A Upf3b-Mutant Mouse Model with Behavioral and Neurogenesis Defects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coupling of Spliceosome Complexity to Intron Diversity
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Snps Detection in DHPS-WDR83 Overlapping Genes Mapping On
Zambonelli et al. BMC Genetics 2013, 14:99 http://www.biomedcentral.com/1471-2156/14/99 RESEARCH ARTICLE Open Access SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH Paolo Zambonelli1*, Roberta Davoli1, Mila Bigi1, Silvia Braglia1, Luigi Francesco De Paolis1, Luca Buttazzoni2,3, Maurizio Gallo3 and Vincenzo Russo1 Abstract Background: The pH is an important parameter influencing technological quality of pig meat, a trait affected by environmental and genetic factors. Several quantitative trait loci associated to meat pH are described on PigQTL database but only two genes influencing this parameter have been so far detected: Ryanodine receptor 1 and Protein kinase, AMP-activated, gamma 3 non-catalytic subunit. To search for genes influencing meat pH we analyzed genomic regions with quantitative effect on this trait in order to detect SNPs to use for an association study. Results: The expressed sequences mapping on porcine chromosomes 1, 2, 3 in regions associated to pork pH were searched in silico to find SNPs. 356 out of 617 detected SNPs were used to genotype Italian Large White pigs and to perform an association analysis with meat pH values recorded in semimembranosus muscle at about 1 hour (pH1) and 24 hours (pHu) post mortem. The results of the analysis showed that 5 markers mapping on chromosomes 1 or 3 were associated with pH1 and 10 markers mapping on chromosomes 1 or 2 were associated with pHu. After False Discovery Rate correction only one SNP mapping on chromosome 2 was confirmed to be associated to pHu. -
1 Mutational Heterogeneity in Cancer Akash Kumar a Dissertation
Mutational Heterogeneity in Cancer Akash Kumar A dissertation Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy University of Washington 2014 June 5 Reading Committee: Jay Shendure Pete Nelson Mary Claire King Program Authorized to Offer Degree: Genome Sciences 1 University of Washington ABSTRACT Mutational Heterogeneity in Cancer Akash Kumar Chair of the Supervisory Committee: Associate Professor Jay Shendure Department of Genome Sciences Somatic mutation plays a key role in the formation and progression of cancer. Differences in mutation patterns likely explain much of the heterogeneity seen in prognosis and treatment response among patients. Recent advances in massively parallel sequencing have greatly expanded our capability to investigate somatic mutation. Genomic profiling of tumor biopsies could guide the administration of targeted therapeutics on the basis of the tumor’s collection of mutations. Central to the success of this approach is the general applicability of targeted therapies to a patient’s entire tumor burden. This requires a better understanding of the genomic heterogeneity present both within individual tumors (intratumoral) and amongst tumors from the same patient (intrapatient). My dissertation is broadly organized around investigating mutational heterogeneity in cancer. Three projects are discussed in detail: analysis of (1) interpatient and (2) intrapatient heterogeneity in men with disseminated prostate cancer, and (3) investigation of regional intratumoral heterogeneity in -
Bidirectional Regulation Between WDR83 and Its Natural Antisense Transcript DHPS in Gastric Cancer
npg Bidirectional regulation between WDR83 and DHPS Cell Research (2012) 22:1374-1389. 1374 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer Wen-Yu Su1, *, Jiong-Tang Li2, 3, *, Yun Cui1, Jie Hong1, Wan Du1, Ying-Chao Wang1, Yan-Wei Lin1, Hua Xiong1, Ji-Lin Wang1, Xuan Kong1, Qin-Yan Gao1, Li-Ping Wei3, Jing-Yuan Fang1 1GI Division, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institution of Digestive Disease; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao-Tong University); State Key Laboratory of Oncogene and Related Genes, 145 Middle Shandong Rd, Shanghai 200001, China; 2Chinese Academy of Fishery Science, Ministry of Agriculture, 150 Qingta, Yongding Rd, Beijing 100141, China; 3Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 5 Yiheyuan Rd, Beijing 100871, China Natural antisense transcripts (NATs) exist ubiquitously in mammalian genomes and play roles in the regulation of gene expression. However, both the existence of bidirectional antisense RNA regulation and the possibility of protein- coding genes that function as antisense RNAs remain speculative. Here, we found that the protein-coding gene, de- oxyhypusine synthase (DHPS), as the NAT of WDR83, concordantly regulated the expression of WDR83 mRNA and protein. Conversely, WDR83 also regulated DHPS by antisense pairing in a concordant manner. WDR83 and DHPS were capable of forming an RNA duplex at overlapping 3′ untranslated regions and this duplex increased their mu- tual stability, which was required for the bidirectional regulation. -
RNA Sequencing of Whole Blood in Discordant Twin and Case-Controlled Cohorts
Biomarker Discovery in Attention Decit Hyperactivity Disorder: RNA sequencing of Whole Blood in Discordant Twin and Case-Controlled Cohorts Timothy A. McCaffrey ( [email protected] ) George Washington University Medical Center https://orcid.org/0000-0002-4648-7833 Georges St. Laurent III The St. Laurent Institute Dmitry Shtokalo Institut sistem informatiki imeni A P Ersova SO RAN Denis Antonets A P Ershov Institute of Informatics Systems SB RAS: Institut sistem informatiki imeni A P Ersova SO RAN Yuri Vyatkin Janssen Research and Development LLC Daniel Jones Amgen Inc Eleanor Battison Oregon Health & Science University - West Campus Joel T. Nigg Oregon Health & Science University Research article Keywords: attention-decit/hyperactivity disorder (ADHD), RNA sequencing, transcriptome, GIT1, galactose, twins Posted Date: October 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20756/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/34 Version of Record: A version of this preprint was published on October 28th, 2020. See the published version at https://doi.org/10.1186/s12920-020-00808-8. Page 2/34 Abstract Background: A variety of DNA-based methods have been applied to identify genetic markers of attention decit hyperactivity disorder (ADHD), but the connection to RNA-based gene expression has not been fully exploited. Methods: Using well dened cohorts of discordant, monozygotic twins from the Michigan State University Twin Registry, and case-controlled ADHD cases in adolescents, the present studies utilized advanced single molecule RNA sequencing to identify expressed changes in whole blood RNA in ADHD. Multiple analytical strategies were employed to narrow differentially expressed RNA targets to a small set of potential biomarkers of ADHD. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptGenet Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 June 01. Published in final edited form as: Genet Epidemiol. 2015 December ; 39(8): 664–677. doi:10.1002/gepi.21932. Multiple SNP-sets Analysis for Genome-wide Association Studies through Bayesian Latent Variable Selection Zhaohua Lu, Hongtu Zhu, Rebecca C Knickmeyer, Patrick F. Sullivan, Williams N. Stephanie, and Fei Zou for the Alzheimer’s Disease Neuroimaging Initiative* Departments of Biostatistics, Psychiatry, and Genetics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Abstract The power of genome-wide association studies (GWAS) for mapping complex traits with single SNP analysis may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP-set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP-sets and complex traits. Compared to single SNP-set analysis, such joint association mapping not only accounts for the correlation among SNP-sets, but also is capable of detecting causal SNP- sets that are marginally uncorrelated with traits. The spike-slab prior assigned to the effects of SNP-sets can greatly reduce the dimension of effective SNP-sets, while speeding up computation. An efficient MCMC algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios. -
UPF3A Rabbit Pab
Leader in Biomolecular Solutions for Life Science UPF3A Rabbit pAb Catalog No.: A15893 Basic Information Background Catalog No. This gene encodes a protein that is part of a post-splicing multiprotein complex involved A15893 in both mRNA nuclear export and mRNA surveillance. The encoded protein is one of two functional homologs to yeast Upf3p. mRNA surveillance detects exported mRNAs with Observed MW truncated open reading frames and initiates nonsense-mediated mRNA decay (NMD). 55kDa When translation ends upstream from the last exon-exon junction, this triggers NMD to degrade mRNAs containing premature stop codons. This protein binds to the mRNA and Calculated MW remains bound after nuclear export, acting as a nucleocytoplasmic shuttling protein. It 17kDa/51kDa/54kDa forms with Y14 a complex that binds specifically 20 nt upstream of exon-exon junctions. This gene is located on the long arm of chromosome 13. Two splice variants encoding Category different isoforms have been found for this gene. Primary antibody Applications WB,IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 65110 Q9H1J1 IF 1:50 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 327-476 of human UPF3A (NP_075387.1). Synonyms UPF3A;HUPF3A;RENT3A;UPF3 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of mouse testis, using UPF3A antibody (A15893) at 1:1000 dilution. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Networks of Splice Factor Regulation by Unproductive Splicing Coupled With NMD Permalink https://escholarship.org/uc/item/4md923q7 Author Desai, Anna Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Networks of Splice Factor Regulation by Unproductive Splicing Coupled With NMD by Anna Maria Desai A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Comparative Biochemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Steven E. Brenner, Chair Professor Donald Rio Professor Lin He Fall 2017 Abstract Networks of Splice Factor Regulation by Unproductive Splicing Coupled With NMD by Anna Maria Desai Doctor of Philosophy in Comparative Biochemistry University of California, Berkeley Professor Steven E. Brenner, Chair Virtually all multi-exon genes undergo alternative splicing (AS) to generate multiple protein isoforms. Alternative splicing is regulated by splicing factors, such as the serine/arginine rich (SR) protein family and the heterogeneous nuclear ribonucleoproteins (hnRNPs). Splicing factors are essential and highly conserved. It has been shown that splicing factors modulate alternative splicing of their own transcripts and of transcripts encoding other splicing factors. However, the extent of this alternative splicing regulation has not yet been determined. I hypothesize that the splicing factor network extends to many SR and hnRNP proteins, and is regulated by alternative splicing coupled to the nonsense mediated mRNA decay (NMD) surveillance pathway. The NMD pathway has a role in preventing accumulation of erroneous transcripts with dominant negative phenotypes. -
ALS Mutations of FUS Suppress Protein Translation and Disrupt the Regulation of Nonsense-Mediated Decay
ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay Marisa Kamelgarna, Jing Chenb, Lisha Kuangb, Huan Jina, Edward J. Kasarskisa,c, and Haining Zhua,b,d,1 aDepartment of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536; bDepartment of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536; cDepartment of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536; and dLexington VA Medical Center, Research and Development, Lexington, KY 40502 Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved October 22, 2018 (received for review June 16, 2018) Amyotrophic lateral sclerosis (ALS) is an incurable neurodegener- This study started with testing the hypothesis that the identi- ative disease characterized by preferential motor neuron death. fication of proteins associated with mutant FUS-dependent cy- Approximately 15% of ALS cases are familial, and mutations in the toplasmic granules is likely to provide critical insights into the fused in sarcoma (FUS) gene contribute to a subset of familial ALS toxic mechanism of mutant FUS. We developed a protocol to cases. FUS is a multifunctional protein participating in many RNA capture the dynamic mutant FUS-positive granules (3, 4) by metabolism pathways. ALS-linked mutations cause a liquid–liquid membrane filtration and identified protein components by pro- phase separation of FUS protein in vitro, inducing the formation of teomic approaches. The bioinformatics analysis of proteins cytoplasmic granules and inclusions. However, it remains elusive identified in wild-type (WT) and mutant FUS granules revealed what other proteins are sequestered into the inclusions and how multiple RNA metabolism pathways, among which protein such a process leads to neuronal dysfunction and degeneration. -
Messenger-Rna-Binding Proteins and the Messages They Carry
REVIEWS MESSENGER-RNA-BINDING PROTEINS AND THE MESSAGES THEY CARRY Gideon Dreyfuss*, V.Narry Kim‡ and Naoyuki Kataoka* From sites of transcription in the nucleus to the outreaches of the cytoplasm, messenger RNAs are associated with RNA-binding proteins. These proteins influence pre-mRNA processing as well as the transport, localization, translation and stability of mRNAs. Recent discoveries have shown that one group of these proteins marks exon–exon junctions and has a role in mRNA export. These proteins communicate crucial information to the translation machinery for the surveillance of nonsense mutations and for mRNA localization and translation. PRE-mRNA To function properly, eukaryotic messenger RNAs must Recent discoveries showed that this mature mRNP The primary transcript of the contain, in addition to a string of codons, information contains proteins that it acquired strictly in the wake of genomic DNA, which contains that specifies their nuclear export, subcellular localiza- the splicing reaction. These proteins, which are exons, introns and other tion, translation and stability. An important theme to arranged in the form of a complex called the exon–exon sequences. emerge over the past few years is that much of this infor- junction complex (EJC), mark the position of SPLICING mation is provided by specific RNA-binding proteins. exon–exon junctions. EJC proteins have a role in the The removal of introns from the These proteins — collectively referred to as heteroge- nuclear export of mRNAs that are produced by splicing, pre-mRNA. neous nuclear ribonucleoproteins (hnRNP proteins) and several of the mRNP’s components persist in the or mRNA–protein complex proteins (mRNP pro- same position after export of the mRNP to the cyto- TERMINATION CODONS The stop signals for translation: teins) — are PRE-mRNA/mRNA-binding proteins that plasm.