of December 2018) and the Latest GWAS of AD (2
    SUPPLEMENTARY FIGURES downstream intergenic ncRNA_exonic upstream ●936 ●918 group downstream intergenic ncRNA_exonic upstream group exonic exonicintronicintronic ncRNA_intronic ncRNA_intronicUTR3 UTR3 3.8% 1.2%1.5%1.9% 3.8% 5.4%5.4% 750 0.3% 3.8%1.2%1.5%1.9% ●700 5.4% ●670 0.3% 500 45.8% 40.240.2% % 45.8% ●329 ●274 250 ●223 Number (GWAS SNPs/studies) Number (GWAS ●128 ●105 45.8% ●54 ●57 ●58 ●48 ●42 ●46 ●50 ●30 ●3740.2% ● ●17 ●25 ●4 ●6 ●12 0 ● 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year Supplementary Figure S1. GWAS of AD since 2007. The figure is based on data from the GWAS Catalog (1) (as of December 2018) and the latest GWAS of AD (2). The green area shows the total number of AD-associated SNPs, and the purple area shows the total number of GWAS of AD. The insert chart shows the proportions of different types of all 936 AD-associated SNPs. 1 100 200 RPS27A TGFB2 BIN1 C4BPB MSH2 PROC UGT1A1 RAB1A TTN DISC1 50 PDCL3 COL4A3 CD55 ERCC3 100 USP21 C4BPA ITSN2 PTPRF MPZ FMN2 INPP5D CEP85 FNBP1L CSF1 CD46 ADAMTS4 PRKRA SPRED2 0 CTNNA2 DGKD ADCY10 ZAP70 LIMS2 PDE1A PROX1 0 CHRNB2 CR1 HSPG2 SH3BGRL3 DAB1 CTBS FCER1G MAP3K2 AD risk score or log10(P value) IL6R CDC73 CD34 AD risk score or log10(P value) −50 B4GALT3 IL19 0 50 100 150 200 250 0 50 100 150 200 Chromosome 1 (Mb) Chromosome 2 (Mb) ATP2B2 LTF ARF4 MECOM PAK2 EPHB1 40 VHL PRSS42 ARL6IP5 150 COL25A1 TDGF1 RPSA CCR2 CCR1 IL1RAP IRAK2 20 PTPRG 100 FLNB TF CX3CR1 IL17RD SH3RF1 FGG FANCD2 LIMD1 CCR5 50 0 WDR1 PDGFRA EIF4E FGB AD risk score or log10(P value) AD risk
    [Show full text]
  • Characterization of a Monoclonal Antibody Panel Shows That the Myotonic Dystrophy Protein Kinase, DMPK, Is Expressed Almost Exclusively in Muscle and Heart
    © 2000 Oxford University Press Human Molecular Genetics, 2000, Vol. 9, No. 14 2167–2173 Characterization of a monoclonal antibody panel shows that the myotonic dystrophy protein kinase, DMPK, is expressed almost exclusively in muscle and heart L.T. Lam, Y.C.N. Pham, Nguyen thi Man and G.E. Morris+ MRIC Biochemistry Group, PP18, North East Wales Institute, Mold Road, Wrexham LL11 2AW, UK Received 11 May 2000; Accepted 28 June 2000 DDBJ/EMBL/GenBank accession no. AF250871 Myotonic dystrophy (DM) is a multisystemic disorder ness), brain (mental retardation), eyes (cataracts), testis caused by an inherited CTG repeat expansion which (atrophy) and heart (conduction defects) (10). It is important, affects three genes encoding the DM protein kinase therefore, to establish the normal tissue distribution of all three (DMPK), a homeobox protein Six5 and a protein proteins produced from the DM locus. containing WD repeats. Using a panel of 16 mono- The human DMPK cDNA has 15 exons and predicts a ∼ clonal antibodies against several different DMPK protein of 70 kDa, although there may be variation in the size epitopes we detected DMPK, as a single protein of and sequence of the first exon (1–3,11,12). DMPK is a serine/ threonine protein kinase in which the catalytic domain ∼80 kDa, only in skeletal muscle, cardiac muscle and, (∼43 kDa) is followed by a coiled-coil domain (∼12 kDa) and to a lesser extent, smooth muscle. Many earlier a hydrophobic C-terminal domain. Alternative splicing has reports of DMPK with different sizes and tissue distri- been observed in a short VSGGG sequence between domains butions appear to be due to antibody cross-reactions and in the C-terminal domain (13).
    [Show full text]
  • Meta-Analysis of Genome-Wide Association Studies for Personality
    Molecular Psychiatry (2012) 17, 337–349 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp ORIGINAL ARTICLE Meta-analysis of genome-wide association studies for personality MHM de Moor1, PT Costa2, A Terracciano2, RF Krueger3, EJC de Geus1, T Toshiko2, BWJH Penninx4,5,6, T Esko7,8,9, PAF Madden10, J Derringer3, N Amin11, G Willemsen1, J-J Hottenga1, MA Distel1, M Uda12, S Sanna12, P Spinhoven5, CA Hartman4, P Sullivan13, A Realo14, J Allik14, AC Heath10, ML Pergadia10, A Agrawal10, P Lin10, R Grucza10, T Nutile15, M Ciullo15, D Rujescu16, I Giegling16, B Konte16, E Widen17, DL Cousminer17, JG Eriksson18,19,20,21,22, A Palotie17,23,24,25, L Peltonen17,23,24,25,{, M Luciano26, A Tenesa27, G Davies26, LM Lopez26, NK Hansell28, SE Medland28, L Ferrucci2, D Schlessinger2, GW Montgomery28, MJ Wright28, YS Aulchenko11, ACJW Janssens11, BA Oostra29, A Metspalu7,8,9, GR Abecasis30, IJ Deary26,KRa¨ikko¨nen31, LJ Bierut10, NG Martin28, CM van Duijn11,32 and DI Boomsma1,32 1Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands; 2National Institute on Aging, NIH, Baltimore, MD, USA; 3Department of Psychology, University of Minnesota, Minneapolis, MN, USA; 4Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands; 5Departments of Clinical Psychology and Psychiatry, Leiden University, Leiden, The Netherlands; 6Department of Psychiatry, EMGO þ Institute, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Amsterdam, The Netherlands;
    [Show full text]
  • Supporting Online Material
    1 Conserved Transcriptomic Profiles Underpin Monogamy across 2 Vertebrates 3 4 Rebecca L. Younga,b,1, Michael H. Ferkinc, Nina F. Ockendon-Powelld, Veronica N. Orre, 5 Steven M. Phelpsa,f, Ákos Pogányg, Corinne L. Richards-Zawackih, Kyle Summersi, 6 Tamás Székelyd,j,k, Brian C. Trainore, Araxi O. Urrutiaj,l, Gergely Zacharm, Lauren A. 7 O’Connelln, and Hans A. Hofmanna,b,f,1 8 9 1correspondence to: [email protected]; [email protected] 10 1 www .pnas.org/cgi/doi/10.1073/pnas.1813775115 11 Materials and Methods 12 Sample collection and RNA extraction 13 Reproductive males of each focal species were sacrificed and brains were rapidly 14 dissected and stored to preserve RNA (species-specific details provided below). All animal 15 care and use practices were approved by the respective institutions. For each species, 16 RNA from three individuals was pooled to create an aggregate sample for transcriptome 17 comparison. The focus of this study is to characterize similarity among species with 18 independent species-level transitions to a monogamous mating system rather than to 19 characterize individual-level variation in gene expression. Pooled samples are reflective 20 of species-level gene expression variation of each species and limit potentially 21 confounding individual variation for species-level comparisons (1, 2). While exploration of 22 individual variation is critical to identify mechanisms underlying differences in behavioral 23 expression, high levels of variation between two pooled samples of conspecifics could 24 obscure more general species-specific gene expression patterns. Note that two pooled 25 replicates per species would not be sufficiently large for estimating within species 26 variance, and the effect of an outlier within a pool of two individuals would be considerable.
    [Show full text]