RNA Sequencing of Whole Blood in Discordant Twin and Case-Controlled Cohorts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coupling of Spliceosome Complexity to Intron Diversity
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
1) (As of December 2018) and the Latest GWAS of AD (2
SUPPLEMENTARY FIGURES downstream intergenic ncRNA_exonic upstream ●936 ●918 group downstream intergenic ncRNA_exonic upstream group exonic exonicintronicintronic ncRNA_intronic ncRNA_intronicUTR3 UTR3 3.8% 1.2%1.5%1.9% 3.8% 5.4%5.4% 750 0.3% 3.8%1.2%1.5%1.9% ●700 5.4% ●670 0.3% 500 45.8% 40.240.2% % 45.8% ●329 ●274 250 ●223 Number (GWAS SNPs/studies) Number (GWAS ●128 ●105 45.8% ●54 ●57 ●58 ●48 ●42 ●46 ●50 ●30 ●3740.2% ● ●17 ●25 ●4 ●6 ●12 0 ● 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year Supplementary Figure S1. GWAS of AD since 2007. The figure is based on data from the GWAS Catalog (1) (as of December 2018) and the latest GWAS of AD (2). The green area shows the total number of AD-associated SNPs, and the purple area shows the total number of GWAS of AD. The insert chart shows the proportions of different types of all 936 AD-associated SNPs. 1 100 200 RPS27A TGFB2 BIN1 C4BPB MSH2 PROC UGT1A1 RAB1A TTN DISC1 50 PDCL3 COL4A3 CD55 ERCC3 100 USP21 C4BPA ITSN2 PTPRF MPZ FMN2 INPP5D CEP85 FNBP1L CSF1 CD46 ADAMTS4 PRKRA SPRED2 0 CTNNA2 DGKD ADCY10 ZAP70 LIMS2 PDE1A PROX1 0 CHRNB2 CR1 HSPG2 SH3BGRL3 DAB1 CTBS FCER1G MAP3K2 AD risk score or log10(P value) IL6R CDC73 CD34 AD risk score or log10(P value) −50 B4GALT3 IL19 0 50 100 150 200 250 0 50 100 150 200 Chromosome 1 (Mb) Chromosome 2 (Mb) ATP2B2 LTF ARF4 MECOM PAK2 EPHB1 40 VHL PRSS42 ARL6IP5 150 COL25A1 TDGF1 RPSA CCR2 CCR1 IL1RAP IRAK2 20 PTPRG 100 FLNB TF CX3CR1 IL17RD SH3RF1 FGG FANCD2 LIMD1 CCR5 50 0 WDR1 PDGFRA EIF4E FGB AD risk score or log10(P value) AD risk -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Snps Detection in DHPS-WDR83 Overlapping Genes Mapping On
Zambonelli et al. BMC Genetics 2013, 14:99 http://www.biomedcentral.com/1471-2156/14/99 RESEARCH ARTICLE Open Access SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH Paolo Zambonelli1*, Roberta Davoli1, Mila Bigi1, Silvia Braglia1, Luigi Francesco De Paolis1, Luca Buttazzoni2,3, Maurizio Gallo3 and Vincenzo Russo1 Abstract Background: The pH is an important parameter influencing technological quality of pig meat, a trait affected by environmental and genetic factors. Several quantitative trait loci associated to meat pH are described on PigQTL database but only two genes influencing this parameter have been so far detected: Ryanodine receptor 1 and Protein kinase, AMP-activated, gamma 3 non-catalytic subunit. To search for genes influencing meat pH we analyzed genomic regions with quantitative effect on this trait in order to detect SNPs to use for an association study. Results: The expressed sequences mapping on porcine chromosomes 1, 2, 3 in regions associated to pork pH were searched in silico to find SNPs. 356 out of 617 detected SNPs were used to genotype Italian Large White pigs and to perform an association analysis with meat pH values recorded in semimembranosus muscle at about 1 hour (pH1) and 24 hours (pHu) post mortem. The results of the analysis showed that 5 markers mapping on chromosomes 1 or 3 were associated with pH1 and 10 markers mapping on chromosomes 1 or 2 were associated with pHu. After False Discovery Rate correction only one SNP mapping on chromosome 2 was confirmed to be associated to pHu. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
1 Mutational Heterogeneity in Cancer Akash Kumar a Dissertation
Mutational Heterogeneity in Cancer Akash Kumar A dissertation Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy University of Washington 2014 June 5 Reading Committee: Jay Shendure Pete Nelson Mary Claire King Program Authorized to Offer Degree: Genome Sciences 1 University of Washington ABSTRACT Mutational Heterogeneity in Cancer Akash Kumar Chair of the Supervisory Committee: Associate Professor Jay Shendure Department of Genome Sciences Somatic mutation plays a key role in the formation and progression of cancer. Differences in mutation patterns likely explain much of the heterogeneity seen in prognosis and treatment response among patients. Recent advances in massively parallel sequencing have greatly expanded our capability to investigate somatic mutation. Genomic profiling of tumor biopsies could guide the administration of targeted therapeutics on the basis of the tumor’s collection of mutations. Central to the success of this approach is the general applicability of targeted therapies to a patient’s entire tumor burden. This requires a better understanding of the genomic heterogeneity present both within individual tumors (intratumoral) and amongst tumors from the same patient (intrapatient). My dissertation is broadly organized around investigating mutational heterogeneity in cancer. Three projects are discussed in detail: analysis of (1) interpatient and (2) intrapatient heterogeneity in men with disseminated prostate cancer, and (3) investigation of regional intratumoral heterogeneity in -
Bidirectional Regulation Between WDR83 and Its Natural Antisense Transcript DHPS in Gastric Cancer
npg Bidirectional regulation between WDR83 and DHPS Cell Research (2012) 22:1374-1389. 1374 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer Wen-Yu Su1, *, Jiong-Tang Li2, 3, *, Yun Cui1, Jie Hong1, Wan Du1, Ying-Chao Wang1, Yan-Wei Lin1, Hua Xiong1, Ji-Lin Wang1, Xuan Kong1, Qin-Yan Gao1, Li-Ping Wei3, Jing-Yuan Fang1 1GI Division, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institution of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao-Tong University); State Key Laboratory of Oncogene and Related Genes, 145 Middle Shandong Rd, Shanghai 200001, China; 2Chinese Academy of Fishery Science, Ministry of Agriculture, 150 Qingta, Yongding Rd, Beijing 100141, China; 3Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China Natural antisense transcripts (NATs) exist ubiquitously in mammalian genomes and play roles in the regulation of gene expression. However, both the existence of bidirectional antisense RNA regulation and the possibility of protein- coding genes that function as antisense RNAs remain speculative. Here, we found that the protein-coding gene, de- oxyhypusine synthase (DHPS), as the NAT of WDR83, concordantly regulated the expression of WDR83 mRNA and protein. Conversely, WDR83 also regulated DHPS by antisense pairing in a concordant manner. WDR83 and DHPS were capable of forming an RNA duplex at overlapping 3′ untranslated regions and this duplex increased their mu- tual stability, which was required for the bidirectional regulation. -
A Upf3b-Mutant Mouse Model with Behavioral and Neurogenesis Defects
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mol Psychiatry Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 September 27. Published in final edited form as: Mol Psychiatry. 2018 August ; 23(8): 1773–1786. doi:10.1038/mp.2017.173. A Upf3b-mutant mouse model with behavioral and neurogenesis defects L Huang1, EY Shum1, SH Jones1, C-H Lou1, J Dumdie1, H Kim1, AJ Roberts2, LA Jolly3,4, J Espinoza1, DM Skarbrevik1, MH Phan1, H Cook-Andersen1, NR Swerdlow5, J Gecz3,4, and MF Wilkinson1,6 1Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA 2Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, MB6, La Jolla, CA 92037, USA 3School Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA 5005, Australia 4South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia 5Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California, USA 6Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA Abstract Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). -
Genetic Research
Genetic Research Who Is At Risk for Alcoholism? Tatiana Foroud, Ph.D.; Howard J. Edenberg, Ph.D.; and John C. Crabbe, Ph.D. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case–control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAAsponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using stateoftheart genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcoholmetabolizing enzymes and neurotransmitter receptors. Genomewide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol’s effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches—for example, into epigenetic mechanisms of gene regulation—also are under way and undoubtedly -
Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
| WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C. -
Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.