Characterization of a Monoclonal Antibody Panel Shows That the Myotonic Dystrophy Protein Kinase, DMPK, Is Expressed Almost Exclusively in Muscle and Heart

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of a Monoclonal Antibody Panel Shows That the Myotonic Dystrophy Protein Kinase, DMPK, Is Expressed Almost Exclusively in Muscle and Heart © 2000 Oxford University Press Human Molecular Genetics, 2000, Vol. 9, No. 14 2167–2173 Characterization of a monoclonal antibody panel shows that the myotonic dystrophy protein kinase, DMPK, is expressed almost exclusively in muscle and heart L.T. Lam, Y.C.N. Pham, Nguyen thi Man and G.E. Morris+ MRIC Biochemistry Group, PP18, North East Wales Institute, Mold Road, Wrexham LL11 2AW, UK Received 11 May 2000; Accepted 28 June 2000 DDBJ/EMBL/GenBank accession no. AF250871 Myotonic dystrophy (DM) is a multisystemic disorder ness), brain (mental retardation), eyes (cataracts), testis caused by an inherited CTG repeat expansion which (atrophy) and heart (conduction defects) (10). It is important, affects three genes encoding the DM protein kinase therefore, to establish the normal tissue distribution of all three (DMPK), a homeobox protein Six5 and a protein proteins produced from the DM locus. containing WD repeats. Using a panel of 16 mono- The human DMPK cDNA has 15 exons and predicts a ∼ clonal antibodies against several different DMPK protein of 70 kDa, although there may be variation in the size epitopes we detected DMPK, as a single protein of and sequence of the first exon (1–3,11,12). DMPK is a serine/ threonine protein kinase in which the catalytic domain ∼80 kDa, only in skeletal muscle, cardiac muscle and, (∼43 kDa) is followed by a coiled-coil domain (∼12 kDa) and to a lesser extent, smooth muscle. Many earlier a hydrophobic C-terminal domain. Alternative splicing has reports of DMPK with different sizes and tissue distri- been observed in a short VSGGG sequence between domains butions appear to be due to antibody cross-reactions and in the C-terminal domain (13). Characterization of DMPK with more abundant proteins. One such antibody, protein using antibodies has proven to be very difficult and is MANDM1, was used to isolate two related protein still a source of considerable confusion. This may be largely kinases, MRCKα and β, from a human brain cDNA due to antibody cross-reaction, to which DMPK antibodies library and the shared epitope was located at the seem to be particularly vulnerable. Anti-peptide antisera against catalytic site of DMPK using a phage-displayed the catalytic domain have recognized proteins of 52–55 kDa in random peptide library. The peptide library also iden- skeletal muscle (14,15), 42 and 60 kDa in brain and heart tified an epitope shared between DMPK and a 55 kDa (14,15) or 53 kDa in heart and skeletal muscle (16). Several antisera prepared by Timchenko et al. (17) did recognize a muscle-specific protein. The results suggest that protein of the expected size (72 kDa) in fibroblasts. A mono- effects of the repeat expansion on the DMPK gene clonal antibody produced using recombinant catalytic and coil may be responsible for muscle and heart features of domains as immunogen recognized a 64 kDa protein in muscle DM, whereas clinical changes in other tissues may be and a 79 kDa protein in brain (18). However, variable results due to effects on the other two genes. have also been obtained with antibodies against the C-terminal domain, which is not known to share sequences with any other protein. Polyclonal antisera raised against the whole C-terminal INTRODUCTION domain recognized proteins of 71–74 and 80–85 kDa in skel- Myotonic dystrophy (DM) is caused by an unstable CTG etal and cardiac muscle (19–21). However, a similar study repeat sequence in the 3′-untranslated region of a protein produced antiserum recognizing proteins of 85 and 54 kDa kinase (DMPK) gene on chromosome 19 (1–3). The CTG repeat (22) and antisera against C-terminal peptides recognized proteins increases from 5–30 in the normal population to 50–1000+ in of 70–72 and 50–55 kDa in skeletal muscle (23,24). Finally, a DM patients and the increase is correlated with disease 45 kDa protein was detected in brain using C-terminal antibodies severity (4). Nuclear retention of DMPK transcripts with (21). expanded CTG repeats has been demonstrated (5) and The correct approach to this problem is to prepare a panel of decreased DMPK poly(A)+ mRNA levels have been reported monoclonal antibodies (mAbs) which recognize several in DM tissues (6,7). The expanded CTG repeat at the DM locus different epitopes on DMPK. Although mAbs, like antisera, is also within the 5′ end of the Six5 gene predicted to encode a often display cross-reactions with other proteins, these cross- homeobox protein (8) and a third gene, DMWD (gene 59, or reactions tend to be very specific for each epitope. Any protein DMR-N9 in the mouse), which lies 5′ to DMPK,isalso on western blots which contains most, if not all, of the epitopes affected by CTG expansions (9). Effects on expression of non- is likely to be authentic DMPK, whereas proteins sharing only DMPK proteins could therefore be responsible for some, if not one epitope with DMPK are likely cross-reactions. Our initial all, of the clinical features of DM. DM affects many different results with a panel of 12 mAbs against the catalytic or coil tissues, including muscle (myotonia and progressive weak- domains suggested that DMPK was expressed as 80 and +To whom correspondence should be addressed. Tel: +44 1978 293214; Fax: +44 1978 290008; Email: [email protected] 2168 Human Molecular Genetics, 2000, Vol. 9, No. 14 Table 1. Sixteen mAbs against DMPK catalytic or coil domains mAb Clone no. Species specificitya Domain recognizedb MANDM1 6G8 hu, rb, mo Catalytic MANDM2 10A7 hu Catalytic MANDM3 8B5 hu Coil MANDM4 9H9 hu Catalytic MANDM5 5G12 hu Catalytic MANDM6 7E4B7 hu Catalytic MANDM7 (55 kDa) 12G5 hu, rb Catalytic MANDM8 (55 kDa) 7E7 hu, rb Catalytic MANDM9 3D10 hu Coil MANDM10 2H12 hu Coil MANDM11 6B6 hu Coil MANDM12 7E4G2 hu Coil MANDM13 12A4 hu Coil MANDM14 7E6 hu Coil MANDM15 5C9 hu Coil MANDM16 9A4 hu Coil ahu, human; rb, rabbit; mo, mouse. bDomain recognition was determined using recombinant DMPK fragments encoded by exons 2–8 (catalytic) or exons 9–12 (coil) (25). 72 kDa proteins, the 80 kDa protein being present mainly in skeletal and cardiac muscle whereas the 72 kDa protein is widely expressed (25). We now show, however, that only the Figure 1. Western blot detection of DMPK and cross-reacting proteins in 80 kDa protein is authentic DMPK and that it is detectable only (a) skeletal muscle, (b) lung and (c) cerebral cortex, using a panel of 15 mAbs. in skeletal muscle, in cardiac muscle and, at lower levels, in DMPK is found only in skeletal muscle (a). Human tissue extracts were pre- pared by homogenization and boiling in 1% SDS buffer before separation as a smooth muscle. Cross-reacting proteins of 190 and 72 kDa strip on 3–12.5% polyacrylamide gradient gels as described previously. The recognized by mAb MANDM1 appear to be isoforms of western blot on nitrocellulose was cut into vertical strips, each of which was myotonic dystrophy-related cdc42-binding kinase (MRCK) incubated with a different mAb (MANDM mAb numbers at top of blot; C, no- (26–28). mAb control; MANDM12 was omitted). The strips were reassembled in the presence of chemiluminescent substrate for exposure to X-ray film. Mr, bioti- nylated markers (catalase, 60 kDa; phosphorylase, 97 kDa); MRCK, myotonic RESULTS dystrophy-related cdc42-binding kinase; CRP, cross-reacting protein. A panel of 12 mAbs, prepared using a DMPK fragment containing the catalytic and coil domains, has been described alternatively spliced isoforms is that no mRNA splicing that previously (25). Seven mAbs recognized the catalytic domain removes the coil domain has been observed, so all nine mAbs and five recognized the coil domain. A further four mAbs, against the coil domain should recognize all known splicing MANDM13–16, were prepared using recombinant coil plus isoforms (13). C-terminal domains and all four of these mapped to the coil Figure 1b and c shows that the 80 kDa DMPK band is not domain (Table 1). detectable in brain or lung, since many mAbs detect nothing at Figure 1a shows that the only protein recognized by nearly all. Some cross-reacting proteins are very prominent, espe- all mAbs on a western blot of human skeletal muscle is a single cially in brain. mAb MANDM1 is the only one to detect a band ∼ band of 80 kDa. Since these mAbs recognize several different close to the Mr of DMPK in lung and brain, but Figure 2a epitopes and they all recognize the DMPK recombinant fusion shows that this is a CRP of slightly lower Mr. The upper band protein (data not shown), this 80 kDa band is authentic DMPK. of authentic DMPK is detected only in cardiac and skeletal Many of the mAbs also recognize other proteins of higher or muscle whereas CRP is also present in lung, brain and three ∼ lower Mr, notably a 55 kDa protein, proteins of 200 kDa and different human skin fibroblast cell lines (F1–F3). Figure 2b a protein that migrates slightly faster than DMPK at ∼72 kDa shows that the upper band is also detectable by MANDM1 at [cross-reacting protein (CRP)]. Since these proteins are recog- very low levels in fetal stomach (smooth muscle), but this nized by only one or two of 16 mAbs, they must be cross- could not be detected by the whole panel of mAbs (data not reacting proteins with some sequence or structural similarity shown), either because the other mAbs are weaker or because to DMPK. The argument against the lower Mr bands being the band is not authentic DMPK. DMPK was also detected by Human Molecular Genetics, 2000, Vol.
Recommended publications
  • Genome-Wide Identification and Analysis of Prognostic Features in Human Cancers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Genome-wide identification and analysis of prognostic features in human cancers Joan C. Smith1,2 and Jason M. Sheltzer1* 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. 2. Google, Inc., New York, NY 10011. * Lead contact; to whom correspondence may be addressed. E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Clinical decisions in cancer rely on precisely assessing patient risk. To improve our ability to accurately identify the most aggressive malignancies, we constructed genome-wide survival models using gene expression, copy number, methylation, and mutation data from 10,884 patients with known clinical outcomes. We identified more than 100,000 significant prognostic biomarkers and demonstrate that these genomic features can predict patient outcomes in clinically-ambiguous situations. While adverse biomarkers are commonly believed to represent cancer driver genes and promising therapeutic targets, we show that cancer features associated with shorter survival times are not enriched for either oncogenes or for successful drug targets.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • In Silico Analysis of IDH3A Gene Revealed Novel Mutations Associated with Retinitis Pigmentosa
    bioRxiv preprint doi: https://doi.org/10.1101/554196; this version posted February 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. In silico analysis of IDH3A gene revealed Novel mutations associated with Retinitis Pigmentosa Thwayba A. Mahmoud1*, Abdelrahman H. Abdelmoneim1, Naseem S. Murshed1, Zainab O. Mohammed2, Dina T. Ahmed1, Fatima A. Altyeb1, Nuha A. Mahmoud3, Mayada A. Mohammed1, Fatima A. Arayah1, Wafaa I. Mohammed1, Omnia S. Abayazed1, Amna S. Akasha1, Mujahed I. Mustafa1,4, Mohamed A. Hassan1 1- Department of Biotechnology, Africa city of Technology, Sudan 2- Hematology Department, Ribat University Hospital, Sudan 3- Biochemistry Department, faculty of Medicine, National University, Sudan 4- Department of Biochemistry, University of Bahri, Sudan *Corresponding Author: Thwayba A. Mahmoud, Email: [email protected] Abstract: Background: Retinitis Pigmentosa (RP) refers to a group of inherited disorders characterized by the death of photoreceptor cells leading to blindness. The aim of this study is to identify the pathogenic SNPs in the IDH3A gene and their effect on the structure and function of the protein. Method: we used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein. Result: 20 deleterious SNPs out of 178 were found to have a damaging effect on the protein structure and function. Conclusion: this is the first in silico analysis of IDH3A gene and 20 novel mutations were found using different bioinformatics tools, and they could be used as diagnostic markers for Retinitis Pigmentosa.
    [Show full text]
  • A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J.
    [Show full text]
  • Leveraging Tissue Specific Gene Expression Regulation to Identify Genes Associated with Complex Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/529297; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Leveraging tissue specific gene expression regulation to identify genes associated with complex diseases Wei Liu1,#, Mo Li2,#, Wenfeng Zhang2, Geyu Zhou1, Xing Wu4, Jiawei Wang1, Hongyu Zhao1,2,3* 1 Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA 06510 2 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA 06510 3 Department of Genetics, Yale School of Medicine, New Haven, CT, USA 06510 4 Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA 06510 # These authors contributed equally to this work * To Whom correspondence should be addressed: Dr. Hongyu Zhao Department of Biostatistics Yale School of Public Health 60 College Street, New Haven, CT, 06520, USA [email protected] Key words: GWAS; gene expression imputation; Alzheimer’s disease; gene-level association test 1 bioRxiv preprint doi: https://doi.org/10.1101/529297; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract To increase statistical power to identify genes associated with complex traits, a number of methods like PrediXcan and FUSION have been developed using gene expression as a mediating trait linking genetic variations and diseases.
    [Show full text]
  • Searching for Candidate Genes for Male Infertility
    9/17/2015 :: Asian Journal of Andrology :: Home | Archive | AJA @ Nature | Online Submission | News & Events | Subscribe | APFA | Society | Links | Contact Us | 中文版 Pubmed Searching for candidate genes for male infertility B. N. Truong1, E.K. Moses2, J.E. Armes3, D.J. Venter3,4, H.W.G. Baker1 1Melbourne IVF Centre, 2Pregnancy Research Centre, Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Victoria 3053, Australia 3Departments of Pathology and Obstetrics/Gynaecology, University of Melbourne, Victoria 3010, Australia 4Murdoch Children's Research Institute, Royal Children's Hospital, Victoria 3052, Australia Asian J Androl 2003 Jun; 5: 137­147 Keywords: male infertility; genetics; spermatogenesis; human genome; database; tissues; array Abstract Aim: We describe an approach to search for candidate genes for male infertility using the two human genome databases: the public University of California at Santa Cruz (UCSC) and private Celera databases which list known and predicted gene sequences and provide related information such as gene function, tissue expression, known mutations and single nucleotide polymorphisms (SNPs). Methods and Results: To demonstrate this in silico research, the following male infertility candidate genes were selected: (1) human BOULE, mutations of which may lead to germ cell arrest at the primary spermatocyte stage, (2) mutations of casein kinase 2 alpha genes which may cause globozoospermia, (3) DMR­N9 which is possibly involved in the spermatogenic defect of myotonic dystrophy and (4) several testes expressed genes at or near the breakpoints of a balanced translocation associated with hypospermatogenesis. We indicate how information derived from the human genome databases can be used to confirm these candidate genes may be pathogenic by studying RNA expression in tissue arrays using in situ hybridization and gene sequencing.
    [Show full text]
  • Exome Sequencing of 457 Autism Families Recruited Online Provides Evidence for Autism Risk Genes
    www.nature.com/npjgenmed ARTICLE OPEN Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes Pamela Feliciano1, Xueya Zhou 2, Irina Astrovskaya 1, Tychele N. Turner 3, Tianyun Wang3, Leo Brueggeman4, Rebecca Barnard5, Alexander Hsieh 2, LeeAnne Green Snyder1, Donna M. Muzny6, Aniko Sabo6, The SPARK Consortium, Richard A. Gibbs6, Evan E. Eichler 3,7, Brian J. O’Roak 5, Jacob J. Michaelson 4, Natalia Volfovsky1, Yufeng Shen 2 and Wendy K. Chung1,8 Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a combination of rare de novo and inherited variants as well as common variants in at least several hundred genes. However, significantly larger sample sizes are needed to identify the complete set of genetic risk factors. We conducted a pilot study for SPARK (SPARKForAutism.org) of 457 families with ASD, all consented online. Whole exome sequencing (WES) and genotyping data were generated for each family using DNA from saliva. We identified variants in genes and loci that are clinically recognized causes or significant contributors to ASD in 10.4% of families without previous genetic findings. In addition, we identified variants that are possibly associated with ASD in an additional 3.4% of families. A meta-analysis using the TADA framework at a false discovery rate (FDR) of 0.1 provides statistical support for 26 ASD risk genes. While most of these genes are already known ASD risk genes, BRSK2 has the strongest statistical support and reaches genome-wide significance as a risk gene for ASD (p-value = 2.3e−06).
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Methylation of the G-C Rich Dmpk Gene: Causation For
    METHYLATION OF THE G-C RICH DMPK GENE: CAUSATION FOR THE SEVERITY DIFFERENCE BETWEEN ADULT- ONSET AND CONGENITAL MYOTONIC DYSTROPHY? by Brian Barnette A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelor of Science in Biological Sciences. Spring 2010 Copyright 2010 Brian Barnette All Rights Reserved METHYLATION OF THE G-C RICH DMPK GENE: CAUSATION FOR THE SEVERITY DIFFERENCE BETWEEN ADULT- ONSET AND CONGENITAL MYOTONIC DYSTROPHY? by Brian Barnette Approved: __________________________________________________________ Vicky Funanage, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Grace Hobson, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Marlene Emara, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Alan Fox, Ph.D. Director, University Honors Program ACKNOWLEDGMENTS This study could not have been possible without the help of several individuals. I would first like to thank Dr. Funanage for agreeing to sponsor not only my undergraduate research at the University of Delaware, but also for being my thesis advisor. Dr. Funanage had accepted me into her lab after a brief interview the winter of my sophomore year. Since then, I have greatly enjoyed my time in the Musculoskeletal Inherited Disease (MID) Laboratory, it was one of the greatest experiences I have had at the University of Delaware. I would also like to thank two individuals I met the same day as my interview with Dr. Funanage, Sarah Swain and Susan Kirwin. Sarah Swain was instrumental in not only in the writing of my first grant proposal, but also in my laboratory training.
    [Show full text]
  • Alsaai Udel 0060D 14351.Pdf
    INVESTIGATION OF TDRD7 FUNCTION IN OCULAR LENS DEVELOPMENT by Salma Mohammed Al Saai A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences Summer 2020 © 2020 Salma Mohammed Al Saai All Rights Reserved . INVESTIGATION OF TDRD7 FUNCTION IN OCULAR LENS DEVELOPMENT by Salma Mohammed Al Saai Approved: __________________________________________________________ Velia M. Fowler, Ph.D. Chair of the Department of Biological Sciences Approved: __________________________________________________________ John A. Pelesko, Ph.D. Dean of the College of Arts & Sciences Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Salil A. Lachke, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Melinda K. Duncan, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Donna Woulfe, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Supplementary Data
    Fold change compared with UCB CD133+ cells 10 15 20 25 30 35 -5 0 5 COL4A1 CD68 PLAUR IL8 CXCR4 PE ADFP 13.4% 14.1% TFGBI PE NUPR - MMP12 > JUNB 7.7% SPP1 HDAC1 Fold change compared with UCB CD133+ cells -400 -300 -200 -100 100 200 [Supplementary Figure1] 0 CRABP AIF Rutella S et al. Supplementary Materials and Methods Real-time PCR Real-time quantitative PCR (qPCR) was performed on mRNA samples isolated from either endometrial cancer-derived CD133+ cells or umbilical cord blood CD133+ cells with the RNeasy plus Mini Kit (QIAGEN, Hilden, Germany), as already detailed. Quantitative PCR for a selected group of genes was performed on the iCycler iQ system (Bio-Rad, Hercules, CA). Primer sets were designed using the Beacon Design Software (Version 3) and the sequences available in the GeneBankTM data base. The specific oligonucleotide primer sequences are detailed in Supplementary Table 8. Complementary DNA (cDNA) was prepared starting from 1μg of total RNA using the iScrypt cDNA Synthesis Kit, which contains RNase H + MMLV reverse transcriptase random primers and 5x reaction mixture (Bio-Rad), according to the manufacturer’s instructions. Reactions were conducted in the PTC-0200 DNA Engine (MJ RESEARCH). Amplification was carried out in a total volume of 25μl containing 0.3μM of each specific primer, 12,5μl 2X SYBR Green Master Mix (100mM KCl, 40mM Tris-HCl, pH 8.4, 0.4mM of each dNTP, iTaq DNA polymerase, 6mM MgCl2, SYBR Green I, 20nM fluorescein, stabilizers; Bio-Rad) and 2μl of diluted cDNA. The PCR reactions were cycled starting with a 3-minute template denaturation step at 95°C followed by 40 cycles of 15 seconds at 95°C and 1 minute at 60°C.
    [Show full text]
  • Characterization of DMWD and Its Role in Myotonic Dystrophy (DM1)
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/19354 Please be advised that this information was generated on 2017-12-05 and may be subject to change. Characterization of DMWD and its role in Myotonic Dystrophy (DM1) Characterization of DMWD and its role in Myotonic Dystrophy (DM1) Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, op gezag van de Rector Magnificus Prof. Dr. C.W.P.M Blom, volgens besluit van het College van Decanen in het openbaar te verdedigen op donderdag 6 november 2003, des namiddags om 1.30 uur precies door Jolanda Henrica Antonetta Maria Westerlaken geboren op 29 april 1972 te Vinkel. Promotor: Prof. Dr. B. Wieringa Manuscript-commissie: Prof. Dr. H. Brunner Prof. Dr. G. Martens Dr. P. de Boer The studies described in this thesis were performed at the Department of Cell Biology of the University Medical Centre (UMC) St. Radboud, Nijmegen, the Netherlands. This work was supported by a grant from the Medical Faculty (now UMCN) University of Nijmegen. ISBN 90-9017128-2 Cover: chromosome and sex vesicle staining of pachytene spermatocytes. Cover and pictures on chapter-title pages designed by Anita Burge. For Nita Table of content page Chapter 1 General Introduction 9 1.1 Myotonic Dystrophy, the clinical picture 11 1.2 Mutation underlying
    [Show full text]