Master Thesis, Natural History Museum

Columbite-tantalite and garnet geochemistry in Evje-Iveland, South

Mats Lund

Columbite-tantalite and garnet geochemistry in Evje-Iveland, South Norway

Mats Lund

Master Thesis in Geosciences Discipline: Geology and mineralogy Department of Geosciences and Natural History Museum Faculty of Mathematics and Natural Sciences

University of Oslo 1 February 2016

© Mats Lund, 2016 Supervisors: Associate prof. Rune Snæring Selbekk, Henrik Friis and prof. Tom Andersen

Cover image: A road cut at Iveland showing white pegmatite lenses hosted in dark grey amphibolite.

This work is published digitally through DUO – Digitale Utgivelser ved UiO http://www.duo.uio.no It is also catalogued in BIBSYS (http://www.bibsys.no/english) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission.

Acknowledgements

It still feels somewhat weird to have finished five years of geoscience-related studies at the University of Oslo. It has been a blast!

I want to thank my main supervisor Rune Selbekk for allowing me to be his student during these two years. I especially loved our trips to Asylet together with other personnel from the museum to drink beer and talk crap. A sincere thank you goes to my co-supervisors Henrik Friis and Tom Andersen. Both Henrik and Tom’s positive attitude for helping me along with understanding both physical and chemical data will be remembered. I still do not understand how I managed to transcribe Tom’s handwriting, but I understood the context nevertheless. Your intense analysis of what I had written and what I had to fix is extraordinary, and it made me rewrite whole paragraphs and chapters. I am so glad for it, because it helped a ton!

Many hours have been spent waiting for thin sections and epoxy mounts produced by Salahalldin Akhavan, which have been used extensively throughout the study. It has been really helpful, and I appreciate the time used to make them. I want to thank Siri Simonsen and Muriel Erambert for their help with both data acquisition and interpretation. It is hard to do this kind of analytical studies for the first time without having some kind of help as you go along.

Honorable mentions must go to the local enthusiasts in the Iveland municipality. Kjell Gunnulfsen, Andreas Corneliussen and Arild Omstad for help with sampling, accessing the localities, and general banter on our time off during the field excursions. I also want to direct my thanks to all the support from people at the museum and at the study room floor in the ZEB building.

Last but not least, I want to thank my family and friends for moral and material support during this period. Kjetil Stokkeland has been my partner in crime for the last two years. We’ve shared office space for at least a year together, and I have now proof that he is extremely weird. Then again, it takes one to know one. Thank you, mom and dad for allowing me to eat all your food, drink your beer and to give me some time off from the writing process. My brother, for general banter and support during downtime. My friends near and far, Norwegians and internationals, I want to thank you for the good times and the brotherhood we had. Now I can go back to become a social being again.

Abstract

A mixed NYF+LCT pegmatite field is located in Evje-Iveland, South Norway. The pegmatites are hosted in amphibolites and gneisses formed during the Sveconorwegian Orogeny. They vary in fractionation from low to well-fractionated systems, and they identify as rare- element REE and muscovite rare-element REE classes. Little is understood of how columbite-tantalite minerals form in this particular pegmatite field, as most work done have been on garnet and high-purity quartz. A study of a well-fractionated muscovite rare- element REE, mixed NYF+LCT pegmatite at Solås were done to better understand the development of the dike and distribution of minerals present. The pegmatite was also intended to be used as a staging point to understand columbite-tantalite paragenesis, as Solås is one of the best fractionated systems present in Evje-Iveland. Sadly, no columbite were recovered and only tantalite-(Mn) from a cleavelandite pod were found. Columbites from all over Evje-Iveland were studied collectively, and were found to follow a fluorine- poor trend. Columbite-tantalite from cleavelandite zones follow a fluorine-rich trend, even if no fluorine minerals have been reported. Fluorine influence the solubility and transportation of high-field strength elements as a flux, but not as a transporting agent. Columbite-(Fe) and columbite-(Mn) minerals form in the wall zone towards the intermediate zone, while Ta-rich columbite-(Mn) occur together with tantalite-(Mn) in cleavelandite zones. Older studies and a few field observations show that columbite-(Fe) may form with REE-oxides like polycrase-(Y) and euxenite-(Y), but after the oxides have crystallized. This is dependent on the amount of REE and Y present in the pegmatite magma and may vary from pegmatite to pegmatite. More fractionated columbite-(Mn) may form solitary crystals in the intermediate zone with no other minerals forming around it, as is the case at the Hovåsen pegmatite. Garnet data were used as a fractionation trend tool together with columbite-tantalite data to better understand how the pegmatite systems in Evje-Iveland formed. The almandine-spessartine variant of garnet contains up to 2 wt%

Y2O3 in some pegmatites, while spessartines formed in the cleavelandite zone are Mn-rich, but almost no Y or REE are present. A slight increase in Na are observed with high-Y content, but no good correlation could be made for the substitution of these elements into the garnet structure.

Table of contents

1. INTRODUCTION ...... 1

1.1 WHAT IS A PEGMATITE? ...... 2

1.2 REGIONAL GEOLOGY ...... 4

1.2.1 The Setesdal Region and the Evje-Iveland pegmatite field ...... 6

1.2.2 The Solås pegmatite ...... 9

2. METHODS ...... 10 3. RESULTS ...... 13

3.1 FIELD OBSERVATIONS IN THE SOLÅS PEGMATITE ...... 13

3.2 DESCRIPTIONS OF INDIVIDUAL MINERALS FROM SOLÅS ...... 27

3.3 COLUMBITE-TANTALITE MINERAL CHEMISTRY...... 33

3.4 GARNET MINERAL CHEMISTRY ...... 49

4. DISCUSSION ...... 67

4.1 SOLÅS PEGMATITE EVOLUTION ...... 67

4.2 COLUMBITE-TANTALITE PARAGENESIS IN EVJE-IVELAND ...... 71

4.3 GARNET CHEMISTRY ...... 80

5. CONCLUSION ...... 91 6. FUTURE WORK ...... 93 7. REFERENCES ...... 94 8. APPENDIX...... 102

8.1 APPENDIX 1: SAMPLE DESCRIPTION ...... 102

8.2 APPENDIX 2: COLUMBITE-TANTALITE DATA ...... 104

8.3 APPENDIX 3: EUXENITE-(Y) DATA ...... 121

8.4 APPENDIX 4: GARNET DATA ...... 122

1. Introduction

Figure 1: A map of South Norway. Evje-Iveland is located in the Aust- county 40 km north of Kristiandsand.

There have been few studies on the mineralogy of the Evje-Iveland pegmatites in modern times except for garnet and high-purity quartz (figure 1) (Larsen et al, 2000; Müller et al, 2009, 2012, 2015; Snook, 2014). The aim is to determine the paragenesis of the columbite- tantalite mineral group in the Evje-Iveland pegmatite field. The paragenesis can provide insight to how high-field strength elements behave in granitic pegmatite melts made from hydrous fractional crystallization. It will be interesting to see how columbite-tantalite minerals form in the whole field, as it has not been thoroughly studied before in Evje- Iveland. Correlation of data with other studies can provide information about physical and chemical differences between several pegmatite fields. Garnets are local sources of information to better understand the partial crystallization trends of different granitic pegmatite systems found in a pegmatite field. This is due to the major element fractionation that occur in garnets during fractional crystallization of pegmatite melts. It will be interesting to see the fractionation correlation between garnet and columbite-tantalite minerals, because

1

they form in the same granite pegmatite systems and they both have fractionation paths related to their major element chemistry. Detailed mapping of a well-evolved pegmatite at Solås was performed to provide information of in-situ mineral assemblages, and to better understand columbite-tantalite and garnet genesis. Substitution schemes of high-field strength elements and lanthanoids can provide information regarding development of these minerals in the Evje-Iveland pegmatite field.

1.1 What is a pegmatite?

Figure 2: A cut granite slab hosting a pegmatite vein located at the University of Oslo.

Pegmatites are coarse-grained holocrystalline igneous rocks with mineral grain sizes over 2.5 cm forming during the last stage of a crystallizing magma (figure 2). These rocks are known to carry high concentrations of rare-elements, industrial minerals and gemstones (London, 2008). The pegmatites variable mineralogy depending on their mode of origin, and can have a sub-, met-, peraluminous or peralkaline compositions (London, 2008). The formation of a pegmatite is attributed to two modes of origin. Firstly, a pegmatite can form by hydrothermal fluid solution by differentiating from a parental magma during the last stages of crystallization. Secondly, a pegmatite may also form directly as a product of partial melting 2

(anataxis) of crustal material (London, 2008). Both of these origins can carry very different chemical signatures due to the available and assimilated elements.

Classification of pegmatites is based on geological and geochemical characteristics that are applied to a specific set of classes, subclasses, types and subtypes. The most used chart today is the revised pegmatite classification chart by Cerný & Ercit, (2005) based on the original from Ginsburg & Rodionov, (1960). The rare-element class (REL) is the most important class in this chart. Pegmatites are also separated into a set of geochemical families (Cerný, 1991a; Cerný & Ercit, 2005). The niobium-yttrium-fluorine family contain abundant Nb, Y, rare-earth elements (REE), Sc, Ti and U, while the lithium-cesium-tantalum family contain Li, Be, Sn, Rb, Cs and Ta. The mixed NYF+LCT family consist of primary NYF-type mineralogy contaminated by LCT-characteristic mineral assemblages (Cerný, 1991a, 1991b; Cerný & Ercit, 2005). Typically, differentiated pegmatite magma assimilate some characteristics from active partial melting of a host rock, such as can be seen in sedimentary- derived granites (S-type) that host primary LCT-mineralogy (Chapell & White, 2001; London, 2008). Pegmatites of anorogenic (A-type) or igneous-derived (I-type) origins formed directly from partial melting of a host rock usually have a more primitive niobium- yttrium-fluorine (NYF) signature, which may be contaminated by LCT-characteristic mineralogy (Whalen et al, 1987; Cerny et al, 1991a; Chapell & White, 2001; Cerný & Ercit, 2005). These types of pegmatites can be studied and classified by using regional geology, mineralogy and geochemical analysis to determine how they formed (Cerný & Ercit, 2005).

Rare-element pegmatites are separated into two different classes: The muscovite rare- element (MSREL) and rare-element pegmatites. These types form in anorogenic environments related to NYF-type magmatism in extensional orogenic settings (Martin & De Vito, 2005; London, 2008; Thomas et al, 2012). MS-REL is a pegmatite class that combine economic amounts of mica with rare-element enrichments. REL-class pegmatites are enriched in rare-elements, which can be further divided into a set of subclasses depending on the geochemistry of the pegmatite melt (Cerný & Ercit, 2005). Rare-element pegmatites are related to both modes of origin, but the content of these pegmatites may differ due to emplacement settings. The rare-element class pegmatites are some of the most well-known and extensively studied rock types in igneous petrology because of their economic importance (Cerný, 1991a; Cerný & Ercit, 2005). 3

Pegmatites can be either unzoned or zoned depending on their origins (London, 2008). The unzoned pegmatites are more or less mineralogical homogenous and it may include oriented mineral textures. They are usually found in high-grade metamorphic suites (London, 2008). The zoned pegmatites however are quite distinct in how they crystallized, as each zone contains certain textures and minerals that may or may not be found in the other zones. A zoned pegmatite can contain a border, wall, intermediate and core zones as defined originally by Cameron et al, (1949) (London, 2008). The border zone is the outermost shell against the host rock. It is a thin zone of granitic intergrowth with crystal sizes around 2-5 mm, but no special mineralization of note. This border zone ends abruptly after a few cm where the grain sizes gets larger, and marks the transition to the wall zone (London, 2008). The wall zone is one of the larger zones in a pegmatite and can be distinguished by the graphic granite and skeletal growth of feldspar/quartz textures. The structure of the zone is like the border zone only with larger grain sizes, and the addition of minor accessory minerals. It is accompanied by minerals like tourmaline, micas and beryl that may have an orientation towards the core of the pegmatite (London, 2008). Pegmatites can have several intermediate zones. These zones are dependent on a mineral phase that is very prevalent, and the grain sizes of the minerals in these zones can up to meter-scale. Zonation like this can be variable in the sense that it may contain lenses and small irregular zones with specific mineralization, which in turn are a part of a major zone in the pegmatite. The core consists of megacrystic quartz and feldspar that can reach several meters in size, but some pegmatites might have other mineral species that reflect pegmatite affinity (London, 2008).

1.2 Regional geology

The geology of southwestern Norway (figure 3) is a result of large scale tectonic phases that occurred during the Mesoproterozoic era (1600-1000 Ma). These phases are related to the orogenic processes of the Gothian (1750 – 1500 Ma) and Sveconorwegian (1140 – 900 Ma) orogenies that occurred in the latter part of the era (Gaál & Gorbatschev, 1987; Bingen et al, 2008a). The Sveconorwegian orogeny is the most recent orogenic event in the Southwestern Scandinavian Domain (SSD) and is the most influential. The orogeny is characterized by

4

extensive metamorphism, magmatism and emplacement of small amounts of crust in the southwestern part of the Fennoscandian shield (Andersen, 2005; Bingen et al, 2008a).

Figure 3: A map of the Southern Scandinavian Domain (SSD). a) The regional scale blocks of south Norway: H-R – Hardangervidda-Rogaland, T – Telemark, B-L – Bamble-Lillesand, K-M – Kongsberg-Marstrand and R-L – Randsfjord-Lygnern. Other: O – Oslo Rift, SNF – Sveconorwegian Front, TIB – Transscandinavian Igneous Belt, MUL – Mandal-Ustaoset Lineament and KBSZ Kristiandsand-Bagn Shear Zone (Taken from Pedersen et al, 2009)

The proterozoic basement in southwestern Norway consist of metamorphosed late paleoproterozoic to early mesoproterozoic and late mesoproterozoic rocks with small additions of material from the Sveconorwegian orogen (Andersen, 2005; Bingen et al, 2005). The Southwestern Scandinavian Domain consist of several large lithotectonic blocks, which constrain Sveconorwegian events by exposed regional faults and lineaments. The Telemark block is limited by the Mandal-Ustaoset Lineament to the west and the Porsgrunn- Kristiansand Fault Zone to the east (figure 3).

The Sveconorwegian orogen (SNO) started around 1220 Ma with the closing of an oceanic basin by eastwards subduction between the continent of Laurentia and Fennoscandia (Bingen et al, 2008a). This started a sequence of four distinct phases that encompass the main events

5

of the SNO. Initially, the phase (1140-1080 Ma) marked an early continent- continent collision between Laurentia and Fennoscandia. The Agder phase (1050-980 Ma) recorded the main Sveconorwegian event that were caused as an oblique collision event between Laurentia/Fennoscandia and an exotic continental fragment. The Falkenberg (980 – 970 Ma) and Dalane phases (970 – 900 Ma) culminated the peak collision and subsequent gravitational relaxation of the orogeny (Bingen et al, 2008a).

1.2.1 The Setesdal Region and the Evje-Iveland pegmatite field

Figure 4: Geological map over pegmatite occurrences in South Norway. Evje-Iveland pegmatites are found to the west of the Porsgrunn-Kristiansand Fault Zone that separates the Telemark and Bamble-Lillesand blocks (Taken from Müller et al, 2015)

The basement rocks in Setesdal have been overlain by supracrustal metavolcanics and metasediments, underwent regional metamorphism and finally were intruded by anorogenic

6

mafic and felsic igneous rocks and pegmatites (Pedersen & Konnerup-Madsen, 2000; Pedersen et al, 2009). The basement rocks consist of mostly mafic banded gneisses in upper amphibolite-lower granulite facies. These basement gneisses make up the Iveland- Gautedstad Metagabbro Complex (IGMC), which host many of the rare-metal REE-bearing pegmatites of Evje-Iveland (figure 4) (Pedersen, 1981; Pedersen & Konnerup-Madsen, 2000; Larsen, 2002).

Magmatism in the Setesdal region occurred in two major pulses. The first one created the protolith for the Fennefoss augen gneiss, Evje-amphibolite and Flåt ”ore”-diorite (Barth, 1947; Pedersen & Konnerup-Madsen, 2000). The latter pulse were responsible for several stages of granitoid intrusions in which the Høvringsvatnet complex were a major part of (figure 4). The magmatism was caused by post-orogenic gravitational stresses during the last part of the Dalane phase (Bingen et al, 2006; Bingen et al, 2008a). The Høvringsvatnet granite (980 +/- 4 Ma) host many pegmatite dikes (910 +/- 14 Ma) in northern Iveland, but it cannot be the parental pluton for the main IGMC-hosted pegmatites since the pegmatites are approx 70 Ma younger (Pedersen & Konnerup-Madsen, 2000; Scherer et al, 2001; Snook, 2014). It is more likely that the pegmatites are related to crustal underplating and partial melting of the dense mafic rocks that make up the IGMC (Snook, 2014)

The Evje-Iveland pegmatite field

The Evje-Iveland pegmatite field is a large area in covering roughly 10 km E-W and 30 km N-S in Setesdal, Telemark domain (figure 4) (Pedersen & Konnerup- Madsen, 2000; Müller et al, 2015). The pegmatites hosted in banded gneisses and IGMC- amphibolite are found as flow structures in the rock, which were formed in the last stages of the Dalane phase at the end of the SNO (Larsen et al, 2004; Bingen et al, 2008a). The region was experiencing extensional stresses related to upwelling of hot mantle magma in the Rogaland – Vest-Agder region (930-920 +/- 3 Ma) (Schärer et al, 1996; Bingen & van Breemen, 1998; Bingen & Stein, 2003; Andersen, 2005; Bingen et al, 2006). Bingen et al, (2008a) refer to the gravitational collapse of the Sveconorwegian orogeny in the Dalane phase as related to extensional tectonics. It is assumed that this mantle thinning of the crust

7

is one of the main heat sources for partial melting of the IGMC to produce the pegmatites found in Setesdal (figure 5).

Figure 5: A schematic of late magmatism and potential underplating in Evje-Iveland and Froland near the Porsgrunn-Kristiansand Fault Zone. The Iveland pegmatites are not related to the Høvringsvatnet granite (Taken from Müller et al, 2015)

There are 400 - 600 known pegmatite dikes, mines and quarries in Setesdal (Müller et al, 2012, 2015). A feldspar and quartz-mining industry thrived in this area over many years, but now most of the old mines are overgrown, neglected and submerged in water. The pegmatites generally strike towards NNE-SSW, and they are hosted as leucosome dikes in the dark grey colored IGMC-amphibolite (Bjørlykke, 1935, 1937; Larsen et al, 2004;

8

Pedersen et al, 2009; Snook, 2014). They are classified as mainly MSREL-REE and REL- REE pegmatites due to their extensive rare-element mineral assemblage (Cerný & Ercit, 2005; Snook; 2014; Müller et al, 2015). They are further separated into subclasses and types appropriate of the local mineral assemblage, where most fall under either the euxenite or gadolinite-subtype (with minor amounts of the allanite-monazite subtype). The original pegmatite magma affinity in Evje-Iveland was of the NYF-type with almost negligible amounts of F in the system. Furthermore, the Evje-Iveland pegmatite signature is that of mixed NYF+LCT origins due to local LCT-contamination by assimilation of the surrounding supracrustal rocks. The pegmatites follow the zonation scheme described by London, (2008), which have developed border, wall, intermediate and core zones, and some of them also carry late-stage cleavelandite pods indicative of well-fractionated systems (Bjørlykke, 1935; Frigstad, 1984; London, 2008).

1.2.2 The Solås pegmatite

Solås is a small hill located roughly 4km north of Iveland church (figure 4). It is home to a 200 m long, and 5 m thick tabular MSREL-REE, allanite-monazite subtype pegmatite dike that strike roughly N-S at the eastern part of the hill Meråsen, and it dips roughly 20° NW (Frigstad, 1984; Snook, 2014). A secondary conformable pegmatite lies approximately 10m above the Solås pegmatite (Snook, 2014). The pegmatite is fairly well exposed, especially where the main mine (Solås) has been excavated, and it is hosted in amphibolite (metagabbro) in the IGMC-field. The contact in the border is sharp. The southern part of the pegmatite ends just before a decline into a large swamp, and the northern part thins out towards the north end of the hill as granitic veins. The exposed parts of the pegmatite vary from aplitic to coarse granitic veins and veinlets, graphic granite and large pieces of pink feldspar shown as a contrast to the grey-black amphibolite. It is a pegmatite with well- developed zonation. Rare-element mineralization at Solås is mainly restricted to Y, Nb and REE-oxides with some to no Be, U, Ti and F-minerals, except for the cleavelandite zone. The cleavelandite zone contain Ta, F, Mn, Na-minerals, with little to no Nb or REE present. This places the Solås pegmatite in the mixed NYF+LCT family (Snook, 2014; Müller et al, 2012, 2015). 9

2. Methods

Fieldwork

The Evje-Iveland pegmatite field hosts many old feldspar quarries and mines that are suitable to get sample material from, and several of these were picked out as relevant due to accessibility and ease of sampling. Most of the rare minerals needed for analysis are hard to come by in the field, so many of the samples used were material provided from the Natural History Museum in Oslo. Major minerals and rock samples were collected in the field from the pegmatite Solås and several other relatively accessible pegmatites in the area with local help. Samples were collected from different pegmatite zones and if inaccessible the mine tailings were used as a substitute.

Sample preparation

Samples were prepared as thin sections and epoxy at the Department of Geoscience and the Natural History Museum (NHM), University of Oslo. Material for thin section analysis were picked out, sawed and sent to preparation in the thin section lab at the Department of Geosciences, UiO. The epoxy mounts were made at NHM with EpoFix standard resin & hardener in molds, which were subsequently polished at the Department of Geoscience, UiO. Sample descriptions are presented in appendix 1.

Scanning electron microscope (SEM)

The SEM is a Hitachi 3600-N Scanning Electron Microscope with an EDS (energy dispersive spectrometer) used at NHM. The beam voltage was 15 kV, and the pressure in the low-vacuum chamber was 20 Pa during analysis.

The SEM were used to gather semi-quantifiable data for minerals not covered by microprobe analyses and to document textures and mineral paragenesis.

10

Electron microprobe (EMP)

The CAMECA SX-100 electron microprobe instrument at the Department of Geosciences, UiO is coupled with five wavelength-dispersive spectrometers (WDS). Partial WDS- analyses on selected samples were done to ensure that all relevant elements in the columbite- tantalite mineral group were covered. Backgrounds where set for all elements with due to the nature of the minerals being oxides and not silicates, so standard silicate programs could not be used. Garnet analyses were done with a standard major element program for silicate analysis.

For columbite-tantalite analysis the accelerating voltage was 20kV, beam current 20 nA, peak count time 10s, and a focused electron beam. 142 spot analyses where made on 9 epoxy samples with 1-3 columbite-tantalite crystals in each. The results presented from the microprobe were above the limit of detection for the instrument. The standards used for analysis were: Wollastonite (Ca Kα), pyrophanite (Mn Kα, Ti Kα), Si-Al glass with 15 Wt%

UO2 (U Mα) and 15 Wt% ThO2 (Th Mα), synthetic orthophosphates of Y (Y Lα), Yb (Yb Lα), Sc (Kα) (from the Smithsonian Institute - Jarosewich and Boatner, 1980), and metallic Fe (Fe Kα), Nb (Nb Lα), Ta (Ta Lα). All data were corrected with the matrix correction PAP procedure of Pouchou & Pichoir, (1985). The first two analyses on sample 17012 Rosås used the Ta Mα-line, but the amount of Ta measured was to low so only the Ta Lα-line was used. The Y Lα caused trouble with Nb Lα and Ta Lα for the first 15 analyses (Point 1-15: 17012 Rosås, 17161 Thortveittunnelen and 17180 Mølland), which were corrected by using estimated counts per second from other Y-analyses. All data presented have been corrected for the limit of detection (LOD) during data processing post-analysis.

For garnet analysis the accelerating voltage was set to 15kV, beam current to 20nA, peak count time 10s and with a focused electron beam. All analyses were above the limit of detection. Standards used for analysis were: Wollastonite (Ca Kα, Si Kα), pyrophanite (Mn

Kα, Ti Kα), metallic iron (Fe Kα), synthetic MgO (Mg Kα), synthetic Al2O3 (Al Kα), albite (Na Kα) and orthoclase (K Kα). All data were corrected with the matrix correction PAP procedure of Pouchou & Pichoir, (1985), and data below the limit of detection were corrected during data processing.

11

Quadropole laser ablation – inductively coupled plasma mass spectrometer (LA-ICP- MS)

Garnet and columbite-tantalite trace element analysis were carried out on a Bruker Aurora Elite Quadropole LA-ICP-MS instrument at the Department of Geosciences, UiO.

The laser beam ablation width was 50 µm. The energy of the laser (CETAL 213 nm laser microprobe) was set at 40% for analyzing garnets, but increased to 60-65% during ablation of standards for monitoring instrumental drift. Error margins may vary between 5-10% due to ablation of potential mineral inclusions and/or epoxy. 10-11 analysis spots were chosen on each sample preferably in the rim and core in a whole crystal. Crystal fragments with no discernible orientation only got 3-5 analysis spots. Helium was used as a carrier gas. The standard glass NIST SRM 610 was used to normalize the data acquired after 10-12 spots. All ICP-MS data presented in this thesis have been corrected for limits of detection and dead time overload. The trace elements analyzed for garnets were: 27Al, 29Si, 45Sc, 51V, 53Cr, 66Zn, 89Y, 139La, 140Ce, 141Pr, 143Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 173Yb and 175Lu. The 29Si has been used as an internal standard, with Si from microprobe data used as external standard. Data correction was done in the Glitter 4.2.2 program by Griffin et al, (2008).

For columbite-tantalite analysis the glass NIST SRM 610 were used as an external standard. The glass BHVO were analyzed together with NIST SRM 610 to monitor drift and compatibility of Ti. The laser ablation width was 50 µm during analysis, and the laser energy were set to 50%. For ablation of NIST SRM 610 40 µm beam width and 65% laser energy were used. Lastly on the BHVO standard were used a 50 µm beam width and 75% laser energy. La, U and Pb sensitivities had to be adjusted midway in session due to dead time on the sensor. Trace elements analyzed for columbite-tantalite were: 25Mg, 29Si, 45Sc, 49Ti, 89Y, 118Sn, 139La, 140Ce, 141Pr, 143Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 173Yb, 175Lu, 182W, 206, 207, 208Pb, 209Bi, 232Th and 238U. 49Ti were used as an internal standard because the Ti-values do not vary as much as the other major elements. Ti measured from microprobe data were used as an external standard.

12

3. Results

3.1 Field observations in the Solås pegmatite

A study of the Solås pegmatite dike was performed to better understand the formation of columbite-tantalite and garnet mineralization in-situ. Detailed mapping of the pegmatite was done to better understand the extent of it (figure 6). The pegmatites of Evje-Iveland differ in their degree of fractionation and Solås represents one of the most well-exposed and fractionated pegmatites available (Müller et al, 2012, 2015).

Table 1: Mineral assemblage occurring at the Solås pegmatite

Quartz, albite, microcline, muscovite, magnetite, biotite, beryl, garnet, allanite-(Ce), topaz, amazonite, fluorite, microlite, columbite1, tantalite, ilmenite, aeschynite-(Y)1, tourmaline, cleavelandite, fergusonite-(Y)1, polycrase-(Y)1, monazite-(Ce), xenotime-(Y), zircon1, galenam, rutile2, samarskite-(Y)2, chlorite2, hematite2, bästnasite2, calcite3

1) Snook, (2013), 2) Frigstad, (1984), 3) From Neumann, (1960) referenced in Frigstad, (1984), m) observed in a microscope.

13

Figure 6: Local geology at the Solås hill. The contour map was taken and modified from NGU maps (NGU map-data: http://geo.ngu.no/kart/berggrunn/).

14

Figure 7: A vertical sketch of the pegmatite zones at the Solås mine. The background of the sketch is the open pegmatite quarry seen in figure 6. The granitic border zone is not exposed in the profile at this portion of the pegmatite. The most diverse mineralization occurs in the bottom of the pegmatite.

15

Figure 8: Mineral paragenesis chart for the Solås pegmatite. The cleavelandite zone at Solås is located just before the core zone.

Granitic border zone

The exposed interior at the Solås pegmatite reveals a zoned granitic pegmatite hosted in metagabbroic amphibolite (figure 7). The mineral paragenesis for reference is shown in table 1 and figure 8. The border zone has a granitic composition and is up to 5-7 cm thick when it is exposed towards the amphibolite (figure 9a). The crystals of microcline, albite and quartz are not equigranular, as the albite and/or lesser microcline tend to be slightly larger in size (5 mm – 3 cm) than the quartz (1-3 mm). Albite crystals are observed to be slightly rounded – light blocky texturally with well-developed polysynthetic twinning. Other minerals found in the border zone are small flakes of black biotite and anhedral grains of magnetite no larger

16

than 1-2 millimeters. Green muscovite flakes (< 1mm) are found as overgrowth on biotite > 5cm from the contact.

The amphibolite contains biotite, plagioclase and magnetite, while further away from the border amphiboles reappear in the rock. There seems to have been some chemical exchange in the contact where amphiboles are replaced by biotite (figure 9a). Magnetite crystal clusters can be observed in the amphibolite within 5 cm of the contact to the granitic border zone of the pegmatite. The border zone represents a relatively thin chilled margin due to the small grain sizes present and observed border metasomatism (Joliff et al., 1992; London, 2008).

17

Figure 9: a) Exposed border between the pegmatite and host amphibolite show concentrations of biotite in the granite and magnetite concentrations in the amphibolite 18

section. b) The thin section 2M from the border zone at Solås. Mark “a” show biotite formation in the pegmatite, while “b” shows abundant magnetite in the amphibolite.

Wall zone

Figure 10: Various wall zone textures. a) A thin sheet of biotite and skeletal quartz/graphic granite textures in white albite. b) A sharp contact between the wall zone and intermediate zone. Note the coloring of amazonite in the white-pink microcline. c) Cluster of allanite 19

needles and garnet found in the bottom of the pegmatite. Some garnets are intersected by allanite needles. Allanite decomposition form secondary minerals (brown-orange). d) Magnetite replacement at the end of the wall zone/intermediate zone. A muscovite+garnet corona texture is present by replacing the magnetite.

The wall zone coarsens into larger crystals (5-10 cm) with a porphyritic granite texture (crystals larger than 2.5 cm) that define the graphic wall zone. Quartz and feldspars create graphic granite and skeletal intergrowth textures that is dominating this zone (figure 10a). The graphic and skeletal quartz is concentrated here compared to the intermediate zone, and microcline abundances is gradually increasing while the amount of albite decrease towards the core of the pegmatite. In the bottom of the wall zone (bottom of the pegmatite) a concentration of blue graphic granite and skeletal textures can be observed. The blue color is more intense closer to the intermediate/cleavelandite and core zones (figure 10b). Close to the cleavelandite zone the graphic feldspar transition gradually into a more bladed habit and the blue color diminish slightly. Orange altered allanite-(Ce) needles and euhedral red garnets are found in the bottom of the pegmatite growing up towards the core (figure 10c). The thin needles are diverging from a central point radiating outwards and partly intersecting garnets that grow around them. Observed major mineralogy is quartz, plagioclase and microcline.

The wall zone has accessory mineralogy consisting mostly of light greenish muscovite, allanite-(Ce), garnet, ilmenite, beryl, magnetite, monazite-(Ce), polycrase-(Y)-euxenite-(Y) and large thin slivers of biotite. Magnetite crystal size reach 3-5 cm in diameter and is mostly anhedral due to reaction/replacement textures (e.g biotite). A corona of muscovite and minor garnet is partly replacing the magnetite crystals in a feldspar matrix (Figure 10d). Biotite is observed as slivers of long thin black sheets up to 30 cm long. Beryl crystals are yellow-green subhedral-euhedral embedded in the bottom of the pegmatite, but they are sparsely distributed. The crystals are yellow-green in the wall zone matrix, but quite yellow when hosted in the bluer graphic granite/skeletal texture. Even so, yellow beryl in the blue wall close to the cleavelandite zone shows dissolution (embayment) by some kind of reaction with sugar albite. Ilmenite and monazite-(Ce) was found in feldspars from the waste rock pile, and was interpreted to be from the wall zone close to the intermediate zone due to

20

the presence of biotite and the size of the feldspar crystal. Ilmenite crystals are dark grey with a tabular habit ca. 2 mm thick, while the monazite crystal embedded in feldspar are 1-2 mm thick. Red garnet occurs close to the allanite needles as mainly euhedral clusters of 5 – 10 mm thick crystals hosted in blueish albite and grey quartz. The core of intersected garnets by allanite needles look corroded in backscatter imaging, and muscovite grows around these grains. REE-oxides like polycrase-(Y) are found as small black 1 mm thick euhedral crystals embedded as clusters randomly in the wall zone. The polycrase crystals are well terminated in many of the exposed samples.

The wall zone ends gradually as biotite and magnetite disappears from the wall zone matrix, quartz graphic intergrowth in feldspars lessen in concentration, and the grain size of major minerals sharply increases.

21

Intermediate zone

Figure 11: Sample images from the intermediate zone at Solås. a) Contact relationship between the intermediate and core zone. A quartz-muscovite symplectite formed above the core quartz, and blue amazonite is observed in contact with the core. b) A graded texture where microcline-quartz quickly grow very large over a small area close to the core. c) Contact relationship between amazonite and cleavelandite by the core. Cleavelandite blades grow out of replaced amazonite.

22

The pegmatite has an intermediate zone that primarily consists of pink microcline feldspar, white albite and quartz with accessory garnet, tourmaline, amazonite, muscovite, beryl and areas with rare minerals like polycrase-(Y), euxenite-(Y) and fergusonite-(Y). The wall zone has both skeletal and graphic intergrowths of quartz and feldspar, but in the intermediate zone the graphic intergrowth is dominant. A blue amazonite color can be observed in the microcline closest to the core quartz and it is slightly bleached further away from the core (figure 11a). The microcline (and minor amounts of albite) crystals increase in size, while attaining a blockier habit and can be up to a few meters (1-2 m wide), while quartz slowly grade from graphic textures to non-graphic single crystalline phases (figure 11b). Step-tiered textures in feldspar and quartz are well exposed in this zone due to exposure. The large crystals of microcline (and some albite) also host a symplectic texture of muscovite/quartz intergrowth (simultaneous growth of two crystals; Winter, 2010). This texture originates as a radial pattern, but becomes more complex in shape throughout the zone. A symplectite like this is also found just above smoky quartz in the middle right of the pegmatite bordering the core quartz (figure 11a). Black tourmaline is enclosed by quartz and muscovite in small clusters with crystalline needles up to a 2-3 mm wide and 1-5 cm long. The tourmaline is located a meter above the symplectite close to the core. Grey-green muscovite is found as flat oriented layers with quartz in between, and more accessory minerals can be found in small amounts in this texture. Between the quartz and muscovite some garnet mineralization and a few black crystals of REE-oxides were observed.

The intermediate zone borders the core and cleavelandite zone in the bottom right of the pegmatite. The transition to the core is sharp, but the cleavelandite zone transition is more gradual as white-pink blocky feldspars are resorbed and replaced with sugary albite and bladed blue-white cleavelandite (figure 11c).

Core zone

The core zone consists of mega-crystalline smoky quartz up to several meters (Snook, 2014). Quartz crystallized between euhedral cleavelandite plates in the lower part of the core, and in the upper part close to a muscovite-quartz symplectite (figure 11a). A euhedral green beryl crystal is imbedded in the quartz core in the lower part of the zone, and amazonite 23

microcline can be found bordering the core quartz from the intermediate zone on the right side.

Cleavelandite zone

In the lower part of the pegmatite close to the core a cleavelandite-rich phase appears as a distinctive zone. The cleavelandite zone consists of white-blue tabular and bladed albite (cleavelandite), quartz, muscovite, garnet, topaz, fluorite, microlite, and tantalite-(Mn).

Figure 12: Parts of the exposed cleavelandite pod at Solås. a) Contact between the cleavelandite, wall, intermediate, and core zone with a euhedral topaz embedded in between. b) Cleavelandite blades bordering blue saccharoidal albite of the wall zone. Dissolution textures are observed in the yellow beryl crystals embedded here. REE-oxides (polycrase-(Y)/euxenite-(Y)) show orange pleochroic halos.

Crystals of cleavelandite are observed closest to the core of the pegmatite as flat white-blue tabular crystals that are radiating out from central points in a fan-like pattern. The crystals size grades from small transitional indiscernible grains 20 cm away from the core, to 2-3 mm thick and 5 cm long tabular crystals closest to the core and intermediate zone borders. Figure 24

12a show how cleavelandite crystals border the other main zones of Solås. Cleavelandite crystals are observed growing out of replaced feldspars in the intermediate and wall zone (figure 12b). Sample (MS3-6) (figure 13) from the cleavelandite zone in the Solås mine is provided by Kjell Gunnulfsen. The sample contain minerals not regularly found at the locality today. This specimen has a platy cleavelandite texture that progresses from blue- white saccharoidal albite-cleavelandite graphic granite/skeletal quartz to coarse blue-white euhedral cleavelandite-plates surrounding the accessory minerals of fluorite, beryl, microlite, tantalite, muscovite, and garnet. The cleavelandite plates are just a few mm thick and saccharoidal in this sample indicating an origin some distance from the core zone. Cleavelandite zone mineralogy is diverse and remarkably different from the rest of the pegmatite. It appears that the sugary albite found right below the cleavelandite zone has been extensively altered by flux-rich fluids. The sugary albite grades into cleavelandite blades, and the microcline have notches and pocks of resorbed material by these fluids. The resorbed K and Al from microcline may have supported muscovite, garnet and topaz formation in this zone.

25

Figure 13: Cleavelandite pod sample MS3-6 aquired from Kjell Gunnulfsen. This specimen covers the transition from sugar albite to well-formed cleavelandite plates. The sample contain most of the minerals described from the cleavelandite zone.

Topaz occurs as up to 5-10 cm subhedral-euhedral crystals between quartz and cleavelandite plates close to the core of the pegmatite. The topaz is heavily fractured but otherwise translucent with a faint yellowish hue. Fluorite is observed in small clusters between cleavelandite plates as green and purple subhedral 1-3 mm large crystals. Green is the dominant fluorite color, but minor amounts of purple fluorite can occur close to the green type. Microlite crystals are small brown anhedral grains usually 1-2 mm in size. It is found between well-developed cleavelandite plates, but none have been located close to the core of 26

the pegmatite. Orange spessartine garnet occur as small irregular masses no more than 1 mm in size in fine grained cleavelandite much like that of the rock sample supplied by Kjell Gunnulfsen. Several small 1-2 mm reddish black euhedral garnet grains occur close to the muscovite books in the same supplied sample, but has not been found in the pegmatite mine. Muscovite clusters have a more greyish hue than muscovite from the main pegmatite zones. In some places, the cleavelandite plates are euhedral with muscovite being formed as overgrowth on the outer parts of the crystals. It seems that some minerals occur in higher concentrations around these muscovite books like red-black garnet, microlite, fluorite and tantalite-(Mn). Most of these minerals occur in the main cleavelandite-matrix although the crystals are usually larger and better developed close to the muscovite. The tantalite in the cleavelandite zone are small 0.5 - 2 mm thick subhedral-euhedral tabular crystals with a black color. The crystals are embedded in cleavelandite as single grains sparsely distributed throughout the sample, but it is not present close to the core quartz in the Solås mine wall.

3.2 Descriptions of individual minerals from Solås

Quartz (SiO2)

The Solås pegmatite is dominated by the smoky grey variant of quartz. The crystals are measured to be 1-3 mm in the border zone grading to meter-scale further into the core of the pegmatite. The crystals are mainly anhedral, but can show developed crystal faces in some samples. Wall zone quartz crystallized together with feldspars that create step-tiered cylindrical crystals in graphic textures. Quartz is often seen as small inclusions in other minerals suggesting these other minerals formed later than quartz. Black-red garnet and greenish muscovite is often intergrown with quartz masses.

Microcline (KAlSi3O8) – Amazonite (KAlSi3O8)

Microcline occurs as white-pink to pinkish-red blocky crystals. The crystals are subhedral 3- 10 mm big in the border zone of the pegmatite, and becomes up to 1-2 m in size further in towards the core. Most of the euhedral crystals are concentrated in the intermediate zone, but

27

lesser amounts can be found in the wall zone as well. The amazonite variety is found closest to the core of the pegmatite on the eastern side bordering a sugary albite-phase and cleavelandite. The color is light blue strongest towards the core and cleavelandite zone, but fades quickly a few meters away. Microcline perthite lamellae is not easy to discern as it is very faded. Anhedral microcline are often observed as small inclusions in other minerals.

Albite (NaAlSi3O8)

As with K-feldspar and quartz, albite can be found throughout the whole pegmatite. Albite crystals range from 5-30 mm in the border zone of the pegmatite and consistently increase in size towards the core of the pegmatite. Crystals in the intermediate zone reach 0.5-1 m. The color is usually white-grey to white-pinkish with weak to well-formed polysynthetic twinning. Crystals of albite close to the core are only a minor component of the intermediate zone with mainly large K-feldspar crystals taking the space. Two more types of albite exist in this pegmatite:

The sugary albite form consists of white-blue feldspar crystals that have been recrystallized close to the cleavelandite zone. The crystals are anhedral, and the shape of the crystals is indiscernible. It looks like the crystals get a fan-shape closer to the core, which may relate to the other form of albite namely cleavelandite. The cleavelandite crystals are a variant of albite that occur as brittle fan-like tabular plates within the secondary metasomatic zone in Solås close to the sugary albite and the core zone. The crystals range from small (<1 mm) anhedral plates in the altered wall zone/intermediate zone to euhedral well-developed plates (4-5 cm large) closest to the core. The hue of the crystals ranges from slightly white to more intense blue.

Muscovite KAl2(AlSi3O10)(F,OH)2

Anhedral-subhedral muscovite clusters and “books” can be observed throughout the outer wall zone into the intermediate zone towards the core of the pegmatite. The crystals found have a slight greenish-gray color and are usually intergrown with quartz in a symplectic

28

texture. These clusters of muscovite get progressively larger towards the core. Symplectic crystals are usually homogenous in size (ca 1-2 cm), but the crystal books by the core can be as large as 10 cm. Muscovite in the cleavelandite zone is usually pale grey with a subtle greenish hue, 1-2 cm, and encompasses euhedral cleavelandite plates.

Biotite K(Mg,Fe)3(AlSi3O10)(F,OH)2

Biotite is not an abundant mica in this pegmatite. Most of the biotite is found as small black anhedral books 1-2 mm wide in to the granitic border zone towards the amphibolite, or as long thin sheets (20-40 cm) in the wall zone. The slivers of biotite sheets seem to orient towards the core of the pegmatite.

Beryl (Be3Al2Si6O18)

Beryl is observed as green-yellow euhedral-subhedral crystals in the wall – intermediate zone and the sugar albite/cleavelandite zone of the pegmatite. The crystals usually have well- formed crystal faces, except in the sugary albite zone where it seems to be slightly dissolved. Beryl in Solås is normally 2-5 cm wide and 10-15 cm long. No other beryllium minerals were found, although other Be-minerals or (Be-carrying) have been described from this locality (hellandite-(Y), gadolinite-(Y) and bertrandite (mindat with references therein: http://www.mindat.org/loc-32623.html, visited: 20.12.2015)

Magnetite (Fe3O4)

The magnetite crystals in this pegmatite can be found in the granitic border zone and in the outer wall zone embedded in graphic granite. The mineral is quite common in the granitic border zone as 2-3 mm dark metal grey crystals. It is also found a few cm into the amphibolite. Progressively larger crystals can be found further into the wall zone embedded in graphic granite. On the edge between the graphic granite and the intermediate zone of massive feldspar the magnetite can get as large as 5 cm in diameter. The crystals are

29

subhedral-anhedral due to extensive replacement of the mineral with either biotite or muscovite/garnet.

Ilmenite (FeTiO3)

Ilmenite is found as small plates embedded in feldspar taken from the tailings at Solås. The crystals are flat, subhedral-euhedral, tabular crystals 3-5mm thick and 5 cm long. The colour is black-grey with a light fatty texture to it. It is associated with a close-lying xenotime-(Y), polycrase-(Y) and albite.

Topaz (Al2SiO4(F,OH)2)

Topaz occurs as large euhedral colorless semi-transparent crystals in sizes up to 10 cm wide. The topaz crystals can only be found in the Na-rich cleavelandite zone below the core, and the crystals found is always very heavily fractured. The fracturing might have formed from blasting of the pegmatite.

Garnet (Almandine (Fe3Al2Si3O12) – Spessartine (Mn3Al2Si3O12))

Garnet is found throughout most of the zones of this pegmatite except the border and core zones. Garnets are usually found as the deep-red orange almandine-spessartine variant in the wall and intermediate zone of the pegmatite. Crystal habit is quite varied as the mineral can form as small clusters 2-3 mm wide together with quartz and muscovite, but closer to the core the crystals get bigger (4-5 cm), more euhedral in form and attain a slight orange tint at the edges. The pure orange spessartine variant can only be found in the cleavelandite zone together with cleavelandite, muscovite, fluorite and more. These spessartines are found as small aggregates of anhedral crystals <1-2 mm in size. Some small amounts of 1 mm black- red euhedral garnet are found close to muscovite clusters.

30

2+ Tourmaline (Na(Fe3 )Al6(BO3)3(Si6O18)(OH)4)

Tourmaline was observed in one place in the exposed upper part of the intermediate zone over the core. The crystals are found as black needles growing closely together in a mix of quartz and muscovite. The crystals are subhedral-euhedral 2-3 cm long needles.

3+ Allanite-(Ce) (Ce,Ca,Y,La)2(Al,Fe )3(SiO4)3(OH)

Allanite in the Solås pegmatite occurs as small thin radiating needles in the lower part of the pegmatite. The color is black with a crust of rusty yellow-brown secondary minerals. The crystal length varies from a few cm up to 20 cm, and its width usually 1-2 mm. It also occurs in smaller radiating needles in the lower western end of the exposed pegmatite mine. Euhedral garnet crystals cluster around these needles, and are sometimes bisected by them.

Polycrase-(Y) (Y(Ti,Nb)2O6) - Euxenite-(Y) (Y(Nb,Ti)2O6)

Polycrase-(Y) is found as 1-5 mm thin tabular/prismatic euhedral crystals embedded in albite, microcline and magnetite grains. They are brownish-black in color, metamict, and occur in small clusters of 5-10 crystals together. The crystals are found mainly in the wall zone and occur in single crystals slightly into the intermediate zone of the pegmatite.

Results from semi-quantitative SEM-analysis on selected grains of black minerals show that some of these grains have Nb > Ti, so that they are euxenite-(Y). These crystals occur further into the wall zone/intermediate zone than polycrase-(Y).

Fergusonite-(Y) (YNbO4)

Fergusonite-(Y) occur as very small (1 mm) euhedral black grains in the wall zone of the pegmatite. Only one small grain was found.

31

Columbite-Tantalite ((Fe,Mn)(Nb,Ta)2O6)

Columbite and tantalite is mineralized in different zones in the pegmatite. Columbite was unfortunately not found in any of the samples collected. Columbite has been reported by Snook, (2013) and Frigstad, (1968). Other samples that were suspected to be columbite were magnetite with abundant polycrase-(Y) or just solitary REE-oxides (polycrase-(Y) or euxenite-(Y)).

Tantalite occurs only in the sugary albite/cleavelandite zone. The tantalite crystals are quite small (2-3 mm) euhedral tabular minerals with a black color. The crystals are scattered throughout the zone with no inherent mineral associations. Tantalite is not present in the cleavelandite zone when the cleavelandite minerals change from sugary albite to large (4-5 cm) fan-shaped blades.

Monazite/Xenotime (CePO4/YPO4)

These two phosphates are found as small 1-2 cm crystals in the wall zone of the pegmatite. They are light yellow-brown in color and subhedral tabular in shape. These minerals are found embedded in albite.

Galena (PbS)

Galena is the only sulphide found in samples from this pegmatite. It is found as inclusions in columbite-tantalite and other REE-oxides as euhedral crystals (< 1mm). A few inclusions were also found in albite and microcline.

Fluorite (CaF2)

Fluorite is observed as small (3-5 mm) subhedral crystals in the cleavelandite zone of the pegmatite. The crystals are both green and purple. The purple fluorite is found as anhedral- subhedral masses with crystals sizes up to 1 mm, while green fluorite more widespread and

32

dominant in the samples. Fluorite is embedded in between cleavelandite blades as small solitary clusters with no apparent relation to other minerals.

Microlite (Na,Ca)2Ta2(O,OH,F)

Microlite is only found in the cleavelandite replacement zone as small (1-2 mm) crystal masses associated with fluorite, muscovite and tantalite-(Mn). The crystals are embedded in between cleavelandite plates anhedral-subhedral in shape and brown in colour. Microlite is found as inclusions and vein fillings in columbites and tantalites.

3.3 Columbite-tantalite mineral chemistry

Most of the samples analyzed by EMP/LA-ICP-MS came from the collection of the Natural History Museum in Oslo. These samples come from large, well known pegmatite mines, while a minority is supplied from lesser known mines and prospects in the same area. Most of the columbite-tantalite samples from the collection do not carry matrix minerals, which makes it harder to determine the in-situ development in the pegmatites. Distribution of these minerals is plotted in this map (figure 14) over the Evje-Iveland pegmatite field. Most samples are from mines in the central IGMC, while others are from granites and gneisses at the edges of the Evje-Iveland pegmatite field.

33

Figure 14: Columbite-tantalite sample map from Evje-Iveland. Most samples are located in amphibolite, and other in surrounding gneisses.

Individual sample points are used to illustrate fractionation trends in the columbite-tantalite group minerals. The compositions are shown in figure 15 and individual sample data is presented in appendix 2. A general overview of average columbite-tantalite compositions per pegmatite is presented in table 2.

34

Table 2: Representative average compositions of columbite-tantalite minerals from the Evje- Iveland pegmatite field, South Norway. EMP and LA-ICP-MS data.

Sample 1 2 3 4 5 6 7 8 9 n 4 5 5 5 4 5 3 4 6

Nb2O5 wt% 50.3(7) 24(5) 65.1(8) 60(3).93 58.8(6) 29(1) 58.6(6) 61.3(1) 64(3)

Ta2O5 28(1) 57(6) 8.5(9) 18(4) 15.7(2) 53.1(9) 20.2(3) 14.54(3) 12(2) FeO 12.8(5) 1(1) 9.4(3) 13.8(3) 11.7(2) 1.4(1) 5(1) 7.8(1) 9(2)

Fe2O3** 1.9(5) 3(1) 3.0(6) 1.6(3) 1.7(4) 0.6(2) 1.5(2) 2.5(1) 2(1) MnO 4.37(2) 11(9) 7.4(2) 4.5(3) 4.85(6) 14.5(2) 12(1) 9.17(8) 8(2)

TiO2 1.50(6) 1(1) 3.6(2) 1.2(2) 4.1(2) 1.2(1) 1.4(3) 3.4(2) 2(1)

UO2 - - 0.12(5) - <0.01 0.1(1) 0.09(4) 0.30(7) <0.01

ThO2 - - <0.01 <0.01 <0.01 <0.01 - - - CaO - <0.01 0.01(1) <0.01 0.02(1) 0.03(2) <0.01 0.01(1) <0.01

Sc2O3 0.07(1) 0.13(8) 0.35(9) 0.08(1) 1.71(4) <0.01 0.01(1) 0.30(1) <0.01

Y2O3 0.30(2) <0.01 0.6(1) 0.33(6) 0.46(9) 0.10(5) 0.27(1) 0.52(6) 0.41(4)

REE2O3*** <0.01 0.18 0.5 0.05 0.21 0.2 0.04 <0.01 <0.01 MgO* <0.01 <0.01 0.4 0.14 0.31 <0.01 0.07 0.2 0.3

SiO2* - <0.01 <0.01 - - <0.01 <0.01 <0.01 -

SnO2* 0.08 0.3 0.05 0.05 0.09 0.02 0.01 0.10 0.02

WO3* 1 0.2 1.6 0.6 1.6 0.20 0.37 0.25 0.4 PbO* 0.01 0.01 <0.01 <0.01 <0.01 0.03 0.02 0.06 0.01

Bi2O5* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Total 101.3 101.0 101.0 101.8 101.6 101.4 101.1 101.5 101.1

W apfu 0.01 0.00 0.02 0.01 0.02 0.00 0.00 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.42 0.78 1.67 1.63 1.54 0.92 1.59 1.61 1.69 Ta 0.49 1.10 0.13 0.29 0.25 1.01 0.33 0.23 0.20 Si 0.00 0.03 0.01 0.00 0.00 0.01 0.00 0.01 0.00 Sn 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.07 0.08 0.16 0.05 0.18 0.06 0.07 0.15 0.09 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.99 2.00 1.99 1.99 1.99 2.00 2.00 2.00 1.99

Fe2+ 0.67 0.09 0.45 0.69 0.57 0.09 0.29 0.38 0.48 Fe3+ 0.09 0.05 0.13 0.08 0.08 0.04 0.07 0.11 0.09 Ti 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Sc 0.00 0.01 0.02 0.00 0.09 0.00 0.00 0.02 0.01 Mn 0.23 0.82 0.36 0.23 0.24 0.86 0.63 0.45 0.39 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35

Y 0.01 0.00 0.02 0.01 0.01 0.00 0.01 0.02 0.01 REE 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 Mg 0.01 0.00 0.03 0.01 0.02 0.00 0.00 0.01 0.02 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.01 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.01

Mn/Fe+Mn 0.26 0.90 0.44 0.25 0.30 0.91 0.68 0.54 0.45 Ta/Nb+Ta 0.26 0.58 0.07 0.15 0.14 0.52 0.17 0.12 0.11 The mineral formula for table 2 has been calculated with 3 cations and 6 oxygen. Data below the limit of detection is marked “-“. The data is expressed as atoms per formula unit (apfu). * Data analysed by LA-ICP-MS have an error of 5-10%. ** represents calculated Fe3+ via Droop, (1987). *** represents the lanthanoids series (REE) in wt% oxides calculated from LA-ICP-MS data. 1 – 17012 Rosås, 2 – MS3-6 Solås, 3 – 17215 Ljoslandåsen, 4 – 17227 Klep, 5 – KT2-1 Tuftane, 6 – 17180 Mølland, 7 – 17187 Steli 3, Tveit, 8 - 17224 Ilmenorutilgruva, 9 – 17221 Ljoslandjordet.

Table 2 cont: Average compositions of columbite-tantalite minerals in Evje-Iveland.

Sample 10 11 12 13 14 15 16 17 18 n 3 3 6 7 4 4 4 3 5

Nb2O5 wt% 55(1) 65.9(4) 64(1) 64(4) 38.8(7) 67.5(3) 64.9(9) 71(1) 58.9(3)

Ta2O5 23(1) 10.7(1) 10(1) 12(6) 42(1) 9.5(3) 5.2(4) 4.8(2) 17.4(4) FeO 5.9(1) 7.3(4) 10(1) 7(1) 0.8(3) 7.9(3) 8.7(4) 13.7(6) 11.6(2)

Fe2O3** 1.4(1) 2.1(5) 2.3(8) 2(1) 0.6(3) 2.5(3) 4.1(4) 1.6(1) 2.4(3) MnO 11.9(3) 10.88(4) 7.3(7) 10.5(5) 15.9(2) 10.0(1) 8.5(1) 4.9(3) 5.88(4)

TiO2 1.67(5) 2.29(6) 3.2(8) 1(1) 0.6(2) 1.8(1) 4.3(2) 2.01(6) 2.45(1)

UO2 0.17(7) 0.18(1) <0.01 <0.01 <0.01 <0.01 0.12(2) - <0.01

ThO2 - <0.01 <0.01 - - - - - <0.01 CaO 0.01(1) 0.01(0) 0.02(2) 0.01(1) 0.03(2) 0.01(1) <0.01 <0.01 0.01(1)

Sc2O3 0.02(2) 0.04(2) 0.3(2) 0.06(3) 0.01(1) 0.02(2) 0.06(2) 0.81(2) <0.01

Y2O3 <0.01 0.41(2) 0.46(7) 0.4(1) 0.15(4) 0.43(3) 0.42(6) 0.5(1) 0.59(3)

REE2O3*** 0.05 0.05 0.2 <0.01 0.06 0.08 0.12 0.29 0.15 MgO* 0.06 0.2 0.4 <0.01 <0.01 0.44 <0.01 0.25 0.12

SiO2* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SnO2* 0.01 0.03 0.05 0.02 0.01 0.01 0.07 0.05 0.09

WO3* 0.49 0.80 1.8 0.5 0.2 0.7 4.4 1.0 1.31 PbO* 0.03 0.03 0.01 0.03 0.01 <0.01 0.02 0.01 0.01

Bi2O5* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Total 101.3 101.6 101.8 101.4 100.4 101.5 101.5 101.9 101.3

W apfu 0.01 0.01 0.02 0.01 0.00 0.01 0.05 0.01 0.02

36

Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.51 1.71 1.66 1.69 1.18 1.74 1.66 1.81 1.58 Ta 0.40 0.17 0.17 0.20 0.78 0.15 0.08 0.07 0.28 Si 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.08 0.10 0.14 0.09 0.03 0.08 0.19 0.08 0.11 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 1.99 2.00 1.98 1.98 1.98 1.99

Fe2+ 0.30 0.35 0.48 0.37 0.05 0.38 0.41 0.64 0.58 Fe3+ 0.07 0.09 0.10 0.09 0.03 0.11 0.17 0.07 0.11 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.04 0.00 Mn 0.61 0.53 0.36 0.51 0.91 0.49 0.41 0.23 0.30 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.01 0.02 0.01 0.00 0.02 0.00 0.01 0.01 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.00 1.00 1.00 1.01 1.00 1.02 1.02 1.02 1.01

Mn/Fe+Mn 0.67 0.60 0.42 0.58 0.95 0.56 0.50 0.27 0.34 Ta/Nb+Ta 0.21 0.09 0.09 0.11 0.40 0.08 0.05 0.04 0.15 10 – 17213 Hovåsen, 11 – 17217 Eftevann, 12 – 17176 Ljosland 3, 13 – 17211 Amerika, 14 – 17026 Mikrolittbruddet, 15 – 17166 Fosbekk, 16 -17230 Landsverk 1, 17 – 17186 Steli, Tveit and 18 – 17234 Landsverk 2.

37

Figure 15: A columbite-tantalite quadrilateral plot presenting Ta/(Nb+Ta) vs Mn/(Fe+Mn)- ratios to determine fractionation trends (Cerný & Ercit, 1985). Group 1 represents columbite-(Fe) to columbite-(Mn) from the main pegmatite vein, while group 2 is from the cleavelandite zones in well-fractionated systems. The miscibility field of tantalite-tapiolite is taken from Cerný et al, (1992).

Group 1 represents columbite-(Fe) to columbite-(Mn) from the main pegmatite dike, while group 2 represents high-Ta columbite-(Mn) and tantalite-(Mn) from cleavelandite zones found within (figure 15). The Mn/(Fe+Mn) and Ta/(Nb+Ta) ratios varies between two major pegmatite types: Pegmatites with and without a developed cleavelandite zone. The Mn/(Fe+Mn)-ratio of group 1 columbites varies from 0.23 to 0.63 apfu, while the Ta/(Nb+Ta)-ratios is 0.04 to 0.26 apfu. The tantalites/Ta-rich columbite member (group 2) from cleavelandite zones contain Mn/(Fe+Mn) from 0.41 to 0.87 apfu and Ta/(Nb+Ta) 0.40 to 0.58 apfu. A gap between group 1 and group 2 minerals can be observed in figure 14, and is related to the formation of the cleavelandite zone.

Minor and trace elements found in most of the minerals are Ca, Ti, U, Th, Sc, Y, REE, Mg, Si, Sn, W, Pb and Bi. The high-field strength elements (HFSE) Ti and W are present in most of the primitive columbite-(Fe) and columbite-(Mn) of group 1. Titanium is assumed to enter both the A and B-site in samples where the apfu in A measured is too high. If the values are low, it will stay in the B-site. The Ti-levels vary between 0.03 – 0.19 apfu (0.6 to 4.3 wt% 38

TiO2), and is highest in the Landsverk 1 columbite-(Fe) sample. The Landsverk 1 columbite-

(Fe) analyzed show abnormal levels of W up to 0.05 apfu (4.67 Wt% WO3) compared to rest of Evje-Iveland that lies between 0.00 and 0.02 (0.18 to 2.00 wt% WO3). Figure 16 show the relations primarly between Nb, Ta, Ti, W, Fe and Mn. Both Ti and W are mostly gone from the group 2 minerals.

Figure 16: A diagram showing the ternary system NaTaW – TiSn – FeTMgMnSc (FeT – Fe total, Fe2+ + Fe3+). Columbite-tantalite of Evje-Iveland have low concentrations of Ti, Sn and W, and lie on the path of ordered euxenite-substitution (Cerný & Ercit, 1985, Pieczka et al, 2013).

39

Only trace amounts of REE are present with the HREEs being the most abundant (Yb is the most abundant REE present with almost 0.26 wt% Yb2O3 in some cases). Y and Yb share the same valence and have almost the same ionic radii (Y3+ is 0.9 Å while Yb3+ is 0.87 Å in six-fold coordination), which imply that Yb could substitute for Y in the columbites (Shannon, 1976).

Uranium are not very abundant in the columbite-tantalite minerals. Uranium is found as 0.0

– 0.3 Wt% UO2 in most samples, and areas of metamictization are observed (notably in the Amerika and Ljoslandjordet samples). The only mineral with some presence of Sn is the Solås tantalite-(Mn). The tantalite-(Mn) have some Sn-content with fracture filling of wodginite-(Fe) in the crystal core, but no major Sn-minerals (cassiterite as an example) is present in the pegmatite. The Sn-content is not present in the Hovåsen sample, which share the well-fractionated pegmatite status together with Solås (Müller et al, 2012). The Sn- enrichment is then local to Solås. Magnesium is only a minor component in these columbites, but the amount decreases with fractionation as is evident in group 2 tantalites. Magnesium varies from 0.00 – 0.02 apfu (0.01 to 0.60 wt% MgO) in the most primitive columbite-(Fe), and almost gone in the tantalites of group 2. Scandium content is between

0.00 and 0.01 apfu (0.01 – 0.82 wt% Sc2O3), but the highest content is found as 0.04 apfu in columbite-(Fe) from the Steli pegmatite. Pb, Bi, Si and Th contents are very low, and most of the time below the limit of detection. Some Si-anomalies have been observed in the LA- ICP-MS data, but is most likely due to ablation of mineral inclusions. Bi is found in the cleavelandite pod at Solås as bismuth-stibio-tantalite.

The samples 17214 Landås and 17161 Thortveittunnelen were identified as columbite-(Fe) in the Museum's database, which has now been proven to be mislabeled. These samples are metamict and quite brittle, and after SEM/EMP-analysis on these crystals they were euxenite-(Y). WDS-analysis of euxenite-(Y) shows that it contains much more Ca, U, Y, Yb and much less Fe and Mn than standard columbite-tantalite. The metamictization hinders good EMP-analysis of the minerals, as can be seen in the low total wt% oxide in appendix 3.

40

Zonation pattern in columbites - tantalites

Zonation of the columbite-tantalite crystals is quite diverse in some samples. Most of the recognized zoning types are: progressive/reversed, oscillatory, and patchy zonation. Zonation in columbite-tantalite from Evje-Iveland can explain how local pegmatite melts behaved during crystallization and fractionation, and can be correlated with data from analysis of garnets. Group 1 columbites are relatively homogenous with very little chemical variation (0.5 – 1 wt% Nb2O3-Ta2O3) in the thin oscillatory zones found in most of the crystals (figure 17a, b, d, f, h). Other columbites have formed with a homogenous core and develop systematic banding and patchy zoning along the rims of the crystal. This is evident from several samples in figure 17c and 17e. Ljoslandjordet columbite show large bands of different compositions where the very edges of the crystal contain patchy textures. These patches and irregular small scale oscillatory zoning are home to pyrochlore overgrowth and more Ta-rich columbite compositions. The columbite from Klep have a homogenous core, while the rim of the crystal has lots of oscillatory zones present. The lighter zones are slightly enriched in Ta compared to the darker ones. The most altered columbite found in the Evje-Iveland pegmatites come from the mine Amerika at Kåbuland. The Kåbuland crystal is homogenous and have small bands throughout the crystal with some slight difference in the amounts of Ta and Nb present not seen in figure 17g. The core of the crystal however is subjected to extensive oscillatory zonation surrounding small columbite cores, which can be seen as slightly darker grey in the centre of the circular bands. Most likely the crystal formed irregularly with the core forming almost last, which explains how the zones present is richer in Ta than Nb. Some metamictization cracks pass through these oscillatory zones from the middle part of the crystal.

41

42

Figure 17: BSE-images of columbite crystals (group 1) with different zonation patterns. a) Columbite-(Fe) that form a euhedral crystal with no textures related to either increase/decrease in Nb/Ta-content or dissolution/replacement. b) A primitive columbite- (Fe) with some small cracks. A bright monazite is in contact with the crystal. c) An irregularly zoned crystal with different alteration textures and pyrochlore mineralization. Patchy textures can be observed at the edges of the crystal. Pyrochlore formation is most likely due to this resorption/deposition texture. d) Very weak oscillatory zoning with minor Nb-Ta differences. e) Dark patchy Nb-rich zones in the lower right, and the crystal edges have had several stages of oscillatory banding. The patchy zoning can be seen throughout the crystal in small dark clusters and the patches are more Nb-rich. f) Light banding at the edges of the crystal. g) Heavy patchy, oscillatory and metamictization textures in the core of the columbite. The outer parts of the crystals are relatively pure and unaltered. Deposition of more Ta-rich columbite (more uranium present) occurred in quick cycles of oscillatory zonation, and later the core became metamict evident from the cracks. h) A homogenous columbite-(Mn) with minor cracks.

The high-Ta columbite-(Mn) and tantalite-(Mn) in cleavelandite zones are different from regular columbite (group 2; figure 18). Both the sample from Mikrolittbruddet (figure 18a) and Mølland (figure 18b) show some sort of zonation in their crystals. Mikrolittbruddet high-Ta columbite-(Mn) shows a regular progressive zonation from core to rim, where the rim is richer in Ta than the core of the crystal. The Mølland sample is slightly altered by successive zones of pale and bright bands with different angles. This suggests that the fluid forming this type of tantalite must have replaced parts of the crystal during formation with more Ta-rich tantalite. The Solås sample (figure 17c) is very heavily altered as is evident in abundant patchy textures present A relict microcline crystal can be found in the upper part of the crystal with the tantalite growing around it. Stibio-bismuthian tantalite form at the edges of the lower left part of the crystal in patchy textures, while wodginite-(Fe) overgrowth is lodged between the microcline crystal and the tantalite proper. Some light microlite patchy zonation is found outside of the figure at the very edge of the crystal. The core seems more or less preserved with the outer edges being a barrier from the corrosive fluids, but some dark patchy textures are present. The darker patchy zones have increased levels of Nb and Fe (0.74 in brighter areas and 0.91 in darker patches).

43

Figure 18: Zonation in high-Ta columbite-(Mn) and tantalite-(Mn) in cleavelandite zones. a) A normal zoned lightly cracked euhedral high-Ta columbite-(Mn) crystal. The edge is slightly richer in Ta than the core. b) A tantalite-(Mn) with mainly large scale discontinuous zones.

The darker areas contain a few wt% more Nb2O3. c) A very heavily altered tantalite-(Mn) from Solås. A relict microcline crystal is embedded at the top, and stibio-bismuthian tantalite form in the patchy resorbed areas in the bottom left. The left side of the crystal is the most altered.

44

Figure 13: Cleavelandite pod sample MS3-6 aquired from Kjell Gunnulfsen. This specimen covers the transition from sugar albite to well-formed cleavelandite plates. The sample contain most of the minerals described from the cleavelandite zone.

Topaz occurs as up to 5-10 cm subhedral-euhedral crystals between quartz and cleavelandite plates close to the core of the pegmatite. The topaz is heavily fractured but otherwise translucent with a faint yellowish hue. Fluorite is observed in small clusters between cleavelandite plates as green and purple subhedral 1-3 mm large crystals. Green is the dominant fluorite color, but minor amounts of purple fluorite can occur close to the green type. Microlite crystals are small brown anhedral grains usually 1-2 mm in size. It is found between well-developed cleavelandite plates, but none have been located close to the core of 45

the pegmatite. Orange spessartine garnet occur as small irregular masses no more than 1 mm in size in fine grained cleavelandite much like that of the rock sample supplied by Kjell Gunnulfsen. Several small 1-2 mm reddish black euhedral garnet grains occur close to the muscovite books in the same supplied sample, but has not been found in the pegmatite mine. Muscovite clusters have a more greyish hue than muscovite from the main pegmatite zones. In some places, the cleavelandite plates are euhedral with muscovite being formed as overgrowth on the outer parts of the crystals. It seems that some minerals occur in higher concentrations around these muscovite books like red-black garnet, microlite, fluorite and tantalite-(Mn). Most of these minerals occur in the main cleavelandite-matrix although the crystals are usually larger and better developed close to the muscovite. The tantalite in the cleavelandite zone are small 0.5 - 2 mm thick subhedral-euhedral tabular crystals with a black color. The crystals are embedded in cleavelandite as single grains sparsely distributed throughout the sample, but it is not present close to the core quartz in the Solås mine wall.

REE-chondrite signature of Evje-Iveland columbite-tantalite minerals

The columbite-tantalite REE chemical signature from Evje-Iveland is shown in figure 19. The REE are all present in the samples from Evje-Iveland, and it is variable in concentrations with favor of HREE due to Y-enrichment in some of the pegmatites. Trace elements measured and used are shown in table 3, and all the sample spots are provided in appendix 2.

Table 3: Average compositions of columbite-tantalite trace elements from LA-ICP-MS analyses to be used in chondrite diagrams. A map of the pegmatites is found in figure 13.

Sample 1 2 3 4 5 6 7 8 9 n 4 5 5 5 4 5 3 4 6 La ppm - 4 96 2 <1 5 6 56 37 Ce <1 21 335 6 2 16 12 275 87 Pr <1 2 59 1 1 6 3 71 11 Nd 2 11 270 8 10 49 14 417 41 Sm 19 40 168 18 31 234 48 560 29 Eu <1 <1 3 <1 <1 <1 <1 <1 <1

46

Gd 54 92 213 43 72 405 57 578 46 Tb 23 49 54 17 28 135 7 98 14 Dy 153 320 398 119 242 560 11 379 82 Ho 19 40 79 16 52 43 0.8 31 10 Er 55 148 346 49 226 108 2 56 30 Tm 14 44 118 12 69 23 <1 9 8 Yb 331 718 2153 187 987 340 152 97 193 Lu 18 78 396 16 181 32 1 8 15 Elemental concentrations omitted fall below the limit of detection and is marked “-“. The error in the data is 5-10%. 1 – 17012 Rosås, 2 – MS3-6 Solås, 3 – 17215 Ljoslandåsen, 4 – 17227 Klep, 5 – KT2-1 Tuftane, 6 – 17180 Mølland, 7 – 17187 Steli 3, Tveit, 8 - 17224 Ilmenorutilgruva, 9 – 17221 Ljoslandjordet.

Table 3 cont: Average compositions of columbite-tantalite trace elements.

Sample 10 11 12 13 14 15 16 17 18 n 3 3 6 7 4 4 4 3 5 La ppm <1 1 40 139 3 26 16 4 1 Ce 2 2 81 453 10 37 58 15 5 Pr 0.8 0.8 12 70 1 14 13 4 2 Nd 9 9 54 285 8 49 74 36 17 Sm 59 39 52 209 40 54 55 65 75 Eu <1 - <1 <1 <1 <1 <1 <1 <1 Gd 76 80 73 241 129 90 75 138 170 Tb 9 21 21 44 50 23 21 48 59 Dy 17 93 161 180 157 102 164 406 386 Ho 2 8 31 16 6 8 30 86 51 Er 6 15 148 33 8 17 102 352 138 Tm 1 3 59 7 1 3 23 98 28 Yb 309 127 1120 73 121 251 324 1000 306 Lu 2 3 250 10 1 4 36 201 31 10 – 17213 Hovåsen, 11 – 17217 Eftevann, 12 – 17176 Ljosland 3, 13 – 17211 Amerika, 14 – 17026 Mikrolittbruddet, 15 – 17166 Fosbekk, 16 -17230 Landsverk 1, 17 – 17186 Steli, Tveit and 18 – 17234 Landsverk 2.

47

Figure 19: Chondrite-normalized REE plot of average columbite-tantalite compositions (McDonough & Sun, 1995). More evolved samples have less HREE present, while the more primitive samples have increased amounts of HREE. Yb is the most abundant HREE, and is attributed to high-Y content.

The chondrite-normalized plot in figure 19 presents how the columbites and tantalites are more enriched in HREE than LREE relative to chondrite-values, although some samples show more or less equal enrichment of both LREE and HREE (the Tuftane and Ljoslandåsen samples). LREE in most samples from Evje-Iveland show very variable concentrations (mainly in the range of slightly above the limit of detection for La, Ce, Nd, Pr and in the hundreds of ppm for Sm and Gd).

More fractionated zones of a few samples show lower concentrations of HREE with increasing Mn/(Fe+Mn) and Ta/(Nb+Ta)-values (example: Klep, Hovåsen and Steli). A positive HREE slope in the chondrite diagram (figure 19) show how relatively primitive columbite-(Fe) (0.23 to 0.38 Mn/(Fe+Mn) and 0.07 to 0.15 Ta(Nb+Ta)) acquire more HREE than more fractionated samples. Negative slopes are observed for well-fractionated columbite-(Fe) and columbite-(Mn) found in the intermediate zone of the pegmatites (0.38 to 0.63 Mn/(Fe+Mn) and 0.07 to 0.17 Ta/(Nb+Ta)). In situ observation of a columbite-(Mn) sample from Hovåsen (17213, orange circle, figure 19) shows a negative HREE slope. The mineral was embedded in massive albite with no other accompanying minerals present. The 48

negative slope is related to the loss of REE to early crystallization of REE-carrying minerals, which results in less amounts of available REE in the more fractionated intermediate zone (Bjørlykke, 1937). Garnet is a mineral that preferentially carry HREE over LREE and might be a possible sink for HREE when it is present in the mineral assemblage. Cleavelandite zone columbite-tantalite is a different matter, as the analyzed minerals seem to differ in positive or negative slopes which do create some confusion (Solås compared to Mølland and Mikrolittbruddet). The tantalite-(Mn) of Solås carry a HREE positive signature that is much alike the more primitive columbite-(Fe) signature. This is assumed to be an anomaly for the tantalite in comparison to the samples from Mølland and Mikrolittbruddet. The Solås tantalites (figure 18c) are very heavily altered by extensive resorption and replacement textures, while the samples from Mølland and Mikrolittbruddet are not. This heavy alteration in the flux-rich cleavelandite pod must have assimilated small amounts of REE-oxides from the lower wall zone, as polycrase-(Y), euxenite-(Y) and altered allanite-(Ce) needles can be found there. The Mølland and Mikrolittbruddet (figure 18a, b) samples are more pristine and show negative HREE slopes concomitant with well-fractionated columbite-(Fe) and columbite-(Mn) (example: Hovåsen, Steli and Fosbekk samples). The negative Eu-anomaly is present in all samples, and the Eu is most likely enriched in the surrounding plagioclase (Winter, 2010)

3.4 Garnet mineral chemistry

Garnet is observed in many pegmatite dikes in Evje-Iveland as clusters, masses of symplectic intergrowth with quartz and muscovite, or as solitary crystals growing in massive feldspar. Garnet occurs in both the main pegmatite rock and sometimes in cleavelandite zones were available. Many garnet samples were collected in the field, and the Natural History Museum supplied extra samples from its collection. Garnet samples were separated into several types to be able to distinguish different forms of fractionation, and to establish an explanation for pegmatite evolution in Evje-Iveland. A sample map is provided in figure 20.

49

Figure 20: Garnet sample map over Evje-Iveland. (Map provided by Stokkeland, 2016)

Major, minor og trace elements

Garnets in Evje-Iveland belong to the almandine-spessartine solid-solution series. Cleavelandite zone garnets are of the spessartine variant, with low REE, Y, Mg and Ca. Garnet in the saccharoidal albite zone of the Solås pegmatite was also measured to see if there were any large chemical differences between it, main almandine-spessartine and cleavelandite zone spessartine. The garnets are separated into two major groups: Almandine- spessartine of the main pegmatite dikes, and spessartine from cleavelandite zones. The garnet compositions are shown in figure 21 and 22. Values used is found in appendix 4, and an overview of average garnet compositions per pegmatite is presented in table 4.

50

Table 4: Representative average garnet compositions from pegmatites in Evje-Iveland. EMP and LA-ICP-MS data. For a map of the pegmatites see figure 19.

Sample 1 2 3 4 5 6 7 8 n 6 6 4 4 6 7 6 4

SiO2 wt% 36.3(6) 36.2(3) 36.1(3) 35.1(2) 36.1(3) 36.0(4) 35.4(7) 35.2(4)

Al2O3 19.9(1) 20.1(2) 20.2(3) 20.3(2) 20.2(1) 20.2(5) 20.34(7) 19.9(2) FeO 15 (2) 17(2) 17(2) 0.6(4) 25(1) 19(2) 15(1) 12(1)

Fe2O3** 1.3(8) 1(1) 1.4(7) 3.6(5) 1.1(5) 1.3(6) 1.4(7) 2(1) MnO 25.5(9) 24(2) 22(1) 40.0(3) 15(1) 20(2) 24.6(9) 28.1(4)

TiO2 <0.01 <0.01 0.08(2) 0.04(1) 0.04(3) <0.01 0.05(4) 0.10(6) MgO 0.6(2) 0.75(8) 0.90(4) - 0.51(6) 1.0(2) 0.35(7) 0.29(2) CaO 0.3(1) 0.4() 0.52(2) 0.62(7) 0.46(5) 0.49(6) 0.59(7) 0.26(4)

Na2O <0.01 0.02(2) <0.01 <0.01 <0.01 <0.01 0.12(9) 0.08(4)

K2O - - - - <0.01 <0.01 - -

Sc2O3* <0.01 0.03 0.06 <0.01 0.02 0.06 0.010 0.011

REE2O3*** <0.01 0.13 0.4 0.045 0.03 0.3 0.6 0.36

V2O5* <0.01 <0.01 <0.01 - <0.01 <0.01 <0.01 <0.01

Cr2O3* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ZnO* 0.01 0.012 0.007 0.048 0.010 0.0068 0.016 0.028

Y2O3* <0.01 0.25 0.4 0.052 0.09 0.6 1.1 1.3 TOTAL 100.1 100.9 100.7 100.3 100.2 100.3 100.3 100.1

Si apfu 2.97 2.96 2.96 2.90 2.98 2.95 2.93 2.92 Al 0.03 0.04 0.04 0.10 0.02 0.05 0.07 0.08 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.90 1.90 1.91 1.87 1.94 1.91 1.91 1.87 Fe3+** 0.08 0.10 0.09 0.12 0.06 0.09 0.09 0.13 Fe2+ 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.02 0.01 0.02 0.00 0.01 0.03 0.06 0.08 REE*** 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.01 Fe2+ 1.08 1.16 1.20 0.05 1.76 1.34 1.08 0.86 Fe3+** 0.00 0.02 0.00 0.10 0.02 0.00 0.00 0.00 Sc 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 Mn 1.77 1.67 1.59 2.79 1.11 1.43 1.72 1.98 Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51

Mg 0.08 0.09 0.11 0.00 0.06 0.13 0.04 0.04 Ca 0.03 0.04 0.05 0.06 0.04 0.04 0.05 0.02 Na 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.62 0.59 0.57 0.98 0.39 0.52 0.62 0.70

Yttrogarnet % 0.41 0.47 0.82 0.10 0.18 1.00 1.86 2.41 Sc garnet 0.33 0.20 0.34 0.00 0.14 0.36 0.06 0.07 Spessartine 58.99 55.54 53.16 92.99 36.87 47.86 57.54 65.96 Pyrope 2.64 3.07 3.68 0.00 2.12 4.21 1.44 1.22 Almandine 33.10 35.82 38.04 0.60 57.83 42.60 35.12 24.08 Grossular 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Andradite 0.23 0.65 0.94 1.70 1.09 0.67 1.42 0.36 Skiagite 2.69 3.02 2.01 0.88 0.93 1.82 0.80 4.44 The mineral formula for table 6 has been calculated with 8 cations and 12 oxygen. End- member components measured from Locock, (2008) and Fe3+ measured via Droop, (1987). The data is expressed as weight percent oxide (wt%) and atoms per formula unit (apfu). Data below the limit of detection is marked “-“. * Data analysed by LA-ICP-MS have an error of 5-10%. ** represents calculated Fe3+. *** represents the lanthanoids series (REE). 1 – KB-1 Heliodorgruva, 2 – 25432 Heia, Ljosland, 3 – KTU-7 Tuftane, 4 – MS-9 Solås, 5 – 25427 Steli, Tveit, 6 – 25370 Kåbuland, 7 – 25409 Landås, 8 – MS2-9 Solås

Table 4 cont: Representative average garnet compositions from pegmatites in Evje-Iveland.

Sample 9 10 11 12 13 14 15 16 17 n 6 6 4 4 6 6 6 6 4

SiO2 wt% 34.8(1) 35(1) 35.4(3) 34.7(1) 35.9(3) 35.3(3) 36.1(4) 35.4(3) 35.6(5)

Al2O3 20.5(1) 19.9(7) 19.61(6) 20.2(1) 19.9(2) 20.3(3) 20.4(2) 20.5(4) 20.1(2) FeO 17.4(6) 19(2) 9.8(1) 0.9(7) 18(2) 16(2) 7(1) 1.7(6) 18.1(6)

Fe2O3** 1.0(6) <0.01 2.9(2) 3.5(8) 1.7(6) 1.6(9) 1(1) 2.8(7) 2.0(3) MnO 21.3(5) 20.6(6) 31.4(3) 39.0(6) 21(2) 22(1) 34.5(5) 38.9(4) 21.8(2)

TiO2 0.05(2) 0.1(1) 0.13(3) 0.06(1) 0.10(5) 0.05(4) 0.01(1) 0.04(1) 0.05(1) MgO 0.77(4) 0.6(1) 0.18(5) - 0.8(1) 0.66(9) <0.01 - 0.8(6) CaO 0.62(3) 0.4(2) 0.23(2) 0.76(5) 0.5(1) 0.9(1) 0.49(3) 0.7(1) 0.57(8)

Na2O 0.12(4) <0.01 0.02(2) <0.01 <0.01 0.1(5) 0.08(7) 0.04(3) 0.05(1)

K2O - <0.01 - - - - <0.01 <0.01 -

Sc2O3* 0.084 0.13 <0.01 <0.01 0.01 0.08 <0.01 <0.01 0.06

REE2O3*** 1.41 0.17 0.05 <0.01 <0.01 1.0 <0.01 0.1 0.4

V2O5* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Cr2O3* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 52

ZnO* <0.01 <0.01 0.021 0.0261 0.010 0.012 0.047 0.025 0.011

Y2O3* 1.50 0.45 0.041 0.07 <0.01 1.1 0.31 0.12 0.4 TOTAL 99.7 99.1 99.7 99.1 99.5 100.2 100.9 100.4 100.2

Si apfu 2.90 2.94 2.94 2.89 2.97 2.91 2.96 2.91 2.94 Al 0.10 0.06 0.06 0.11 0.03 0.09 0.04 0.09 0.06 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.91 1.89 1.86 1.88 1.91 1.90 1.93 1.91 1.90 Fe3+** 0.06 0.10 0.13 0.12 0.09 0.10 0.07 0.09 0.10 Fe2+ 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.08 0.03 0.00 0.00 0.01 0.06 0.02 0.01 0.03 REE*** 0.04 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.01 Fe2+ 1.19 1.35 0.68 0.06 1.31 1.13 0.48 0.12 1.28 Fe3+** 0.00 0.02 0.05 0.11 0.02 0.00 0.04 0.08 0.02 Sc 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 Mn 1.50 1.45 2.21 2.75 1.50 1.59 2.39 2.71 1.50 Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.10 0.08 0.02 0.00 0.11 0.08 0.00 0.00 0.09 Ca 0.06 0.04 0.02 0.07 0.05 0.08 0.04 0.07 0.05 Na 0.02 0.02 0.00 0.00 0.01 0.02 0.01 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.55 0.52 0.76 0.98 0.53 0.58 0.83 0.96 0.54

Yttrogarnet % 2.74 0.85 0.08 0.15 0.19 1.98 0.55 0.23 0.84 Sc garnet 0.47 0.63 0.01 0.01 0.09 0.46 0.00 0.00 0.38 Spessartine 50.22 48.39 73.78 91.77 49.97 53.06 79.79 90.29 50.86 Pyrope 3.21 2.51 0.76 0.00 3.53 2.75 0.03 0.00 3.36 Almandine 40.35 43.16 18.42 2.01 41.67 37.57 15.77 4.07 39.93 Grossular 0.32 0.00 0.00 0.14 0.00 0.37 0.39 0.76 0.00 Andradite 0.96 0.23 0.28 1.93 1.27 1.80 1.00 1.43 1.14 Skiagite 0.27 1.90 4.38 0.13 1.96 0.15 0.23 0.00 1.73 9 – MSB-5 Slobrekka, 10 – 25444 Håvarstad, 11 – KH-3 Hovåsen, Eftevann, 12 – 25447 Røykkvartsbruddet, Birkeland, 13 – 28372 Mølland, 14 -25375 Ivedal, 15 -25412 Røykkvartsbruddet, Birkeland, 16 – 25374 Frøyså, 17 – 25422 Frikstad

53

Table 4 cont: Representative average garnet compositions from pegmatites in Evje-Iveland.

Sample 18 19 20 21 22 23 24 25 n 4 4 4 5 4 4 6 4

SiO2 wt% 35.6(1) 35.2(2) 36.1(3) 36.3(3) 35.7(4) 35.4(1) 36.1(8) 35.4(3)

Al2O3 20.2(1) 20.5(3) 19.98(7) 19.9(2) 19.9(3) 19.7(3) 20.1(1) 19.3(1) FeO 21.0(9) 0.7(6) 12.9(2) 14.3(9) 16(1) 15(1) 17(1) 11.3(4)

Fe2O3** 1.3(4) 3.2(6) 1.6(1) 1.8(4) 1(1) 2.10(6) 1.4(6) 2.5(8) MnO 19.4(8) 39.7(5) 28.6(3) 25(1) 24.2(1) 25(1) 23.4(7) 28.4(2)

TiO2 0.09(3) 0.05(1) 0.14(8) 0.17(2) 0.07(3) 0.22(6) 0.16(8) 0.20(3) MgO 0.526(8) <0.01 0.50(4) 1.08(9) 0.59(9) 0.66(8) 0.81(2) 0.70(2) CaO 0.5(1) 0.75(4) 0.28(4) 0.8(3) 0.32(2) 0.43(2) 0.5(1) 0.65(6)

Na2O 0.05(1) <0.01 0.027(9) 0.06(4) <0.01 0.10(9) <0.01 0.07(2)

K2O - <0.01 <0.01 - <0.01 - <0.01 -

Sc2O3* 0.08 <0.01 0.03 0.20 0.014 0.11 0.11 0.19

REE2O3*** 0.39 0.6 0.2 0.4 0.2 0.3 0.1 0.40

V2O5* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Cr2O3* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO* <0.01 0.044 0.0131 <0.01 0.023 0.016 <0.01 <0.01

Y2O3* 0.45 0.101 0.66 0.6 0.5 0.7 0.2 0.58 TOTAL 99.9 100.2 101.0 101 99.6 99.8 100 99.6

Si apfu 2.95 2.90 2.96 2.95 2.96 2.93 2.96 2.94 Al 0.05 0.10 0.04 0.05 0.04 0.07 0.04 0.06 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.92 1.89 1.88 1.86 1.91 1.86 1.91 1.83 Fe3+** 0.07 0.11 0.10 0.11 0.09 0.12 0.08 0.16 Fe2+ 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.01 0.04 0.03 0.03 0.04 0.01 0.03 REE*** 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 Fe2+ 1.45 0.05 0.88 0.95 1.11 1.04 1.18 0.79 Fe3+** 0.01 0.10 0.00 0.00 0.02 0.01 0.01 0.00 Sc 0.01 0.00 0.00 0.02 0.00 0.01 0.01 0.02 Mn 1.37 2.77 1.98 1.76 1.70 1.75 1.63 1.99 Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.06 0.00 0.06 0.13 0.07 0.08 0.10 0.09 54

Ca 0.05 0.07 0.02 0.07 0.03 0.04 0.05 0.06 Na 0.01 0.00 0.00 0.01 0.02 0.02 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.49 0.98 0.69 0.64 0.60 0.63 0.58 0.72

Yttrogarnet % 0.88 0.19 0.58 0.29 0.64 0.58 0.16 0.42 Sc garnet 0.49 0.00 0.45 0.19 0.17 0.27 0.09 0.14 Spessartine 45.66 92.31 58.39 59.06 52.62 63.26 65.60 39.29 Pyrope 2.15 0.03 2.38 3.01 3.34 2.76 1.01 2.61 Almandine 47.74 1.79 33.61 32.56 38.48 29.05 28.51 54.44 Grossular 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 Andradite 0.83 1.72 0.12 0.53 0.75 1.19 1.40 0.97 Skiagite 0.73 0.01 2.95 2.90 2.86 1.27 0.94 1.06 18 – MB-3 Brattekleiv, 19 -25421 Frigstad, 20 – KH-1 Hovåsen, Eftevann, 21 – KT-1 Thortveitittgruva, 22 – MS-6 Solås, 23 – KG2-5 Granatgruva, 24 – KG4 Granatgruva, 25 – 22330 Torvelona

55

Figure 21: A ternary diagram of Mg (pyrope), Ca (grossular) and Fe+Mn (almandine- spessartine). More fractionated garnet samples (spessartines) show almost no Mg present and stay on the Fe+Mn vs Ca line.

56

Figure 22: A Fe2+- Mn – Ca ternary plot. Most samples analyzed have almost no Ca at all. The solid solution is mainly between Fe and Mn. Analyses that cluster close to the Mn- endmember are spessartines from cleavelandite zones. The rest are fractionation products of almandine-spessartine throughout the main pegmatite.

Major element compositions in pegmatite garnet from Evje-Iveland varies between Fe and Mn. Almandine-spessartine have a large Mn/(Fe+Mn)-ratio of 0.37 to 0.86 apfu. Spessartines hosted in cleavelandite zones are more restricted and lie between 0.95 to 0.99 apfu Mn/(Fe+Mn). As with columbite-tantalite there seems to be a gap between the most fractionated samples of the cleavelandite zone and the rest.

3+ The Fe increases from relatively low amounts (0.92 – 3.76 wt% Fe2O3) in almandine- spessartine to stable high amounts (2.47 – 4.17 wt% Fe2O3) in cleavelandite zone spessartines. Some Al3+ may substitute for Si4+ in the tetrahedral position, which may cause a slight charge imbalance. This substitution might be a link to how Y-concentrations are so high in almandine-spessartine garnets, but this will be discussed later. Other garnet 57

endmember components like Ca and Mg are present in minor amounts. These elements make up < 1wt% CaO and MgO of the pegmatite garnets. This can also be seen in the ternary plot of figure 21 where the average garnet compositions cluster around the Fe-Mn component, and in figure 22 where it is almost on the Fe-Mn solid solution line. The Mg present (0.04 to 0.13 apfu) are incorporated into early forming Fe-rich almandine-spessartine, and get progressively removed from the crystallizing melt. This is evident in the Mg-deficient cleavelandite zone spessartines from MS-9 Solås, Frøyså, 25447 Røykkvartsbruddet and Frikstad. Highly fractionated Mn-rich almandine-spessartine from KH-3 Hovåsen and 25412 Røykkvartsbruddet also show this deficiency. Ca-values seem to be relatively stable, but it is slightly less prominent in spessartine garnets. The apfu is between 0.05 and 0.09 Ca, and seem to increase in many samples from core to rim of the crystals. Scandium is present in all samples, but in very low amounts < 0.2 wt% Sc2O3. Scandium accumulate in primitive almandine-spessartines, but sometimes disappear as fractionation proceeds in the more well- formed pegmatites. Interesting to note is that higher Sc-content in garnets are mostly from pegmatites that carry the Sc-mineral thortveitite in its assemblage (Stokkeland, 2016). Na- levels are quite low, but in some of the almandine-spessartine garnets it is analyzed up to

0.25 wt% Na2O. It is not much, as Na is a very large monovalent cation (1.18 Å), but it seems to have some relation with increased Y and Yb-levels (Shannon, 1976). It might be possible that some Na and Y can substitute for other elements in pegmatite garnets, but this will be covered in the discussion chapter (Enami et al, 1995).

The presence of Y in the garnets differs from primitive almandine-spessartine, more fractionated almandine-spessartine and spessartine. Yttrium seems to be enriched in garnets, as many of these samples contain almost 2 wt% Y2O3 (Solås, Ivedal, Slobrekka). The almandine-spessartine variant of garnet incorporates more Y than spessartines. Other garnets have either Y-rich or Y-poor cores, but no discernible zonation to show this in BSE-imaging. The sample from Landås have a Y-rich core (0.09 apfu in the core to 0.04 apfu in the rim), while Ivedal have the opposite (0.05 apfu in the core and 0.07 apfu in the rim). Larger abundances of REE are present in more Y-rich samples like Slobrekka. Ti, Zn, V, K and Cr- values are very low or fall below the limit of detection.

Zonation in garnet types

58

The almandine-spessartines contain some light zoning and minor inclusions, while the spessartines are more homogenous with very minimal mineral inclusions (figure 23).

59

60

Figure 23: BSE-images of garnets with different zoning types. a) The Slobrekka garnet is homogenous with no apparent zoning present. b) The Mølland sample is as with Slobrekka, homogenous. A few quartz inclusions can be found here c) A cleavelandite zone spessartine with no apparent zoning. This homogeneity is present in all spessartines. d) A reflective light-picture of symplectic garnet and qz from the intermediate zone at Hovåsen. This garnet is also homogenous in BSE-imaging. e) Saccharoidal albite zone garnet with very fine thin oscillatory bands, and some large quartz inclusions. f) An almandine-spessartine with thin dark zones in the main crystal. Ilmenite inclusions seem to have grown only in these zones, as they are not found in the main crystal zonation. g) A cracked crystal from Ivedal showing homogenous textures and allanite-(Ce) crack fillings. The darker colour in the cracks are more garnet just below a layer of epoxy. h) A garnet from Granatgruva with fine oscillatory bands and many inclusions. Quartz are found only in the middle of the crystal, with small ilmenite grains in the darker areas, and a small zircon.

The almandine-spessartines are either very homogenous, or slightly oscillatory zoned (figure 23). Most of the homogenous garnets show very slight changes from core to rim in minor and trace elements for Y, REE, Ti and Sc. The Slobrekka almandine-spessartine garnet (figure 23a) is chemically homogenous from core to rim, with minimal minor or trace element fluctuations. This is the same for Mølland, Frikstad and Hovåsen and many others (figure 23 b, c, d). The almandine-spessartine garnet from Solås is from the saccharoidal albite zone (figure 23e). This garnet show periodic oscillatory zoning from the core of the crystal grain towards the rim, although it is very weak. The garnet from Kåbuland (figure 23f) show irregular patches of darker textures in the crystal. The peculiar thing is that many small ilmenite grains have formed specifically in these darker zones. The analyzed dark zones are slightly richer in Ti than normal. Measurements give 0.05 wt% TiO2 in the main crystal and 0.21 wt% TiO2 in the darker patches. No significant difference in the Si, Al, Fe or Mn values was detected. The Ivedal garnet (figure 23g) is mostly homogenous with small inclusions of allanite-(Ce). The garnet crystal from Granatgruva (figure 23h) is oscillatory zoned with very thin bands of darker material. These differences in the bands are minimal as

61

only Fe change < 0.5 Wt% FeO and Fe2O3. This crystal has inclusions embedded in the form of quartz, zircon and ilmenite grains.

REE chondrite signature for Evje-Iveland garnets

The chondrite-normalized diagram for REE present in garnets is shown in figure 24, top, and a sample chondrite from the Solås pegmatite show REE differences between garnet types (figure 24, bottom). The REE-values in ppm can be found in table 5, and the single analysis values in appendix 4. The chondrite diagram is useful to understand pegmatite fractionation by looking at REE-concentrations from different pegmatite systems.

Table 5: Average garnet trace REE results from LA-ICP-MS analyses.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 n 6 6 4 4 6 7 6 4 6 6 4 4 La139 ppm - - <1 ------<1 <1 - Ce140 <1 <1 <1 <1 <1 <1 - <1 - <1 <1 <1 Pr141 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Nd143 2 3 <1 2 3 2 1 5 <1 2 8 2 Sm147 26 31 7 32 29 18 10 49 10 26 91 12 Eu151 - <1 <1 - - <1 <1 - - - - <1 Gd157 97 109 52 115 93 122 91 295 113 146 232 36 Tb159 28 30 24 50 25 50 50 123 66 57 36 27 Dy163 206 217 296 220 138 524 735 1137 1063 465 73 301 Ho165 41 41 96 9 16 149 260 219 447 82 2 46 Er166 170 165 570 9 36 661 1331 655 2611 267 2 123 Tm169 54 48 198 1 6 157 348 121 694 60 0.4 20 Yb173 756 565 2892 11 44 1564 3572 967 7620 580 3 125 Lu175 150 125 720 2 4 288 580 114 1537 83 1 12

62

Elemental concentrations that fall below the limit of detection are marked “-“. 1 – KB-1 Heliodorgruva, 2 – 25432 Heia, Ljosland, 3 – KTU-7 Tuftane, 4 – MS-9 Solås, 5 – 25427 Steli, Tveit, 6 – 25370 Kåbuland, 7 – 25409 Landås, 8 – MS2-9 Solås, 9 – MSB-5 Slobrekka, 10 – 25444 Håvarstad, 11 – KH-3 Hovåsen, Eftevann, 12 – 25447 Røykkvartsbruddet, Birkeland

Table 5 cont: Average garnet trace REE results from LA-ICP-MS analyses.

Sample 13 14 15 16 17 18 19 20 21 22 23 24 25 n 6 6 6 6 4 4 3 3 5 4 4 6 4 La139 ppm - - <1 - - <1 - <1 - <1 <1 <1 <1 Ce140 <1 - <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 Pr141 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Nd143 2 <1 <1 1 <1 1 2 5 2 1 5 2 2 Sm147 21 5 18 10 6 10 35 43 21 11 33 20 18 Eu151 <1 - - <1 <1 - - - <1 <1 <1 <1 <1 Gd157 67 72 134 35 58 54 131 201 95 94 134 67 65 Tb159 17 46 53 27 29 26 57 74 36 41 48 21 25 Dy163 100 756 297 336 394 316 296 551 340 432 435 178 236 Ho165 15 321 24 58 144 95 17 80 82 116 97 38 59 Er166 48 1893 36 171 807 524 19 226 417 510 435 170 326 Tm169 12 523 5 31 236 179 2 49 149 125 140 52 135 Yb173 124 5771 31 206 2824 2476 16 497 2275 1280 1947 686 2472 Lu175 24 1165 4 18 637 523 2 63 520 250 417 138 631 18 – MB-3 Brattekleiv, 19 -25421 Frigstad, 20 – KH-1 Hovåsen, Eftevann, 21 – KT-1 Thortveitittgruva, 22 – MS-6 Solås, 23 – KG2-5 Granatgruva, 24 – KG4 Granatgruva, 25 – 22330 Torvelona, 13 – 28372 Mølland, 14 -25375 Ivedal, 15 -25412 Røykkvartsbruddet, Birkeland, 16 – 25374 Frøyså, 17 – 25422 Frigstad

63

Figure 24: Top) Chondrite-normalized REE plot of average garnet compositions in Evje- Iveland pegmatites. All data were normalized to the values presented in McDonough & Sun, (1995). A negative Ce-anomaly is present in almost all samples. Bottom) A more specific focus on three average garnet samples from the well-fractionated Solås pegmatite. Garnet samples represented: MS2-9 wall zone, MS-6 saccharoidal albite/wall zone, and MS-9 cleavelandite zone. Alm-Sps - (almandine-spessartine). Cleave. – Cleavelandite zone.

64

Figure 24, top, show how fractionation of pegmatite garnets proceeds from low-LREE and high-HREE (Fe-rich almandine-spessartine), to low LREE and low HREE abundances (Mn- rich almandine-spessartine and spessartines). The garnets accumulate small amounts of lanthanides throughout crystallization from the wall zone towards the core. Table 5 show that HREE-contents may reach wt%-levels for some of the elements (Er, Yb). Almandine- spessartine variants incorporate more Y than their spessartine counterparts, which may be the reason for higher HREE present (figure 25) (the same assumption as for columbite- tantalite). Some garnets show a negative Ce-anomaly. Ce-loss is more apparent in the rim of the crystals than the core.

Figure 25: Plot of different REE-ratios present in garnet. The garnets have heavy emphasis on MREE and mostly HREE.

65

Primitive Fe-rich almandine-spessartine have positive HREE slopes (figure 24). The HREE- slope will steadily decrease with further garnet fractionation towards the core of the pegmatite. The more fractionated Mn-rich almandine-spessartine garnets are recognized by their negative HREE slope, which imply that there are lower amounts of REE available in more fractionated zones.

The Solås samples are used as an example to present this HREE-trend as Solås contain several zones of garnet mineralization plus a heavily altered saccharoidal albite zone (figure 24, bottom). Both garnet samples from the wall zone and saccharoidal albite zone have more or less the same positive trend, indicating formation in a melt with abundant REE. The cleavelandite zone sample MS-9 show a negative HREE-trend that can be correlated to other late-forming garnets.

66

4. Discussion

4.1 Solås pegmatite evolution

The Solås pegmatite is well-fractionated peraluminous granitic pegmatite dike with well- developed interior zones (Pedersen & Konnerup-Madsen, 2000; Müller et al, 2012, 2015; Snook, 2014). The dike was made from an anatectic melt enriched in minor components assimilated from the surrounding amphibolite mainly Nb, Y, REE and Be (Snook, 2014). This is reflected in the mineralogy of the pegmatite with abundant polycrase-(Y), garnet, magnetite, allanite-(Ce) and muscovite. The pegmatite border to the wall rock is sharp, and have induced wall-rock metasomatism. The amphiboles of the country rock within a 5-10 cm aureole around the pegmatite dike have been replaced by biotite, and the only oxide present is magnetite. Nb and Ta are f.ex very compatible in Fe-Ti oxides (London, 2008). HFSE- elements like Nb, Ta, REE, Ti and Sn must have been supplied from the amphiboles, biotites and oxides by partial melting closest to the pegmatite border (figure 26) (London, 2008). The REE-enrichment together with Nb and Ta in the pegmatite melt create the abundant polycrase-(Y) clusters found in the wall zone feldspars and magnetite.

Figure 26: A normalized REE-chondrite plot of host rock XRF data taken from Snook, (2014). The host rock gneiss (amphibolite) carries less REE closer to the pegmatite contact than further away. Bulk pegmatite Solås show HREE enrichment indication that the melt was enriched in REE.

67

Progressive crystal growth from the border zone to the pegmatite core is attributed to the aqueous boundary layer forming in front of the crystallizing minerals (Jahns & Burnham, 1969; London, 2008; London & Morgan, 2012). The newest model on pegmatite formation present how moderate flux-enrichment (H, B, P, and F) in an aqueous fluid is one of the main causes for pegmatite crystallization (London, 2008). When a pegmatite melt crystallizes with an ongoing constitutional zone refinement (CZR) front, then the fluxes from the melt will accumulate in the aqueous fluid staying in front of the crystallizing minerals (figure 27) (London, 2008, 2012, 2014; Thomas et al, 2012). The fluxes promote crystal growth, but inhibit the nucleation, and this method produces large single crystals in a very short time span (figure 27) (London, 2008, 2014).

68

Figure 27: A model of the flux-bearing CZR-method. 1) A standard crystallization front without flux elements. Incompatible elements (green) will slowly be assimilated in the crystal structure. 2) The incompatible elements reaches supersaturation in the front and start to make mineral inclusions that could stop the mineral growth. 3) A CRZ-front with brown flux- elements keeps the incompatible elements in the aqueous fluid by inhibiting nucleation. (Modified from London, 2014)

From the mineral assemblage at Solås it is evident that the main pegmatite zones (not the cleavelandite zone) are very poor in fluxing elements (H, B, P and F) typical of NYF and mixed NYF+LCT pegmatites in Evje-Iveland (Frigstad, 1968; Cerný & Ercit, 2005; London & Morgan, 2012). Low flux-content in the Evje-Iveland pegmatites (and Solås) is attributed to the genesis of the original NYF partial melt by anatexis. Boron is primarily incorporated

69

into tourmaline, but the pegmatite only carries very small amounts of the mineral. No more B-incorporating minerals have been reported or found, so the low amounts of B present are incorporated into biotite and muscovite. Phosphorous and F-concentration in the main pegmatite is also quite poor, except for the saccharoidal albite/cleavelandite zone where F is very evident in the mineral assemblage as fluorite. Abundant fluorite, topaz and microlite is observed in the zone, but it is not found in every cleavelandite zone reported from Evje- Iveland (Frigstad, 1968). Frigstad, (1968) explains that the mineralogy of cleavelandite zones do not necessarily contain abundant fluxing-elements if the zone is relatively barren in flux-rich minerals (example: fluorite). These fluxes are important for rare-element transport throughout the melt, and in the Evje-Iveland case F is the main flux present in sufficient amounts to promote it due to low Li, P, and B (Linnen et al, 2012). The CZR-method of crystallization is probably not the only one responsible, but by a combination of several models of formation (Thomas et al., 2012).

The Mn/(Fe+Mn)-ratio of the garnets found in several zones of the pegmatite show how the melt behaved during fractional crystallization. The internal zoning in the Solås garnets are mostly homogenous, but the saccharoidal albite zone garnet MS-6 has light oscillatory zoning. This is due to element fluctuation of Fe and Mn probably due to Fe being incorporated into other Fe-compatible minerals present in the wall zone/saccharoidal albite zone like biotite and magnetite (Cerný et al, 1985). Yttrium contents in the garnets decrease from the wall zone to the cleavelandite zone. No Y-poor rim where found in the analyzed garnets to correlate with the results by Müller et al, (2012). The Y-poor rim from Solås garnets in Müller et al, (2012) are acquired prior to the changing melt composition event that form the alkaline-rich cleavelandite zone (Müller et al, 2012). The cleavelandite zone formed as a last pocket of highly corrosive fluids just before the core zone at Solås. The saccharoidal albite zone is most likely an indication that the melt gets progressively more alkaline as blocky albite start changing form into a more bladed shape progressively towards the core, and LCT-characteristic minerals start to form.

An analogue of the Evje-Iveland pegmatites and Solås specifically can be drawn to the Falun area in Sweden. The mixed NYF+LCT field is quite similar in description to the Evje- Iveland field as both contain peraluminious pegmatites, and they have a variable degree of fractionation. The most evolved pegmatite at Falun is the Finnbo dyke, where cleavelandite 70

and associated minerals are reported (Smeds, 1994). As with Solås, topaz, tantalite and fluorite form in the innermost parts of the pegmatite. No cassiterite have been found at Solås as at Finnbo, although elevated trace amounts of Sn are present in tantalite-(Mn) found in the cleavelandite zone. The Falun field has two possible modes of origin as stated by Smeds, (1994) to be either a granite-derived differentiate or as a result of partial melting lower crustal rocks. This statement was also applicable to the Evje-Iveland field as it was originally thought to be derived from the Høvringsvatn granite, but is now seen as a result of direct anatexis of lower crustal rocks (Bjørlykke, 1935; Snook, 2014). Both of these fields consist of un-ordinary peraluminous NYF-pegmatites where some have LCT-characteristics, no regional zonation from a potential parental pluton and similar mineral assemblages.

4.2 Columbite-tantalite paragenesis in Evje-Iveland

Columbite-tantalite group minerals are recognized by the stoichiometric formula: AB2O6, where A represents Fe2+ and Mn2+ in octahedral positions (M1) within the cell structure. The B position is occupied by HFSE represented by Nb5+ and Ta5+ in octahedral coordination (M2). Other minor and trace components (Ti, Sc, Y, REE, W, Sn etc) may substitute for these primary elements (Ercit, 1994; Klein & Dutrow, 2007; Balassone et al, 2015).

The ratios of Mn/(Fe+Mn) and Ta/(Nb+Ta) are used to determine the stage of fraction in both columbite-tantalite and garnet (figure 28). The Mn and Ta-ratios will increase with increasing fractionation due to primary Fe and Nb incorporated into other mineral phases during crystallization, but it will not increase proportional to each other (Cerný et al, 1985; London et al, 2001). Fe is compatible in biotite, tourmaline and almandine-spessartine garnets, while Nb is present in REE-oxides like polycrase-(Y), Euxenite-(Y) and fergusonite-(Y). Mn acts incompatibly due to possible Mn-F complexing in the silicic melt (Cerný et al, 1985). Columbite-tantalite do contain a diversity of HFSE that directly correlate with solubility due to their high incompatibility in silicic minerals (London, 2008). Most of the samples have very homogenous zoning, with slight variation from core to rim. A few samples have seen more change during the latter stages of crystallization evident in late oscillatory or patchy texturing (Kåbuland, Klep, Ljoslandjordet). Light fluctuations in the melt equilibrium of Fe/Mn and Nb/Ta are measured from the oscillatory zones present 71

(Lahti, 1987). Most of the patchy texturing and late overgrowth are related to increased F in the melt (pyrochlore), or dissolution/replacement of more Nb or Ta-rich patches. This reflects how the melt becomes progressively more alkaline and flux-rich with more fractionation (Lahti, 1987, London, 2008). No texture observed could tell when the melt change to form cleavelandite and other LCT-characteristic mineral assemblages, but the late rapid changes evident in some samples could be a small indicator of this.

Figure 28: Columbite-tantalite fractionation trends in group 1 and group 2 minerals. The dashed line represents a gap between the two groups related to the formation of a cleavelandite zone in some pegmatites. Group 1 represents F-poor pegmatite systems, while group 2 represents F-rich systems.

Transportation mechanisms of Nb-Ta

Transportation mechanisms of Nb-Ta complexes in magmatic fluids are assumed to be related to complexing with mainly F (Cerný & Ercit, 1985). Fluorine reduce viscosity and promote diffusivity due to depolymerization of silicate fluids (Dingwell et al, 1985). Keppler, (1993) proposed a mechanism where F would create fluorine-complexes with HFSE as long as there was available non-bridging oxygen present. Later research on fluorine in hydrous haplogranitic melts with HFSE explains that the solubility of Nb and Ta do not increase with increased F-concentrations (Fiege et al, 2011; Aseri et al, 2015). Fiege et al,

72

(2011) stated that their experiments yielded no indication for fluorine complexing with Nb or Ta at all, and F would not be expected to influence Nb-Ta concentrations in pegmatite melts. The pegmatites of Evje-Iveland are very poor in Li, even in the cleavelandite zones that carry LCT-characteristic mineral assemblages. Linnen & Keppler, (1997) proved that water has a strong effect on Nb and Ta solubility in both subaluminious and peraluminous melt compositions. The low Li-content in the pegmatites are only present in micas of the cleavelandite zone, and sufficient amounts cause higher solubility of Ta (Frigstad, 1968; Linnen, 1998). This is probably why the most evolved pegmatites (Solås as an example) carry tantalite in the cleavelandite zone, as Li are removed from the melt making sure that Ta will precipitate out of solution. The tantalites are not found embedded with fluorite, so there is no obvious relation between the two except for fluorine-enrichment in the cleavelandite zone. Experimental research on Cl-complexing by Zaraisky et al, (2010) on Nb and Ta showed that the mechanism is very inefficient for pegmatite melts. No apparent chloride- minerals have been located or reported from Evje-Iveland so far. There is no apparent conclusion to how the elements are transported in the literature or by field evidence, but F may play a small role together with Li in the CZR.

Element substitution in columbite-tantalite minerals

Columbite and tantalite elemental substitution mechanisms is presented in Ercit, (1994). Columbite-tantalite minerals can contain small abundances of minor and trace elements like Y, REE, W, Ti, Sc and Sn. The substitution mechanisms are also used as a diagnostic tool to evaluate columbite-tantalite paragenesis in different pegmatite systems (Ercit, 1994). Fractionation of a pegmatite can be measured by the Mn/(Fe+Mn) and Ta/(Nb+Ta) ratios. The plots of both Fe vs Mn and Nb vs Ta lie below the ideal 1:1 line, but the presence of several minor and trace elements are the reason for the lower values (figure 29, appendix 2).

73

Figure 29: Fractionation diagrams of Fe2+ vs Mn and Nb vs Ta. Top: The samples have a roughly -1 slope, but the points plot slightly below the ideal 1:1 line. This is due to the presence of other elements which substitute for Fe and Mn. Group 2 samples are very rich in Mn compared to Fe, while group 1 columbites have a large Fe variation. Bottom: Most group 1 samples cluster at high-Nb values compared to more fractionated group 2 samples.

74

Both plots in figure 29 show -1 slopes, but the lower values than ideal present the problem with how other elements may substitute for the major ones. Below are a plot of the Ta-ratio vs W and Ti to see if there are any correlations between them (figure 30).

Figure 30: A plot of Ta/(Nb+Ta) vs Ti and W in separate plots. Very light substitution can be observed of both Ti and W in the most primitive columbite-(Fe) samples. The most fractionated columbite-tantalites do not follow this trend, but this is due to very low amounts of Ti and W present in the samples. The high-Ta columbite-(Mn) from group 2 seem to follow the substitution, but the tantalite-(Mn) do not. (Appendix 2).

Ercit, (1994) proposed several mechanisms for minor and trace element substitution in columbite-tantalite from NYF-type granites in the Grenville province, Canada. These mechanisms are: 75

1) Euxenite: M2+ + M5+ → Ln3+ + M4+ (figure 31) 2) Samarskite: 2A2+ + B5+ → 3(Ln + Fe)3+ (figure 32) 3) Rutile: A2+ + 2B5+ → 3Ti4+ (figure 33) 4) Wolframite: 3B5+ → M3+ + 2W6+ (figure 34)

The euxenite substitution is the most prevalent mechanism present in NYF-type systems, but that does not necessarily mean it is the only mechanism available. The value of the slope in figure 30 is -1.8. An ideal euxenite substitution lies around a slope with the value -1. This deviation from the ideal is most likely due to a combination of other substitution mechanisms taking place at the same time (rutile, samarskite and/or wolframite) (figure 31, 32, 33) (Ercit, 1994).

Figure 31: A euxenite-substitution plot complete with a regression line. Deviation from the ideal -1 slope is attributed to other substitution mechanisms that work in tandem with euxenite-substitiution.

76

Figure 32: A plot of samarskite (TiSnSi) vs euxenite (NbTa) mechanisms (Ercit, 1994). The - 1 slope represents primarily euxenite-substitution.

77

Figure 33: Plot of rutile (M3+) vs euxenite substitution (M5+) (Ercit, 1994). The -1 slope show primarily euxenite-substitution with some variance.

The deviation from the ideal euxenite substitution is most apparent in primitive columbite- (Fe) and columbite-(Mn) crystallized in early pegmatite sequences. This is mainly due to the availability of more W, Ti and lanthanoids at early stages of pegmatite crystallization, while the more fractionated parts of a pegmatite lie closer to the ideal substitution. Ercit, (1994) mentions that LCT-type pegmatites (very well – extremely well fractionated pegmatite systems) columbite-tantalite usually follow the rutile type substitution. Columbite and wolframite are derivatives from the ixiolite structure, so it is reasonable that W present would enter by a wolframite substitution (figure 30) (Ercit, 1994).

78

Figure 34: A wolframite substitution plot for columbite-tantalite. A negative trend can be observed, which means W enter the columbite structure by coupled substitution with M3+- elements (Sc, REE, Y).

Physical paragenesis in Evje-Iveland pegmatites The columbite-tantalites from Evje-Iveland pegmatites have mostly been grains selected from the mineral database. These grains have almost no accessory information about in-situ development, so the physical genesis is based on literature, geochemical data and the few in- situ crystals found.

NYF-type pegmatites carry larger amounts of REE than the well-fractionated LCT-type variants (Cerný & Ercit, 2005). Most pegmatites forming in LCT-type fields (in-field variation of subclasses may occur) have mainly columbite-tantalite minerals present, but almost no Nb-Ta REE(Y)-bearing oxides like polycrase-(Y), euxenite-(Y) or fergusonite-(Y) (Cerný et al, 1985; Spilde & Shearer, 1992; Ercit, 1994; Wise et al, 2012). NYF rare-element REE pegmatites form these oxides early in the wall zone together with magnetite and mica where REE and Y still present in sufficient amounts (Bjørlykke, 1937). Most of these oxides occur as small clusters close to magnetite in most Iveland pegmatites. Evidence from the Solås pegmatite show that the abundance of polycrase-(Y) clusters from the wall zone, are almost removed from the intermediate zone. Only small solitary polycrase-(Y)-euxenite-(Y) crystals are found in the feldspars in the intermediate zone. This early removal of REE

79

leaves some Nb and Ta left to form columbite-(Fe) and its fractionated products throughout the latter part of the wall zone and most of the intermediate zone towards the core. Bjørlykke, (1937) stated that the overall observation of mineral paragenesis in the pegmatites of Evje-Iveland followed a relatively uniform pattern. First, REE-phosphates form monazite- (Ce) and xenotime-(Y). Secondly, REE combines together with Y, Nb, and Ta to form REE- oxides like fergusonite-(Y) and euxenite-(Y). Thirdly, the Nb-Ta minerals with Fe and Mn forms (columbite-tantalite minerals). Local pegmatite melt chemistry determines when the columbite-(Fe) form in the wall zone, but the most fractionated columbite-(Mn) are located in the intermediate zone indicative of progressive fractionation. An example from the Falun area in Sweden show that the REL-REE mixed NYF+LCT pegmatites carry columbite- tantalite in the wall zone primarily (Smeds, 1994). No other REE(Y)-oxides or silicates were observed there, and this Y-REE deficiency might be why columbite-(Fe) crystallized early. The Bancroft area in Ontario, Grenville Province contain pegmatites made from direct anatexis of lower crustal lithologies are also a close analogue to the pegmatites of Evje- Iveland (Ercit, 1994). There is presence of Y and REE in the Bancroft pegmatite field, and more REE(Y)-oxides form in the expense of columbite-tantalite minerals, but the columbite- tantalite fractionate towards more Ta-rich compositions (Ercit, 1994). High-Ta columbite- (Mn) and tantalite-(Mn) are only found in the cleavelandite zones of well-fractionated pegmatites, which can be observed as a “jump” between group 1 and group 2 columbite- tantalites (figure 28).

4.3 Garnet chemistry

The garnet unit cell of A3B2T3O12 can incorporate a variety of elements with different valence states as the positions of A, B and T contain different coordination polyhedral. The A position has an 8-fold cubic coordination where ions of Fe2+, Mn2+, Mg2+ and Ca2+ fit. The B position has a 6-fold octahedral coordination where higher valence states of elements like Al3+, Fe3+ and Ti4+ may fit. Lastly the T position is where the 4-fold tetrahedral coordination contain mainly Si4+ (Klein & Dutrow, 2007).

Pegmatite garnet is used as an indicator for pegmatite evolution in all petrogenetic families (figure 35) (Cerný & Ercit, 1985; London 2008). Garnet will accumulate more Mn than Fe2+ 80

as fractionation proceeds in a pegmatite melt, due to Fe2+ being incorporated into early forming Fe-phases like magnetite, tourmaline and biotite (Cerný et al, 1985; London et al, 2001). London, (2008) stated that almandine is unstable under 300 mPa at typical magmatic temperatures. The less pressure, the more Mn is incorporated into garnet, which is one of the reasons why the Mn-ratio is high in more fractionated parts of a pegmatite. As with columbite-tantalite, the amount of Mn present in the intermediate zone and cleavelandite zones are dependent on F-transport of Mn (London, 2001). Cleavelandite zone spessartines are formed together with a F-rich mineralogy in most pegmatites that have this zone in Evje- Iveland. The garnets are mostly homogenous with some small oscillatory zoning in some samples. The intensity of the bands represents fluctuations in the Fe and Mn chemistry, but some minor elements do also vary somewhat (Y, Mg, Ca). The pegmatites are very Ca- deficient in comparison to the close-lying Froland pegmatite field, but some local variations occur (Müller et al, 2012). Some of the analyzed mineral show Ca-increase from the core to rim, while Fe and Mg decrease. If the pegmatite melt accumulated Ca during anatexis of the host rock it will form a more Ca-oriented mineralogy with apatite, pyrochlore group and titanite (Bjørlykke, 1935).

Figure 35: A Fe2+ vs Mn plot presenting the ideal substitution of these elements. The plot has the almost the same -1 slope as the ideal FeMn-substitution indicating that this still

81

holds true. The lower concentrations of Fe and Mn is due to other minor elements that may substitute for these elements (Ca, Mg, Y, REE).

Sodium substitution in garnets

The incorporation of small amounts of Na in garnet have been covered by Enami et al, (1995). Analytical studies of the Evje-Iveland garnets show increased Na-levels together with increased Y-levels, although the values are quite low (figure 36).

Figure 36: A plot Na vs Y+Yb. There is a very weak positive correlation between increased Na and Y+Yb levels in a few of these garnets. Especially MS2-9 Solås, 25432 Heia, 255375 Ivedal and possibly Slobrekka, but the trends are very weak.

Sodium has to enter the garnet structure by some kind of substitution, and a proposed mechanism is by Na+ + (Y+Yb)3+ → Ca2+ + Mn2+ (figure 36) (Jaffe, 1951; Enami et al, 1995).

82

Figure 37: A coupled substituiton plot of Na+(Y+Yb) vs Ca+Mn). The plot does not really show much in the way of substitution between these elements.

The plot in figure 37 show how Na and Y have very little influence on Na incorporation in any of the garnet types compared to what Enami et al, (1995 and references therein) proposed. This imply some connection between the two elements, but no conclusion of substitution can be drawn so far for this pegmatite field.

83

Yttrium and Sc-substitution mechanisms

Figure 38: A map over Y-concentrations in Evje-Iveland garnets. Smaller circles within larger ones are garnets from different zones in the same pegmatite (Stokkeland, 2016).

Garnet from granitic pegmatites can have up to 2-3 wt% Y2O3 (figure 38) (Jaffe, 1951). The garnets from Evje-Iveland is no different as some of the almandine-spessartine variants have up to 2 wt% Y2O3 present, and can be correlated to almandine-spessartines from the Falun area in Sweden (Smeds, 1994). There is very little Y in the cleavelandite zone spessartines compared to the almandine-spessartine variant, which is also seen in well-fractionated 84

pegmatites in Falun (Smeds, 1994). This is due to Y being incorporated early into Y-bearing oxides and phosphates. The proposed mechanism for Y to enter the garnet structure were via the substitution mechanism: Y3+ + Al3+ → Mn2+ + Si4+ (Jaffe, 1951). Jaffe, (1951) assumed that Y3+ would enter into the A-position in the garnet to substitute for Mn2+. REE3+ also enter the A-site in the position of Y as proposed in Geller & Miller, (1959), which would turn the substitution mechanism into: Y3+(REE3+) + Al3+ → Mn2+ + Si4+ (figure 39). This assumption was made because the ionic radii of Y3+ are 1.019 Å in 8-coordination while the radii of Mn2+ is 0.96 Å in 8-coordination (Shannon, 1976). Y3+ is not alone in the substitution as Al3+ (0.39 Å) move into T-position to occupy Si-tetrahedra (0.26 Å). This equation is then equalized in valence, but the unit cell is slightly distorted due to the difference in bond strength to the outlying O2- ions (Jaffe, 1951). Figure 40 show that the almandine- spessartines of the main pegmatite zones have a slight negative trend. This implies a light substitution of Y(REE) and Al into the garnet structure. Highly fractionated Mn-rich almandine-spessartine (25412 Røykkvartsbruddet) and the cleavelandite zone spessartines contain so little Y and REE, that the substitution may take place, but not any large amounts. Yb3+ (0.985 Å) and HREE often behave as Y3+ and may substitute for it compared to the other HREE. The table 4 show that Yb occurs in minute amounts in the garnet formula, but the rest of the lanthanides are only detected in trace amounts by LA-ICP-MS analysis (Table 5). This means that garnets formed in the outer zones of the pegmatites will contain an increased amount of Yb3+ (and trace amounts of other HREE), and will be progressively depleted with further fractionation of the pegmatite melt (Cerný & Ercit, 1985).

85

Figure 39: A plot showing the Y(REE) + Al → Mn + Si substitution mechanism. A slight negative trends can be observed in all sample, but the correlation may vary between garnet types. The more fractionated spessartines have almost no Y present, but the mechanism might still be viable.

Müller, (2012) recognized four types of intracrystalline zonation in garnets from Evje- Iveland and the Froland pegmatites mainly based on the degree of fractionation in the pegmatites. Type 1 relates to the Froland pegmatites where the Y-content decreases from the core to rim. Type 2 garnet zonation show low values of Y with very low change through the whole crystal. Type 3 is garnet zonation with a high Y-content that may change in small scale oscillatory bands. Type 4 relates to zonation in samples that have an Y-rich core and a Y-poor rim that should be distinct in very fractionated NYF+LCT pegmatites. Samples analyzed from Evje-Iveland pegmatites show some of these intra-crystalline zonations, but most are very homogenous with very little chemical change between core and rim. Especially the type 4 shown from Solås and Hovåsen in Müller et al, (2012) were not replicated in analyses done this time. The importance of type 4 zonation is that it may show when the fractionated pegmatite melt becomes more alkaline to form the cleavelandite zone and its respective minerals. The implication for this is that the Hovåsen pegmatite most likely have cleavelandite zones, but these are not exposed as of this date (Müller et al, 2012). Several samples show a large decrease of Y from core to rim of the crystal. These come from

86

Ivedal, Mølland, Landås, Kåbuland, and Steli (type 1). Some may show very little change overall like the Slobrekka garnet (type 2).

Figure 40: A map over the Sc-concentrations in pegmatitic garnets. Smaller circles within larger ones are garnets from different zones in the same pegmatite. (Stokkeland, 2016)

Jaffe, (1951) also mentioned that Sc3+ (0.87 Å) could substitute for ions of Mg2+ or possibly Fe2+ in 8-fold coordination in garnets. Sc3+ would accumulate in primitive garnet types of

87

pyrope or pyrope-almandine, but this is not the case for the more fractionated almandine- spessartine or cleavelandite zone spessartines in the Evje-Iveland pegmatites. Even so, results from the earliest formed garnets show an increased amount of Sc3+ compared to garnets from more fractionated zones or from the cleavelandite pods. Both Sc-rich cores and Sc-rich rims have been analyzed in different grains, so it must be down to local chemical changes in the pegmatite melts that cause this difference. Cleavelandite zone spessartines contains as expected almost no Sc at all (table 5, appendix 4). There are low Sc- concentrations overall except for thortveitite-bearing pegmatites (figure 40) (Stokkeland, 2016). The element vs element plots in figure 42 show Sc vs other trivalent or divalent cations. Large scatter makes it hard to determine any trends, but a slight positive trend in the Sc vs Y+REE diagram, but the amounts of Sc present is very low and the scatter widely distributed. It might be possible that Sc enter the structure by other methods or a combination of them into pegmatite garnet.

88

89

Figure 41: Sc vs Fe2+, REE+Y and Al. Sc may have a slight positive trend with Y(REE) in the Fe-rich almandine-spessartines, but the more fractionated garnets show to large scatter.

The chondrite diagrams show a slight deficiency in the amount of Ce present. This loss of Ce is most likely due to the mineralization of LREE-minerals like allanite-(Ce) and monazite- (Ce). There are still low amounts of La present together with slightly higher levels of Pr and Nd, so it is possible that the amount of Ce was very low to start with in the pegmatite melt. Chondrite diagrams from Müller et al, (2012) also show this Ce-anomaly from the Froland pegmatites. The Eu-anomaly present in all samples are most likely due to the Eu- incorporation into plagioclase (Winter, 2010).

90

5. Conclusion

The Solås pegmatite represents a well-fractionated MSREL-REE type pegmatite with both NYF and LCT-characteristics in the form of a F-poor main pegmatite dike and a F-rich cleavelandite pod/saccaroidal albite zone. The Solås pegmatite can be placed in the allanite- monazite subtype classification.

Columbite-tantalite mineral paragenesis in the Evje-Iveland mixed NYF+LCT pegmatite field is related to several factors. First, the local pegmatite melt chemistry will influence the crystallization of early formed minerals controlling REE, Nb, Ta and Y in the wall zone. Secondly, columbite-tantalite form after the crystallization of REE(Y)-bearing minerals when the amount of REE and Y is depleted enough from forming Nb-rich REE(Y)-oxides. The REE(Y) oxides like polycrase-(Y) and euxenite-(Y) form early in the wall zone, while columbite-(Fe) form in the latter part before the intermediate zones. Then columbite-(Fe) follow a F-poor fractionation trend towards Nb-rich columbite-(Mn). Some of the well- fractionated pegmatites form F-rich cleavelandite zones where high-Ta columbite-tantalite- (Mn) occur. In these zones the Y and REE present in the pegmatite are almost gone, so secondary Ta-minerals forming here is microlite. REE-chondrite normalized diagrams show this drop in HREE-concentrations in the most fractionated of samples. The columbite- tantalite are relatively poor in Sn, W and to some extent Ti, which is different from highly fractionated LCT-pegmatites systems. The NYF-pegmatites of Evje-Iveland are F-poor, but in some cleavelandite zones the F present will form F-bearing mineral phases. This F was thought to be the main mechanism of Nb-Ta transport, but elevated amounts of F do not correlate with increased solubility of Nb and Ta.

Garnet mineralization occur in almost all pegmatites in Evje-Iveland. The garnets are of the almandine-spessartine variant, while cleavelandite zone garnets are pure spessartines. As with columbite-tantalite the fractionation of Mn/(Fe+Mn) present how the pegmatite develops during crystallization. Almandine-spessartine garnets here carry almost 2 wt%

Y2O3, but this enrichment varies in each pegmatite system. Cleavelandite zone spessartines have almost no Y-present. Elevated levels of Sc in early formed garnets can be found in the

91

same pegmatites where the Sc-mineral thortveitite have been reported. A hypothesis of Na and Y.

92

6. Future work

The Evje-Iveland field is full of opportunities to study mineral chemistry in a mixed NYF+LCT pegmatite field. Here are some preferences for further studies:

- Determine U-Pb ages for more than one pegmatite in the area by the use of zircons and columbite-tantalite minerals to better constrain the development of these rocks. - Map the well-formed MSREL-REE Hovåsen pegmatite at Eftevann, and correlate mineral data against the Solås pegmatite. - Sample non-columbite Nb-Ta species if present to see if there is any relation between Sn, and W from each pegmatite system

93

7. References

Andersen, T. (2005). Terrane analysis, regional nomenclature and crustal evolution in the Southwest Scandinavian Domain of the Fennoscandian Shield. Geologiska Föreningen i Stockholm Förhandlingar, 127, 159-168

Aseri, A. A., Linnen, R. L., Che, Z. D., Thibault, Y., Holtz, F. (2015). Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geology Reviews, 64, 736-746

Balassone, G., Danisi, R. M., Armbruster, T., Altomare, A., Moliterni, A. G., Petti, Carmela., Mondillo, N., Ghiara, M. R., Saviano, M. (2015). An insight into crystal chemistry and cation order of columbite-(Fe) and columbite-(Mn) from worldwide occurences. Journal of Mineralogy and Geochemistry, 192:3, 275-287

Barth, T. (1947). The nickeliferous Iveland-Evje amphibolite and its relation. Norges geologiske undersøkelse, 168:a, 1-71

Bjørlykke, H. (1935). The mineral paragenesis and classification of the granite pegmatites of Iveland, Setesdal, Southern Norway. AW Brøggers Boktrykkeri, 211-311

Bjørlykke, H. (1937). The granite pegmatites of South Norway. The American Mineralogist, 22, 241-255

Bingen, B. & Van Breemen, O. (1998). U-Pb monazite ages in amphibolite- to granulite- facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology, 132, 336-353

Bingen, B. & Stein, H. (2003). Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters, 208, 181-195

Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D., Liégeois J. P. (2005). Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology, 85, 87-116

94

Bingen, B., Stein, H. J., Bogaerts, M., Bolle, O., Mansfeld J. (2006). Molybdenite Re-Os dating constrains gravitation collapse of the Sveconorwegian orogen, SW Scandinavia. Lithos, 87, 328-346

Bingen, B., Nordgulen, Ø., and Viola, G. (2008a). A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology, 88, 43-72

Cameron, E.N., Jahns, R. H., McNair, A. H. & Page L. R. (1949). Internal structure of granitic pegmatites. Economic Geology, Monograph 2

Cerný, P. (1991a). Rare-element Granitic Pegmatites. Part 1: Anatomy and Evolution of Pegmatite Deposits, Geoscience Canada, 18:2, 49-67

Cerný, P. (1991b). Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51, 429-468.

Cerný, P. & Ercit, T. S. (1985). Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bulletin Minéral, 108, 499-532

Cerný, P. & Ercit, T. S. (2005). The classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 2005-2026

Cerný, P., Meintzer, R. P., Anderson, A. J. (1985). Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Canadian Mineralogist, 23, 381-421

Cerný, P., Ercit, T. S., Wise, M. S. (1992). The tantalite – tapiolite gap: Natural assemblages versus experimental data. Canadian Mineralogist, 30, 587-596

Cerný, P., London, D., Novák, M. (2012). Granitic pegmatites as reflections of their sources. Elements, 8, 289-294

Chapell, B. W. & White, J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489-499

95

Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435

Dingwell, D. B., Scarfe, C. M., Croning, D. J. (1985). The effect of fluorine on viscosities in the system Na2O – Al2O3 - SiO2: Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70, 80-87

Enami, M., Cong, B., Yoshida, T., Iwao, K. (1995). A mechanism for Na incorporation in garnet: An example from garnet in orthogneiss from the Su-Lu terrane, eastern China. American Mineralogist, 80, 475-482

Ercit, T. S. (1994). The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, Southwestern Grenville Province, Canadian Shield. The Canadian Mineralogist, 32. 421-438

Fiege, A., Kirchner, C., Holtz, F., Linnen, R. L., Dziony, W. (2011). Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts – An experimental study. Lithos, 122, 165-174

Frigstad, O. F. (1984). En undersøkelse av cleavelanditsonerte pegmatittganger I Iveland- Evje, Nedre Setesdal. Geologisk Museums Bibliotek, 1-210

Gaál, G. & Gorbatschev, R. (1987). An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research, 35, 15-52

Geller, S & Miller, C. E. (1959). Silicate garnet – yttrium-iron garnet solid solutions. The American Mineralogist, 44, 1115-1120

Ginsburg, A.I. & Rodionov, G.G. (1960). On the depths of the granitic pegmatite formation. Geologiya Rudnykh Mestorozhdenyi, Izd. Nauka, Moskva, 1, 45-54

Griffin, W.L., Powell, W.J., Pearson, N.J., O’Reilly, S.Y. (2008). GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester, P. (Ed.), Laser Ablation–ICP–MS in the

96

Earth Sciences. Mineralogical Association of Canada Short Course Series, 40 Appendix 2, 204–207

Jaffe, H. W. (1951). The role of Yttrium and other minor elements in the garnet group. American Mineralogist, 36, 113-129

Jahns, R. H., & Burnham, C. W. (1969). Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64, 843-864

Jolliff, B. L., Papike, J. J., Shearer, C. K. (1992). Petrogenetic relationship between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochimica et Cosmochimica Acta, 56, 1915-1939

Keppler, H. (1993). Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479-488

Klein, C. & Dutrow, B. (2007). Mineral Science. John Wiley & Sons inc, 23rd ed, 1-667

Lahti, S. (1987). Zoning in columbite-tantalite crystals from the granitic pegmatites of the Eräjärvi area, southern Finland. Geochimica et Cosmochimica Acta, 51, 509-517

Larsen, R. B. (2002). The distribution of Rare-Earth Elements in K-Feldspar as an indicator of petrogenetic processes in granitic pegmatites: Examples from two pegmatite fields in Southern Norway. The Canadian Mineralogist, 40, 137-151

Larsen, R. B., Polvé, M., Juve, G. (2000). Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for the formation of high-purity quartz. NGU-Bulletin, 436, 57-65

Larsen, R. B., Henderson I., Ihlen P. M., Jacamon F. (2004). Distribution and petrogenetic behavior of trace elements in pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615-628

Linnen, R. L. (1998). The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: Constraints for mineralization in rare-metal granites and pegmatites. Economic Geology, 93, 1013-1025 97

Linnen, R. L. & Keppler, H. (1997). Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contributions to Mineralogy and Petrology, 128, 213-227

Linnen, R. L., Van Lichtervelde, M. & Cerný, P. (2012). Granitic pegmatites as sources for strategic metals. Elements, 8, 275-280

Locock, A. J. (2008). An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34, 1769-1780

London, D. (2008). Pegmatites. Quebec: Mineral Association of Canada. 1-347

London, D. (2014). A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187, 74-104

London, D. & Morgan, G. B. (2012). The Pegmatite Puzzle. Elements, 8, 263-268

London, D., Evensen, J. M., Fritz, E., Icenhower, J. P., Morgan, G. B., Wolf, M. B. (2001). Enrichment and accommodation of manganese in granite-pegmatite systems. Eleventh annual V. M. Goldschmidt Conference, 1

Martin, R. F. & De Vito, C. (2005). The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43, 2027-2048

McDonough, W. F. & Sun, S.-s. (1995). The composition of the Earth. Chemical Geology, 120, 223-253

Müller, A., Ihlen, P. M., Larsen R. B, Spratt, J., Seltmann R. (2009). Quartz and garnet geochemistry of south norwegian pegmatites and its implications for pegmatite genesis. Estudos Geológicos, 19:2, 20-24

Müller, A., Kearsley, A., Spratt, J., Seltmann R. (2012). Petrogenetic implications of magmatic garnet in granitic pegmatites from Southern Norway. The Canadian Mineralogist, 50, 1095-1115

98

Müller, A., Ihlen, P. M., Snook, B., Larsen, R., Flem, B., Bingen, B., Williamson, B. J. (2015). The Chemistry of Quartz in Granitic Pegmatites of Southern Norway: Petrogenetic and Economic Implications. Economic geology, 110, 1-22

Pedersen, S. (1981). Rb/Sr age determinations on late Proterozoic granitoids from the Evje area, South Norway. Bulletin of the geological society of Denmark, 29, 129-143

Pedersen, S. & Konnerup-Madsen, J. (2000). Geology of the Setesdalen area, South Norway: Implications for the Sveconorwegian evolution of South Norway. Bulletin of the Geological society of Denmark, 46, 181-201

Pedersen, S., Andersen T., Konnerup-Madsen, J., Griffin W. L, (2009). Recurrent mesoproterozoic magmatism in South-Central Norway. International Journal of Earth Sciences, 98, 1151-1171

Pieczka, A., Szuszkiewicz, A., Szeleg, E., Nejbert, K., Lodzinski, M., Ilnick, S., Turniak, K., Banach, M., Holub, W., Michalowski, P., Rozniak, R. (2013). (Fe,Mn)–(Ti,Sn)–(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. Journal of Geosciences, 58, 91-112

Pouchou, I. L. & Pichoir, F. (1985). “PAP” (ϕ–ρ–Z) procedure for improved quantitative microanalysis. In: Armstron IT (ed) Microbeam Analysis. San Francisco Press, San Francisco, 104-106

Schärer U., Wilmart E., Duchesne J. C. (1996). The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland Complex, Norway. Earth and Planetary Science letters, 139, 335-390

Scherer, E., Münker C., Mezger, K. (2001). Calibration of the Lutetium-Hafnium Clock. Science, 293, 683-687

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A., A32, 751-767

99

Smeds, S. A. (1994). Zoning and fractionation trends of a peraluminious NYF granitic pegmatite field at Falun, south-central Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 116:3, 175-184

Snook, B., 2014, Towards exploration tools for high purity quartz: An example from the South Norwegian Evje-Iveland pegmatite belt. PhD thesis, UK, Camborne School of Mines, University of Exeter, 1-283

Spilde, M. N. & Shearer, C. K. (1992). A comparison of tantalum-niobium oxide assemblages in two mineralogically distinct rare-element granitic pegmatites, Black Hills, South Dakota. The Canadian Mineralogist, 30, 719-737

Stokkeland, K. (2016). The formation of thortveitite and garnet chemistry in the Evje- Iveland pegmatite field. M.Sc thesis in progress, Norway, University of Oslo,

Thomas R., Davidson P., Beurlen, H. (2012). The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Contributions to Mineralogy and Petrology, 73, 55-73

Whalen, J. B., Currie, K. L., Chapell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407-419

Winter, J. D. (2010). Principles of igneous and metamorphic petrology. Pearson education Inc, 2nd ed, 1-705

Wise, M. A., Francis, C. A., Cerný, P. (2012). Composition and structural variations in columbite-group minerals from granitic pegmatites of the Brunswick and Oxford fields, Main: Differential trends in F-poor and F-rich environments. The Canadian Mineralogist, 50, 1515-1530

100

Zaraisky, G. P., Korzhinskaia V., Kotova, N. (2010). Experimental studies Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 – 500 °C and 50 – 100 mPa. Contributions to Mineralogy and Petrology, 99, 287-300

101

8. Appendix

8.1 Appendix 1: Sample description

Epoxy Description Locality mounts 17012 Columbite-(Fe), assumed wall/intermediate Rosås 17180 zone Mølland 17161 Tantalite-(Mn), cleavelandite zone material Thortveittunnelen Euxenite-(Y), assumed wall zone 17234 Columbite-(Fe), assumed intermediate zone Rumpetrollsynken, 17186 Columbite-(Fe), primitive, assumed wall/inter. Landsverk 2 17214 Euxenite-(Y), assumed wall zone Steli, Tveit Landås 17230 Columbite-(Fe), primitive, assumed wall Landsverk 1, Evje zone/inter. KH-6 Columbite-(Mn), intermediate zone material Hovåsen KT2-1 Columbite-(Fe), assumed wall/intermediate Tuftane, Frikstad MS3-6 zone Solås Tantalite-(Mn), cleavelandite zone material 17224 Columbite-(Fe), assumed intermediate zone Ilmenorutilgruva, Håvardstad 17221 Columbite-(Fe), assumed wall/intermediate Ljoslandjordet 17187 zone Steli 3, Tveit Columbite-(Mn), assumed intermediate zone 17166 Columbite-(Fe/Mn), assumed wall/intermediate Fosbekk 17026 Columbite-(Mn), bordering cleavelandite Mikrolittbruddet, Landås 17211 minerals Kåbuland Columbite-(Mn), assumed intermediate zone 17176 Columbite-(Fe), assumed wall/intermediate Ljosland 3 17217 zone Eftevann 17213 Columbite-(Mn), assumed intermediate zone Eftevann, Hovåsen Columbite-(Mn), assumed intermediate zone 17215 Columbite-(Fe), assumed wall/intermediate Ljoslandåsen 17227 zone Klep Columbite-(Fe), assumed wall/intermediate zone

25444 Almandine-Spessartine, assumed main Håvardstad pegmatite KH-3 Spessartine, close to core zone, symplectic Hovåsen 28372 Almandine-Spessartine, assumed main Mølland 25447 pegmatite Røykkvartsbruddet, Spessartine, assumed cleavelandite zone Birkeland 102

KH-1 Almandine-Spessartine, intermediate zone Hovåsen KT-1 Almandine-Spessartine, assumed main Thortveitittgruva pegmatite MS-6 Almandine-Spessartine, altered sugar albite Solås KG2-5 zone Granatgruva Almandine-Spessartine, main pegmatite 25414 Almandine-Spessartine, heavily altered primary Høgtvedt grt. MB-2 Almandine-Spessartine, assumed main Brattekleiv MB-3 pegmatite Brattekleiv 25422 Almandine-Spessartine, assumed main Frikstad pegmatite Almandine-Spessartine, assumed main pegmatite 25427 Almandine-Spessartine, primitive main Steli, Tveit pegmatite KTU-7 Almandine-Spessartine, main pegmatite Tuftane, Frikstad MS-9 material Solås Spessartine, cleavelandite zone garnet KB-1 Almandine-Spessartine, primitive main garnet Heliodorgruva MSB-2 Almandine-Spessartine, main pegmatite Slobrekka 25375 Almandine-Spessartine, assumed main Ivedal pegmatite 25432 Almandine-Spessartine, assumed main Heia, Ljosland pegmatite 25374 Spessartine, assumed cleavelandite zone Frøyså 25412 material Røykkvartsbruddet, Spessartine, assumed cleavelandite zone Birkeland material 25409 Almandine-Spessartine, primitive main garnet Landås 25370 Almandine-Spessartine, assumed main Kåbuland pegmatite MSB-1 Almandine-Spessartine, main pegmatite garnet Slobrekka KG-4 Almandine-Spessartine, main pegmatite garnet Granatgruva MS2-9 Almandine-Spessartine, main primitive garnet Solås MS-5 Almandine-Spessartine, main primitive garnet Solås MSB-5 Almandine-Spessartine, primitive primary Slobrekka pegmatite 25421 Spessartine, assumed cleavelandite zone Frikstad material 22330 Almandine-Spessartine, primitive primary Torvelona pegmatite

Thin- section Description Locality

103

1M (MSB-1) Garnet crystals with interstitial quartz and Slobrekka feldspars. Small amounts of muscovite. Wall/intermediate 2M (MS2-3) Border contact between amphibolite and Solås pegmatite. Biotite hydration and formation of magnetite 3M (KG2-2) Border contact between amphibolite and Granatgruva pegmatite. 4M (MS-8) Wall zone material of biotite, quartz and albite Solås 5M (KG2-7) Reaction rim of intermediate zone massive K- Granatgruva feldspar and quartz 6M (MS-5) Garnet crystals embedded in a sugar albite Solås matrix with muscovite 7M (KI-1) Garnet specimen with albite crystals. Assumed Granatgruva wall zone material. 8M (KH-3) Symplectic intergrowth of garnet in the Hovåsen intermediate zone. 9M (KB-1) Small euhedral garnets from the wall zone. Heliodorgruva Feldspar and quartz 10M (KG2-5) Wall zone muscovites and feldspars Granatgruva

8.2 Appendix 2: Columbite-tantalite data

- Wt% oxide and apfu - Trace elements

Wt% oxide and apfu

MS3-6 17012 Rosås Solås 17012 17012 17012 17012 MS3-6- MS3-6- MS3-6- MS3-6- MS3-6- Sample -1 -2 -3 -4 01 02 03 04 05 Nb2O5 5<0.0 wt% 1 50.34 49.98 50.89 22.06 25.72 22.27 23.41 29.31

Ta2O5 27.71 28.97 29.36 28.61 60.16 55.95 60.13 58.53 52.06 FeO 12.51 12.80 12.82 13.21 1.04 1.62 1.52 1.73 3.07

Fe2O3 2.15 2.06 1.98 1.45 0.95 0.95 0.46 1.19 13.63 MnO 4.36 4.38 4.39 4.37 14.01 13.76 13.87 13.34 2.10 104

TiO2 1.53 1.52 1.46 1.51 1.87 2.00 1.87 2.16 <0.01

UO2 - 0.01 - <0.01 - - - - -

ThO2 0.01 - 0.02 ------CaO 0.01 0.01 0.01 0.01 0.02 <0.01 <0.01 0.01 0.15

Sc2O3 0.08 0.07 0.06 0.07 0.16 0.15 0.14 0.15 0.06

Y2O3 0.30 0.32 0.30 0.30 - 0.02 - 0.01 -

REE2O3 0.19 0.08 0.06 0.07 0.17 0.19 0.18 0.22 0.18 MgO 0.34 0.14 0.12 0.12 0.01 0.01 <0.01 0.01 <0.01

SiO2 - - - - 2.44 - - 1.60 -

SnO2 0.10 0.07 0.08 0.08 0.31 0.30 0.39 0.47 0.39

WO3 1.91 0.69 0.68 0.69 0.21 0.17 0.34 0.32 0.30 PbO 0.02 <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 0.02

Bi2O5 <0.01 <0.01 <0.01 <0.01 0.02 0.03 0.02 0.04 <0.01 101.2 101.4 101.3 101.3 TOTAL 1 8 4 8 103.41 100.86 101.20 103.20 101.30

W apfu 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.42 1.41 1.41 1.43 0.70 0.82 0.73 0.74 0.91 Ta 0.47 0.49 0.50 0.48 1.15 1.08 1.18 1.11 0.98 Si 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.05 0.00 Sn 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 Ti 0.07 0.07 0.07 0.07 0.06 0.09 0.08 0.08 0.10 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.98 1.98 1.98 1.99 2.00 2.00 2.00 2.00 2.00

Fe2+ 0.66 0.66 0.67 0.69 0.06 0.10 0.09 0.10 0.11 Fe3+ 0.10 0.10 0.09 0.07 0.05 0.05 0.03 0.06 0.06 Ti 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.03 0.01 Sc 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 Mn 0.23 0.23 0.23 0.23 0.83 0.82 0.85 0.79 0.80 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.02 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00

Mn/Fe+ Mn 0.26 0.26 0.26 0.25 0.93 0.90 0.90 0.89 0.87

105

Ta/Nb+T a 0.25 0.26 0.26 0.25 0.62 0.57 0.62 0.60 0.52

17215 17227 Ljoslandåsen Klep 17215- 17215- 17215- 17215- 17215- 17227- 17227- 17227- 17227- Sample 01 02 03 04 05 01 02 03 04 Nb2O5 wt% 65.61 65.06 64.36 65.25 65.47 62.95 60.80 62.72 58.17

Ta2O5 8.27 8.63 9.13 8.95 7.87 16.10 18.00 15.76 21.78 FeO 9.45 9.33 9.28 9.75 9.31 14.00 13.68 13.67 14.01

Fe2O3 2.74 3.48 3.42 2.76 3.09 1.65 1.51 2.06 1.53 MnO 7.62 7.35 7.36 7.35 7.47 4.65 4.70 4.66 4.32

TiO2 3.65 3.54 3.69 3.57 3.86 1.35 1.31 1.16 1.16

UO2 0.09 0.10 0.14 0.13 0.17 - - - -

ThO2 0.01 - - <0.01 - - - 0.01 - CaO 0.01 0.01 0.03 0.02 0.02 0.01 0.06 0.01 0.01

Sc2O3 0.39 0.35 0.29 0.34 0.42 0.09 0.08 0.10 0.10

Y2O3 0.72 0.58 0.61 0.63 0.72 0.37 0.36 0.31 0.30

REE2O3 0.94 0.38 0.38 0.40 0.66 0.07 0.06 0.06 0.06 MgO 0.39 0.54 0.47 0.51 0.49 0.17 0.16 0.12 0.13

SiO2 1.32 ------

SnO2 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.04

WO3 1.52 1.72 1.64 1.66 1.82 0.82 0.79 0.48 0.51 PbO 0.03 0.03 0.09 0.03 0.03 0.01 <0.01 <0.01 <0.01

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTAL 102.78 101.15 100.97 101.40 101.44 102.30 101.58 101.16 102.12

W apfu 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.67 1.67 1.66 1.68 1.68 1.66 1.63 1.67 1.57 Ta 0.13 0.13 0.14 0.14 0.12 0.26 0.29 0.25 0.35 Si 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.15 0.15 0.16 0.15 0.16 0.06 0.06 0.05 0.05 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 1.98 1.99 1.99 1.99 1.99 1.99 1.98 1.99

Fe2+ 0.44 0.44 0.44 0.46 0.44 0.68 0.68 0.67 0.70 Fe3+ 0.12 0.15 0.15 0.12 0.13 0.07 0.07 0.09 0.07 106

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.02 0.02 0.01 0.02 0.02 0.00 0.00 0.01 0.00 Mn 0.36 0.35 0.36 0.35 0.36 0.23 0.24 0.23 0.22 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Y 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 Mg 0.02 0.03 0.03 0.03 0.03 0.01 0.01 0.01 0.01 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.00 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.01

Mn/Fe+ Mn 0.45 0.44 0.45 0.43 0.45 0.25 0.26 0.26 0.24 Ta/Nb+ Ta 0.07 0.07 0.08 0.08 0.07 0.13 0.15 0.13 0.18

KT2-1 Tuftane 17180 Mølland 17227- KT2- KT2- KT2- KT2- 17180- 17180- 17180- 17180- Sample 05 1-1 1-2 1-3 1-4 01 02 03 04 Nb2O5 wt% 60.03 59.32 58.40 58.63 58.87 28.55 29.78 28.63 29.74

Ta2O5 19.52 15.74 16.00 15.78 15.66 53.36 53.00 54.04 52.67 FeO 13.91 11.84 11.80 11.56 11.64 1.53 1.44 1.38 1.54

Fe2O3 1.75 1.72 1.45 1.99 1.80 0.53 0.70 0.85 0.66 MnO 4.44 4.89 4.81 4.86 4.87 14.37 14.66 14.48 14.45

TiO2 1.08 4.05 4.36 4.14 4.14 1.39 1.18 1.18 1.28

UO2 - <0.01 0.08 0.05 0.06 0.30 0.06 0.17 0.14

ThO2 <0.01 - 0.04 - - <0.01 - - - CaO 0.01 0.02 0.02 0.03 0.01 0.01 0.03 0.03 0.04

Sc2O3 0.08 1.71 1.71 1.68 1.74 0.04 0.02 0.01 0.06

Y2O3 0.32 0.46 0.54 0.43 0.43 0.13 0.07 0.08 0.14

REE2O3 0.04 0.24 0.21 0.21 0.21 0.24 0.19 0.34 0.23 MgO 0.15 0.34 0.30 0.29 0.33 <0.01 <0.01 <0.01 <0.01

SiO2 - - - - - 0.41 - 0.44 0.30

SnO2 0.04 0.10 0.10 0.09 0.09 0.03 0.03 0.02 0.02

WO3 0.51 1.91 1.66 1.57 1.60 0.23 0.20 0.19 0.18 PbO <0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.05 0.01

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTAL 101.88 102.35 101.51 101.34 101.47 101.15 101.38 101.88 101.48

W apfu 0.01 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 107

Nb 1.61 1.55 1.53 1.54 1.54 0.90 0.94 0.90 0.93 Ta 0.32 0.25 0.25 0.25 0.25 1.02 1.00 1.02 0.99 Si 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.05 0.18 0.19 0.18 0.18 0.05 0.05 0.05 0.06 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.98 1.99 2.00 1.99 1.99 1.99 1.99 2.00 2.00

Fe2+ 0.69 0.57 0.57 0.56 0.56 0.09 0.08 0.08 0.09 Fe3+ 0.08 0.07 0.06 0.09 0.08 0.03 0.04 0.04 0.03 Ti 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 Sc 0.00 0.09 0.09 0.09 0.09 0.00 0.00 0.00 0.00 Mn 0.22 0.24 0.24 0.24 0.24 0.85 0.86 0.85 0.85 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 Y 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.01 Mg 0.01 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.02 1.01 1.00 1.01 1.01 1.00 1.00 1.00 1.00

Mn/Fe+ Mn 0.24 0.30 0.29 0.30 0.30 0.90 0.91 0.91 0.90 Ta/Nb+T a 0.16 0.14 0.14 0.14 0.14 0.53 0.52 0.53 0.52

17187 Steli 3, 17224 Ilmenorutilgruva, 17221 Tveit Håvarstad Ljoslandjordet 17180 17187 17187 17187 17224- 17224- 17224- 17224 Sample -05 -01 -02 -03 01 02 03 -04 17221-01 Nb2O5 wt% 29.69 59.07 58.74 58.27 61.29 61.26 61.45 61.37 65.59

Ta2O5 52.87 20.20 20.09 20.45 14.54 14.53 14.54 14.57 12.64 FeO 1.49 4.59 6.54 6.42 7.85 7.83 7.98 7.84 9.03

Fe2O3 0.74 1.72 1.42 1.50 2.59 2.69 2.55 2.57 1.67 MnO 14.54 13.56 11.68 11.77 9.19 9.13 9.15 9.24 9.47

TiO2 1.26 1.27 1.55 1.59 3.47 3.57 3.34 3.43 1.89

UO2 0.11 0.07 0.11 0.12 0.32 0.34 0.24 0.30 0.02

ThO2 0.01 ------CaO 0.03 0.03 0.01 <0.01 0.01 0.01 <0.01 0.02 0.03

Sc2O3 0.03 0.02 0.01 0.01 0.31 0.30 0.31 0.32 0.03

Y2O3 0.10 0.27 0.28 0.27 0.54 0.54 0.48 0.55 0.38 108

REE2O 3 0.23 0.02 0.07 0.02 0.52 0.53 0.11 0.24 0.05 MgO <0.01 0.09 0.08 0.04 0.19 0.21 0.26 0.22 0.30

SiO2 - 0.36 - - 0.94 - 0.29 0.47 <0.01

SnO2 0.02 0.01 0.01 0.01 0.10 0.10 0.12 0.12 0.02

WO3 0.22 0.39 0.36 0.37 0.25 0.22 0.28 0.26 0.49 PbO 0.02 0.03 0.02 0.01 0.06 0.05 0.06 0.05 0.02

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTA 101.3 101.6 100.9 100.8 101.5 L 6 9 7 6 102.16 101.31 101.14 6 101.63

W apfu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 0.93 1.59 1.59 1.58 1.60 1.61 1.61 1.60 1.71 Ta 1.00 0.33 0.33 0.33 0.23 0.23 0.23 0.23 0.20 Si 0.00 0.01 0.00 0.00 0.03 0.00 0.01 0.01 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.06 0.06 0.07 0.07 0.14 0.16 0.15 0.14 0.08 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Fe2+ 0.09 0.23 0.33 0.32 0.38 0.38 0.39 0.38 0.44 Fe3+ 0.04 0.08 0.06 0.07 0.11 0.12 0.11 0.11 0.07 Ti 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 Sc 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00 Mn 0.86 0.68 0.59 0.60 0.45 0.45 0.45 0.45 0.46 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 Y 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 Mg 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.02 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mn/Fe+ Mn 0.91 0.75 0.64 0.65 0.54 0.54 0.54 0.54 0.51 Ta/Nb+ Ta 0.52 0.17 0.17 0.17 0.12 0.12 0.12 0.12 0.10

17213 Eftevann, 17217 Hovåsen Eftevann 17221 17221 17221 17221 17221 17213- 17213- 17213 Sample -02 -03 -04 -05 -06 01 02 -03 17217-01 109

Nb2O5 wt% 65.89 64.31 65.31 61.39 65.98 54.45 54.76 56.04 65.62

Ta2O5 12.30 12.65 11.79 15.16 11.45 24.68 23.37 23.69 10.76 FeO 10.68 9.63 8.48 10.88 10.84 5.55 5.72 6.61 7.04

Fe2O3 1.28 2.20 2.42 2.43 2.61 1.67 1.88 0.82 2.52 MnO 7.99 8.21 9.34 6.34 6.84 12.17 11.81 11.82 10.87

TiO2 1.34 2.45 2.09 3.10 2.23 1.66 1.70 1.65 2.34

UO2 <0.01 0.07 0.13 0.02 0.02 0.13 0.20 0.20 0.18

ThO2 ------CaO 0.07 0.02 0.02 0.03 0.01 0.02 0.01 <0.01 0.01

Sc2O3 0.15 0.11 0.06 0.21 0.05 0.02 <0.01 0.02 0.03

Y2O3 0.39 0.44 0.43 0.43 0.43 0.27 0.23 0.25 0.41

REE2O3 0.05 0.05 0.02 0.19 0.08 0.08 0.06 0.02 0.05 MgO 0.21 0.34 0.38 0.39 0.60 0.07 0.07 0.06 0.29

SiO2 - - - - - 0.62 - - 1.49

SnO2 0.01 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.03

WO3 0.35 0.45 0.32 0.40 0.50 0.51 0.47 0.49 0.81 PbO 0.01 0.02 0.01 0.01 0.02 0.03 0.03 0.03 0.03

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTAL 100.73 100.97 100.81 101.00 101.68 101.95 100.34 101.70 102.49

W apfu 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.73 1.68 1.71 1.62 1.71 1.49 1.52 1.53 1.69 Ta 0.19 0.20 0.19 0.24 0.18 0.41 0.39 0.39 0.17 Si 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.04 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.06 0.11 0.09 0.14 0.10 0.08 0.08 0.07 0.10 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.99 2.00 1.99 2.00 1.99 2.00 1.99 2.00 2.00

Fe2+ 0.52 0.47 0.41 0.53 0.52 0.28 0.29 0.33 0.33 Fe3+ 0.06 0.10 0.11 0.11 0.11 0.08 0.09 0.04 0.11 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 Sc 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Mn 0.39 0.40 0.46 0.31 0.33 0.62 0.61 0.61 0.52 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.01 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.02 110

Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.00

Mn/Fe+ Mn 0.43 0.46 0.53 0.37 0.39 0.69 0.68 0.64 0.61 Ta/Nb+ Ta 0.10 0.11 0.10 0.13 0.09 0.21 0.20 0.20 0.09

17176 17211 Amerika, Ljosland 3 Kåbuland 17217 17217 17176 17176 17176 17176 17176 17176 Sample -02 -03 -01 -02 -03 -04 -05 -06 17211-03 Nb2O5 wt% 66.02 66.11 63.37 64.25 64.10 64.30 64.26 65.15 60.55

Ta2O5 10.66 10.79 11.15 10.49 11.00 10.82 9.85 11.43 18.63 1<0.0 FeO 7.45 7.45 10.15 10.67 9.40 9.57 1 10.89 8.27

Fe2O3 1.96 2.06 2.65 2.32 2.28 2.48 2.93 1.60 1.76 MnO 10.89 10.91 7.13 6.92 7.94 7.75 7.09 7.41 9.99

TiO2 2.29 2.26 3.70 3.14 3.17 3.17 3.88 2.61 1.33

UO2 0.18 0.19 0.10 0.04 - - 0.10 - 0.02

ThO2 - <0.01 - <0.01 - - <0.01 - - CaO 0.01 0.01 <0.01 0.03 0.02 0.03 0.01 <0.01 0.02

Sc2O3 0.05 0.06 0.20 0.26 0.59 0.45 0.27 0.27 0.05

Y2O3 0.42 0.40 0.46 0.43 0.51 0.46 0.50 0.41 0.30 REE2O 3 0.04 0.06 0.19 0.29 0.32 0.22 0.26 0.17 0.15 MgO 0.19 0.18 0.38 0.41 0.45 0.53 0.56 0.42 0.12

SiO2 - - - - 0.39 0.46 - 0.36 0.34

SnO2 0.03 0.03 0.04 0.03 0.04 0.05 0.07 0.05 0.01

WO3 0.80 0.80 1.41 2.00 1.76 1.90 2.18 1.73 0.35 PbO 0.03 0.03 0.02 0.01 0.01 0.01 0.02 0.01 0.02

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTA 101.0 101.3 100.9 101.3 102.0 102.2 101.9 102.4 L 4 4 5 2 0 0 9 9 101.87

W apfu 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.72 1.72 1.65 1.67 1.65 1.65 1.65 1.68 1.62 Ta 0.17 0.17 0.17 0.16 0.17 0.17 0.15 0.18 0.30 Si 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 111

Ti 0.10 0.10 0.16 0.14 0.14 0.14 0.17 0.11 0.06 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 1.99 1.99 1.99 1.99 2.00 1.99

Fe2+ 0.36 0.36 0.49 0.51 0.45 0.46 0.48 0.52 0.41 Fe3+ 0.08 0.09 0.11 0.10 0.10 0.11 0.13 0.07 0.08 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.00 0.00 0.01 0.01 0.03 0.02 0.01 0.01 0.00 Mn 0.53 0.53 0.35 0.34 0.38 0.37 0.34 0.36 0.50 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 Mg 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.02 0.01 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01

Mn/Fe +Mn 0.60 0.60 0.42 0.40 0.46 0.45 0.42 0.41 0.55 Ta/Nb+ Ta 0.09 0.09 0.10 0.09 0.09 0.09 0.08 0.10 0.16

17026 Mikrolittbruddet, Landås 17211- 17211- 17211- 17211- 17211- 17211- 17026- 17026- 17026- Sample 04 05 06 07 08 09 01 02 03 Nb2O5 wt% 62.60 64.93 66.12 66.38 66.05 65.63 38.73 39.20 39.07

Ta2O5 16.13 13.74 9.92 9.93 9.89 9.82 43.05 42.11 42.12 FeO 7.99 8.34 7.06 7.70 7.23 7.11 1.15 0.84 0.89

Fe2O3 1.89 1.56 2.57 1.92 2.57 3.02 0.39 0.84 0.80 MnO 10.41 10.43 10.88 10.67 10.67 10.47 15.88 15.97 15.90

TiO2 1.24 1.23 2.35 2.40 2.49 2.70 0.64 0.78 0.80

UO2 0.02 <0.01 0.37 0.33 0.32 0.27 0.04 0.01 0.01

ThO2 ------CaO 0.01 0.01 0.01 - <0.01 - 0.05 0.03 0.04

Sc2O3 0.03 0.08 0.07 0.07 0.07 0.07 <0.01 0.01 0.02

Y2O3 0.35 0.33 0.47 0.49 0.47 0.45 0.19 0.16 0.14

REE2O3 0.43 0.33 0.05 0.50 0.09 0.11 0.08 0.07 0.02 MgO <0.01 0.01 0.10 0.14 0.17 0.22 <0.01 <0.01 <0.01

SiO2 0.21 1.10 - 0.64 - 0.43 0.33 - -

112

SnO2 0.01 0.01 0.02 0.02 0.03 0.04 0.01 0.01 0.01

WO3 0.31 0.24 0.31 1.09 0.60 0.77 0.34 0.27 0.21 PbO 0.03 0.02 0.02 0.03 0.04 0.05 0.02 0.01 0.01

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 TOTAL 101.66 102.37 100.32 102.30 100.70 101.16 100.91 100.32 100.03

W apfu 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.66 1.70 1.72 1.71 1.72 1.70 1.17 1.19 1.19 Ta 0.26 0.22 0.16 0.15 0.15 0.15 0.78 0.77 0.77 Si 0.01 0.03 0.00 0.02 0.00 0.01 0.01 0.00 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.05 0.05 0.10 0.10 0.11 0.12 0.03 0.04 0.04 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.98 2.00 1.99 2.00 1.99 1.99 2.00 2.00 2.00

Fe2+ 0.39 0.40 0.34 0.37 0.35 0.34 0.06 0.05 0.05 Fe3+ 0.08 0.07 0.11 0.08 0.11 0.13 0.02 0.04 0.04 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.52 0.51 0.53 0.51 0.52 0.51 0.90 0.91 0.90 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 Mg 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.02 1.00 1.01 1.00 1.01 1.01 1.00 1.00 1.00

Mn/Fe+ Mn 0.57 0.56 0.61 0.58 0.60 0.60 0.93 0.95 0.95 Ta/Nb+T a 0.13 0.11 0.08 0.08 0.08 0.08 0.40 0.39 0.39

17230 17166 Fosbekk Landsverk 1 17026- 17166- 17166- 17166- 17166- 17230- 17230- 17230- 17230- Sample 04 02 03 05 06 01 02 03 04 Nb2O5 wt% 38.26 67.42 67.56 67.40 67.73 65.71 64.56 64.69 64.82

Ta2O5 43.68 9.35 9.62 9.44 9.80 5.12 5.57 5.22 5.06 FeO 0.67 7.81 8.02 7.83 8.20 9.05 8.71 8.77 8.48

113

Fe2O3 0.64 2.74 2.47 2.60 2.35 3.79 4.02 4.20 4.41 MnO 16.21 10.02 10.09 10.15 10.03 8.54 8.68 8.48 8.59

TiO2 0.50 1.90 1.78 1.79 1.76 4.36 4.51 4.43 4.28

UO2 <0.01 0.06 0.06 0.08 0.04 0.11 0.13 0.12 0.13

ThO2 ------CaO 0.03 0.02 0.01 0.01 0.01 <0.01 0.01 0.04 0.02

Sc2O3 0.02 0.03 0.01 0.02 0.01 0.06 0.05 0.05 0.07

Y2O3 0.14 0.46 0.42 0.43 0.42 0.44 0.37 0.44 0.45

REE2O3 0.06 0.06 0.12 0.10 0.05 0.13 0.07 0.10 0.18 MgO <0.01 0.45 0.41 0.45 0.47 <0.01 0.01 <0.01 0.01

SiO2 - 0.29 - - 0.84 0.28 - - 0.42

SnO2 <0.01 0.01 0.01 0.01 0.01 0.08 0.08 0.07 0.07

WO3 0.11 0.64 0.67 0.90 0.80 4.16 4.63 4.67 4.33 PbO 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTAL 100.32 101.26 101.27 101.23 102.51 101.86 101.44 101.30 101.34

W apfu 0.00 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.17 1.74 1.75 1.74 1.73 1.67 1.65 1.65 1.66 Ta 0.80 0.15 0.15 0.15 0.15 0.08 0.09 0.08 0.08 Si 0.00 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.01 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.03 0.08 0.08 0.08 0.08 0.18 0.19 0.19 0.18 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.99 1.98 1.98 1.98 1.99 1.99 1.99 1.98 1.98

Fe2+ 0.04 0.37 0.38 0.37 0.39 0.43 0.41 0.41 0.40 Fe3+ 0.03 0.12 0.11 0.11 0.10 0.16 0.17 0.18 0.19 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.93 0.48 0.49 0.49 0.48 0.41 0.42 0.41 0.41 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Y 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.00 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.02 1.02

114

Mn/Fe+ Mn 0.96 0.57 0.56 0.57 0.55 0.49 0.50 0.49 0.51 Ta/Nb+T a 0.41 0.08 0.08 0.08 0.08 0.04 0.05 0.05 0.04

17186 Steli, 17234 Rumpetrollsynken, Tveit Landsverk 2 17186- 17186- 17186- 17234- 17234- Sample 04 05 06 17234-01 17234-02 17234-03 04 05 Nb2O5 wt% 71.39 70.99 72.42 58.85 58.90 59.21 59.05 58.87

Ta2O5 5.00 4.76 4.75 17.80 17.43 17.58 17.47 17.17 FeO 13.63 13.34 14.15 11.73 11.60 11.87 11.73 11.47

Fe2O3 1.58 1.74 1.73 2.38 2.48 2.21 2.36 2.61 MnO 5.08 4.99 4.67 5.85 5.89 5.88 5.88 5.92

TiO2 2.00 2.05 1.98 2.45 2.46 2.45 2.46 2.46

UO2 - - - 0.02 0.02 - - 0.02

ThO2 ------<0.01 - CaO 0.01 <0.01 - 0.01 0.02 <0.01 <0.01 0.02

Sc2O3 0.83 0.81 0.81 0.04 0.04 0.02 0.03 0.02

Y2O3 0.56 0.67 0.44 0.61 0.60 0.57 0.59 0.60

REE2O3 0.25 0.35 0.27 0.15 0.16 0.17 0.17 0.14 MgO 0.23 0.28 0.26 0.12 0.12 0.13 0.12 0.11

SiO2 0.41 - - - - 0.38 - -

SnO2 0.06 0.05 0.05 0.09 0.09 0.09 0.09 0.09

WO3 1.22 0.93 0.86 1.33 1.32 1.28 1.31 1.32 PbO 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Bi2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 TOTAL 102.22 100.97 102.39 101.44 101.14 101.83 101.26 100.85

W apfu 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 Bi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 1.80 1.81 1.82 1.57 1.58 1.58 1.58 1.58 Ta 0.08 0.07 0.07 0.29 0.28 0.28 0.28 0.28 Si 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.08 0.09 0.08 0.11 0.11 0.11 0.11 0.11 U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 1.98 1.98 1.98 1.99 1.99 2.00 1.99 1.99

115

Fe2+ 0.64 0.63 0.66 0.58 0.58 0.58 0.58 0.57 Fe3+ 0.07 0.07 0.07 0.11 0.11 0.10 0.11 0.12 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sc 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 Mn 0.24 0.24 0.22 0.29 0.30 0.29 0.29 0.30 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Y 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 Mg 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 1.02 1.02 1.02 1.01 1.01 1.00 1.01 1.01

Mn/Fe+ Mn 0.27 0.27 0.25 0.34 0.34 0.33 0.34 0.34 Ta/Nb+T a 0.04 0.04 0.04 0.15 0.15 0.15 0.15 0.15

Trace elements:

17012 MS3-6 Rosås Solås 17012 17012 17012 MS3-6- MS3-6- MS3-6- MS3-6- MS3-6- 17012-1 -2 -3 -4 01 02 03 04 05 Mg ppm 424 534 445 470 27 22 - 30 - Si - - - - 5323 - - 3499 - Sn 529 457 522 519 1913 1882 2433 2891 2391 La - - - - 1 1 1 11 8 Ce <1 <1 <1 <1 3 12 16 20 52 Pr <1 <1 <1 <1 1 1 1 4 4 Nd 3 2 2 2 6 8 6 19 18 Sm 20 18 20 20 35 52 28 44 41 Eu <1 - - - <1 <1 <1 <1 <1 Gd 57 48 54 55 88 116 77 95 83 Tb 24 21 23 24 48 57 47 50 43 Dy 161 136 156 158 306 355 322 330 288 Ho 20 17 19 20 38 42 42 43 37 Er 57 49 56 57 137 147 157 164 136 Tm 14 12 14 14 41 43 46 49 39 Lu 19 17 19 19 95 99 100 110 85 W 4343 4351 4289 4308 1310 1067 2146 2036 1874 Pb 46 35 43 44 8 22 43 129 165 Bi 1 1 1 1 110 230 124 292 -

116

17215 17227 Ljoslandåsen Klep 17215- 17215- 17215- 17215- 17215- 17227- 17227- 17227- 17227- 01 02 03 04 05 01 02 03 04 Mg ppm 1489 2060 1800 1979 1901 661 628 469 483 Si 2881 ------Sn 342 292 338 317 340 391 372 255 248 La 373 6 27 1 77 - - 8 1 Ce 1218 38 20 11 388 <1 <1 22 5 Pr 210 9 3 4 69 <1 <1 4 1 Nd 916 55 21 31 327 3 3 24 7 Sm 422 69 49 65 240 19 20 24 16 Eu 9 1 <1 <1 4 - - <1 <1 Gd 447 114 102 119 283 54 55 45 33 Tb 84 38 37 41 68 24 24 14 12 Dy 540 315 317 337 480 170 173 83 86 Ho 102 66 67 68 92 23 23 11 13 Er 399 309 320 314 390 68 69 31 41 Tm 120 113 115 113 128 17 17 7 10 Lu 366 405 404 392 412 22 22 10 15 W 9538 10834 10285 10443 11426 5167 4963 3003 3216 Pb 247 279 791 223 221 43 40 22 22 Bi <1 <1 <1 <1 <1 1 1 <1 <1

KT2-1 Tuftane 17180 Mølland 17227- KT2-1- KT2-1- KT2-1- KT2-1- 17180- 17180- 17180- 17180- 05 1 2 3 4 01 02 03 04 Mg ppm 589 1300 1154 1122 1258 - - - - Si - - - - - 888 - 952 659 Sn 235 590 609 565 554 166 156 128 131 La - 0.2 - 0.2 - 1 1 20 1 Ce <1 2 1 2 2 8 7 52 7 Pr <1 1 1 1 1 4 4 13 3 Nd 1 11 10 10 8 43 39 89 33 Sm 11 35 32 31 25 238 210 325 175 Eu - <1 <1 <1 <1 <1 <1 1 <1 Gd 28 81 74 72 60 410 368 558 304 Tb 12 31 29 28 23 138 124 179 102 Dy 81 270 253 242 203 578 515 727 426 Ho 11 57 55 52 44 45 40 56 32 Er 33 247 236 230 193 113 102 137 79

117

Tm 8 75 73 70 60 25 22 28 17 Lu 12 192 188 187 158 36 33 36 24 W 3178 12020 10433 9887 10070 1426 1229 1211 1154 Pb 19 162 174 161 128 193 183 398 128 Bi <1 <1 <1 <1 <1 19 17 26 14

17187 Steli 3, 17224 Ilmenorutilgruva, Ljoslandjo Tveit Håvarstad 17221 rdet 17180- 17187- 17187- 17187- 17224- 17224- 17224- 17224- 05 01 02 03 01 02 03 04 17221-01 Mg ppm - 342 305 152 719 816 1004 841 1170 Si - 783 - - 2061 - 624 1028 - Sn 143 75 69 55 632 609 715 757 116 La 1 2 5 12 153 34 - 36 6 Ce 8 3 16 16 679 252 3 165 20 Pr 4 1 3 4 145 89 2 47 3 Nd 40 9 16 18 728 654 20 265 15 Sm 220 50 52 41 695 1129 75 343 28 Eu <1 - - <1 <1 <1 <1 <1 <1 Gd 385 61 60 48 727 1021 167 395 56 Tb 132 7 7 6 120 153 51 70 17 Dy 552 12 11 9 444 506 274 291 88 Ho 42 1 1 1 35 37 28 26 9 Er 107 3 3 2 60 60 56 48 21 Tm 23 1 1 <1 9 9 10 8 5 Lu 33 1 1 1 8 8 9 8 7 W 1399 2435 2266 2303 1557 1400 1776 1654 3054 Pb 190 221 189 104 546 473 485 458 137 Bi 23 1 1 1 4 1 1 2 1

17213 Eftevann, 17217 Hovåsen Eftevann 17221- 17221- 17221- 17221- 17221- 17213- 17213- 17213- 02 03 04 05 06 01 02 03 17217-01 Mg ppm 795 1319 1447 1514 2291 285 252 245 1098 Si - - - - - 1351 - - 3252 Sn 82 127 116 133 184 88 87 86 206 La 52 - 2 145 15 - - 1 2 Ce 77 1 4 345 78 2 1 3 4 Pr 8 1 1 47 8 1 1 1 1 Nd 24 6 4 182 16 8 8 9 10 118

Sm 20 27 11 74 16 60 58 58 40 Eu <1 - <1 1 - - <1 <1 - Gd 39 58 24 65 34 77 75 75 80 Tb 12 19 9 13 13 9 9 9 21 Dy 60 97 66 83 97 18 18 17 94 Ho 6 10 10 12 14 2 2 2 8 Er 14 25 31 40 47 6 7 6 15 Tm 3 6 9 11 14 1 1 1 3 Lu 5 10 18 24 29 2 3 2 3 W 2203 2857 2000 2544 3148 3192 2978 3079 5104 Pb 93 157 86 92 134 298 291 279 294 Bi <1 <1 <1 1 1 1 1 1 <1

17176 17211 Amerika, Ljosland 3 Kåbuland 17217 17217 17176 17176 17176 17176 17176 17176 -02 -03 -01 -02 -03 -04 -05 -06 17211-03 Mg ppm 739 680 1456 1580 1736 2055 2142 1612 450 Si - - - - 853 995 - 778 752 Sn 203 201 252 198 257 300 407 291 53 La 0.5 1 2 90 110 1 - 34 90 Ce 2 2 4 230 209 4 2 37 287 Pr 1 1 1 32 32 1 1 8 43 Nd 9 9 9 122 137 8 9 38 177 Sm 39 39 21 84 117 21 29 37 150 Eu - - <1 1 1 <1 <1 <1 <1 Gd 80 78 39 101 142 41 57 56 176 Tb 21 21 15 25 34 16 22 16 29 Dy 93 91 120 178 219 138 183 128 108 Ho 8 7 24 34 38 28 37 26 9 Er 15 14 116 162 161 144 180 129 18 Tm 3 3 46 65 59 59 71 53 4 Lu 3 3 183 295 264 249 284 227 6 W 5051 5018 8859 12566 11077 11965 13685 10856 2172 Pb 281 259 135 64 46 116 205 116 161 Bi <1 <1 <1 <1 <1 <1 <1 <1 2

17026 Mikrolittbruddet, Landås 17211- 17211- 17211- 17211- 17211- 17211- 17026- 17026- 17026- 04 05 06 07 08 09 01 02 03

119

Mg ppm - 42 393 543 664 841 - - - Si 470 2409 - 1389 - 932 728 - - Sn 80 86 106 116 196 243 45 39 33 La 323 172 - 378 10 - 5 <1 7 Ce 1146 670 2 1037 28 3 20 1 18 Pr 166 108 1 163 6 2 2 <1 3 Nd 630 443 10 672 43 20 11 3 16 Sm 317 349 41 442 82 84 54 38 47 Eu 1 1 - 1 <1 - <1 <1 <1 Gd 285 347 82 477 147 172 164 142 131 Tb 46 52 22 77 37 46 63 57 50 Dy 177 198 102 288 175 217 198 180 155 Ho 15 17 9 26 16 19 7 7 6 Er 29 36 18 59 33 38 10 9 9 Tm 6 8 3 13 6 7 2 1 1 Lu 8 14 3 26 7 8 2 2 2 W 1943 1488 1978 6852 3796 4837 2135 1675 1317 Pb 253 213 206 233 382 454 134 93 77 Bi 7 4 <1 8 9 <1 49 19 17

17230 17166 Fosbekk Landsverk 1 17026- 17166- 17166- 17166- 17166- 17230- 17230- 17230- 17230- 04 02 03 05 06 01 02 03 04 Mg ppm - 1744 1572 1716 1791 - 27 - 24 Si - 624 - - 1846 612 - - 920 Sn 22 58 56 72 60 472 465 413 421 La <1 - 104 <1 - - 10 12 40 Ce 1 2 143 2 2 3 29 49 151 Pr 0.4 1 51 1 1 1 6 12 34 Nd 3 12 160 14 11 16 37 69 175 Sm 23 49 66 54 48 34 33 51 100 Eu <1 <1 <1 - - <1 <1 1 2 Gd 79 91 82 94 95 65 53 63 120 Tb 31 24 19 24 26 21 17 18 29 Dy 96 107 81 104 119 171 136 131 216 Ho 3 9 7 8 10 32 25 24 40 Er 5 17 14 16 21 108 85 80 133 Tm 1 3 3 3 4 25 20 18 29 Lu 1 4 3 4 5 39 32 28 44 W 722 4009 4240 5651 5034 26161 29137 29385 27258 120

Pb 57 121 155 129 125 194 185 168 179 Bi 8 1 2 1 1 2 2 2 2

17234 Rumpetrollsynken, 17186 Steli, Tveit Landsverk 2 17186- 17186- 17186- 17234- 17234- 04 05 06 17234-01 17234-02 17234-03 04 05 Mg ppm 890 1070 982 471 455 489 467 440 Si 894 - - - - 837 - - Sn 357 338 328 547 552 532 531 547 La 9 1 2 1 - - 3 - Ce 30 4 10 8 2 2 10 2 Pr 7 2 3 2 1 1 3 1 Nd 57 18 33 18 15 16 22 15 Sm 82 48 66 74 72 79 83 68 Eu <1 <1 <1 <1 <1 <1 <1 <1 Gd 144 119 151 168 166 179 181 158 Tb 41 46 55 58 58 62 62 56 Dy 310 425 483 376 383 400 401 369 Ho 60 94 104 50 51 53 52 49 Er 231 398 426 134 137 142 141 133 Tm 63 112 117 28 28 29 29 28 Lu 130 235 237 30 30 31 32 30 W 7665 5839 5380 8350 8315 8063 8254 8331 Pb 52 48 58 73 74 80 74 73 Bi <1 <1 <1 <1 <1 <1 <1 <1

8.3 Appendix 3: Euxenite-(Y) data

17161 Thortveittunnelen 17214 Landås Sample 17161-1 17161-2 17214-1 17214-2 17214-3 Nb2O5 wt% 41.96 41.84 38.33 38.89 39.69

Ta2O5 6.82 6.80 6.67 6.23 6.75 FeO 4.99 5.73 4.76 4.91 4.81 MnO 0.79 0.92 0.36 0.39 0.31

TiO2 2.00 1.73 3.37 3.18 3.49

121

UO2 13.70 14.10 17.87 17.04 15.29

ThO2 2.12 1.87 2.81 2.91 2.96 CaO 5.56 4.44 8.33 7.43 8.50

Sc2O3 1.43 1.48 0.52 0.51 0.54

Y2O3 8.47 8.76 6.21 6.92 5.80

Yb2O3 1.60 1.70 0.43 0.61 0.47 TOTAL 89.45 89.37 89.66 89.02 88.62

Nb apfu 1.38 1.39 1.28 1.31 1.32 Ta 0.14 0.14 0.13 0.13 0.13 U 0.22 0.23 0.29 0.28 0.25 Th 0.04 0.03 0.05 0.05 0.05 Ti 0.11 0.10 0.19 0.18 0.19 Y 0.11 0.12 0.06 0.06 0.06 Σ B 2.00 2.00 2.00 2.00 2.00

Y 0.21 0.23 0.19 0.21 0.17 Yb 0.04 0.04 0.01 0.01 0.01 Sc 0.09 0.09 0.03 0.03 0.03 Ca 0.43 0.35 0.66 0.59 0.67 Fe 0.30 0.35 0.29 0.30 0.29 Mn 0.05 0.06 0.02 0.02 0.02 Σ A 1.13 1.12 1.21 1.18 1.20

8.4 Appendix 4: Garnet data

- Wt% oxide and apfu - Trace elements

Wt% oxide and apfu

Vanadium and Cr can be found in the trace-element section

KB-1 Heliodorgruva 25432 Heia, Ljosland Sample KB-1-1 KB-1-2 KB-1-3 KB-1-4 KB-1-5 KB-1-6 25432-1 25432-2 25432-3

SiO2 wt% 36.50 36.54 36.84 36.14 36.10 35.94 36.41 36.18 36.25

Al2O3 19.93 2<0.01 20.11 19.97 20.05 19.91 20.17 19.98 20.06 FeO 17.17 16.25 17.56 14.86 15.11 14.70 16.16 15.67 15.98 122

Fe2O3 0.92 1.70 0.72 1.39 1.36 1.86 1.65 2.33 1.34 MnO 24.89 25.73 24.88 25.95 25.74 25.97 25.15 25.42 25.36

TiO2 0.04 0.06 0.06 0.22 0.25 0.20 0.17 0.22 0.17 MgO 0.52 0.48 0.58 0.77 0.77 0.77 0.74 0.72 0.69 CaO 0.31 0.31 0.26 0.42 0.41 0.41 0.54 0.51 0.43

Na2O - 0.04 - 0.08 0.07 0.05 0.01 0.02 0.01

K2O ------

Sc2O3 0.32 0.34 0.35 0.02 0.02 0.02 0.07 0.09 0.06 ZnO 0.01 0.01 0.01 0.03 0.03 0.03 0.02 0.01 0.02

Y2O3 0.78 0.79 0.81 0.01 0.05 0.04 0.27 0.36 0.29

REE2O3 0.33 0.32 0.34 0.01 0.02 0.02 0.09 0.13 0.10 TOTAL 101.70 102.57 102.52 99.88 99.98 99.92 101.46 101.65 100.76

Si apfu 2.98 2.96 2.98 2.98 2.97 2.96 2.96 2.95 2.97 Al 0.02 0.04 0.02 0.02 0.03 0.04 0.04 0.05 0.03 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.90 1.87 1.90 1.92 1.92 1.90 1.90 1.86 1.91 Fe3+ 0.06 0.10 0.04 0.07 0.06 0.09 0.09 0.12 0.08 Fe2+ 0.04 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.03 0.03 0.00 0.00 0.00 0.01 0.02 0.01 REE 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.13 1.07 1.14 1.02 1.04 1.01 1.10 1.07 1.10 Fe3+ 0.00 0.00 0.00 0.02 0.02 0.03 0.01 0.02 0.00 Sc 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.00 Mn 1.72 1.77 1.71 1.81 1.80 1.81 1.73 1.75 1.76 Mg 0.06 0.06 0.07 0.09 0.09 0.09 0.09 0.09 0.08 Ca 0.03 0.03 0.02 0.04 0.04 0.04 0.05 0.04 0.04 Na 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.01 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.59 0.62 0.59 0.64 0.63 0.64 0.61 0.62 0.62

Yttrogarnet % 0.62 1.13 0.53 0.02 0.07 0.06 0.39 0.52 0.42 Sc garnet 0.68 0.71 0.36 0.06 0.07 0.07 0.26 0.31 0.23 Spessartine 57.39 58.9 56.9 60.37 59.86 60.49 57.79 58.45 58.69 123

Pyrope 2.09 1.94 2.34 3.14 3.16 3.15 3.01 2.91 2.8 Almandine 34.92 31.71 35.41 32.4 32.85 31.33 33.73 31.34 33.55 Grossular 0 0 0 0 0 0 0 0 0 Andradite 0 0 0 0.49 0.35 0.51 0.76 0.5 0.51 Skiagite 2.83 5.03 2.2 1.74 1.84 2.48 2.94 4.24 2.98

KTU-7 Tuftane, Frikstad MS-9 Solås 25432- 25432- 25432- KTU-7- KTU-7- KTU-7- KTU-7- MS-9- MS-9- Sample 4 5 6 1 2 3 4 1 2

SiO2 wt% 36.44 35.92 36.32 35.99 36.45 36.00 36.13 35.32 35.15

Al2O3 20.32 20.11 20.17 20.05 20.51 20.14 20.23 20.33 20.49 FeO 18.53 17.76 18.25 17.98 19.14 16.33 16.73 0.95 0.69

Fe2O3 1.37 2.71 1.50 1.73 0.91 1.80 1.34 3.29 3.66 MnO 22.79 22.91 22.93 22.53 21.69 23.87 23.85 39.78 40.07

TiO2 0.04 0.06 0.08 0.11 0.02 0.09 0.10 0.04 0.04 MgO 0.77 0.80 0.81 0.90 0.93 0.91 0.87 - - CaO 0.36 0.36 0.34 0.52 0.55 0.51 0.52 0.68 0.59

Na2O 0.04 0.03 0.03 0.02 0.04 0.08 0.05 0.03 -

K2O ------

Sc2O3 0.03 0.03 0.04 0.08 0.09 0.12 0.09 <0.01 - ZnO 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.06 0.06

Y2O3 0.33 0.33 0.39 0.72 0.74 0.32 0.49 0.06 0.06

REE2O3 0.21 0.20 0.21 0.70 0.72 0.29 0.50 0.05 0.05 TOTAL 101.27 101.23 101.09 101.35 101.80 100.47 100.90 100.56 100.85

Si apfu 2.97 2.94 2.97 2.95 2.96 2.96 2.96 2.91 2.89 Al 0.03 0.06 0.03 0.05 0.04 0.04 0.04 0.09 0.11 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.92 1.87 1.91 1.88 1.93 1.90 1.91 1.89 1.88 Fe3+ 0.07 0.12 0.08 0.11 0.05 0.09 0.08 0.11 0.12 Fe2+ 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.01 0.01 0.02 0.03 0.03 0.01 0.02 0.00 0.00 REE 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.00 0.00 Fe2+ 1.26 1.21 1.25 1.23 1.28 1.12 1.15 0.07 0.05 Fe3+ 0.01 0.04 0.01 0.00 0.01 0.02 0.00 0.09 0.10 124

Sc 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 Mn 1.57 1.59 1.59 1.56 1.49 1.66 1.65 2.78 2.79 Mg 0.09 0.10 0.10 0.11 0.11 0.11 0.11 0.00 0.00 Ca 0.03 0.03 0.03 0.05 0.05 0.04 0.05 0.06 0.05 Na 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.55 0.57 0.56 0.56 0.53 0.60 0.59 0.98 0.98

Yttrogarnet % 0.48 0.47 0.56 1.05 1.04 0.46 0.72 0.09 0.09 Sc garnet 0.12 0.12 0.13 0.3 0.31 0.45 0.31 0 0 Spessartine 52.49 52.9 52.93 52.17 49.88 55.36 55.24 92.55 93.05 Pyrope 3.11 3.26 3.3 3.68 3.76 3.73 3.54 0 0 Almandine 40.24 37.18 38.87 37.64 42.22 35.84 36.47 1.66 0.74 Grossular 0 0 0 0 0 0 0 0 0 Andradite 0.77 0.76 0.62 0.86 1.25 0.76 0.9 1.86 1.6 Skiagite 1.91 3.3 2.72 3.49 1.22 1.55 1.79 0.53 0.85

25427 Steli, Tveit 25370 Kåbuland MS-9- MS-9- 25427- 25427- 25427- 25427- 25427- 25427- 25370- Sample 3 4 1 2 3 4 5 6 1

SiO2 wt% 35.22 34.93 36.41 36.03 35.92 36.29 36.12 35.90 35.88

Al2O3 20.23 20.45 20.31 20.16 20.36 20.10 20.18 20.26 20.36 FeO 0.62 0.31 25.45 25.14 24.83 26.27 26.04 25.80 18.51

Fe2O3 3.72 4.01 0.70 1.15 1.47 1.07 1.15 1.48 1.30 MnO 40.09 40.19 16.34 16.30 16.48 15.27 15.36 15.34 21.58

TiO2 0.05 0.06 0.05 0.03 0.02 0.07 0.06 0.04 0.10 MgO - - 0.49 0.49 0.49 0.56 0.56 0.51 0.92 CaO 0.64 0.60 0.51 0.48 0.47 0.47 0.43 0.44 0.46

Na2O 0.02 - 0.02 - - 0.01 0.02 0.03 0.09

K2O - - - - - 0.03 - 0.01 -

Sc2O3 - - 0.05 0.05 0.05 0.03 0.03 0.03 0.06 ZnO 0.06 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Y2O3 0.07 0.07 0.15 0.15 0.16 0.06 0.10 0.12 0.88

REE2O3 0.05 0.05 0.05 0.05 0.05 0.03 0.04 0.05 0.44 TOTAL 100.76 100.73 100.52 100.05 100.31 100.27 100.10 100.03 100.59

Si apfu 2.90 2.88 2.99 2.98 2.96 2.99 2.98 2.96 2.95 Al 0.10 0.12 0.01 0.02 0.04 0.01 0.02 0.04 0.05 125

Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.86 1.87 1.95 1.94 1.94 1.94 1.94 1.94 1.92 Fe3+ 0.13 0.13 0.04 0.06 0.06 0.06 0.06 0.06 0.07 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.04 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Fe2+ 0.04 0.02 1.75 1.74 1.71 1.81 1.79 1.78 1.27 Fe3+ 0.10 0.12 0.00 0.01 0.03 0.01 0.01 0.03 0.01 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 2.80 2.81 1.14 1.14 1.15 1.06 1.07 1.07 1.50 Mg 0.00 0.00 0.06 0.06 0.06 0.07 0.07 0.06 0.11 Ca 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.98 0.99 0.39 0.40 0.40 0.37 0.37 0.38 0.54

Yttrogarnet % 0.1 0.1 0.21 0.23 0.24 0.08 0.14 0.17 1.29 Sc garnet 0 0 0.18 0.18 0.19 0.11 0.1 0.1 0.23 Spessartine 93.18 93.18 37.88 37.99 38.32 35.5 35.76 35.77 50.12 Pyrope 0 0 2.01 2.03 2 2.28 2.31 2.09 3.74 Almandine 0 0 57.55 56.59 56.17 59.1 58.76 58.78 41.13 Grossular 0 0 0 0 0 0 0 0 0 Andradite 1.75 1.58 1.16 1.15 1.14 1.05 0.97 1.07 0.8 Skiagite 1.42 0.71 0.68 1.2 0.77 1.21 1.09 0.6 1.32

25409 Landås 25370- 25370- 25370- 25370- 25370- 25370- 25409- 25409- 25409- Sample 2 3 4 5 6 7 1 2 3

SiO2 wt% 36.07 35.60 36.09 35.97 36.05 36.35 35.85 35.89 35.67

Al2O3 20.04 20.22 20.51 20.53 20.25 19.69 20.38 20.27 20.39 FeO 18.36 17.86 20.72 20.65 20.95 19.40 15.97 16.46 16.59

Fe2O3 1.40 2.05 1.40 1.05 1.20 1.19 1.68 1.11 1.56 MnO 21.95 21.84 19.35 19.26 19.00 21.53 25.00 24.55 23.67

126

TiO2 0.07 0.11 0.02 0.06 0.05 0.21 0.05 0.03 0.02 MgO 0.92 0.92 1.19 1.14 1.19 0.95 0.30 0.31 0.35 CaO 0.49 0.45 0.51 0.52 0.49 0.55 0.64 0.64 0.60

Na2O 0.07 0.11 0.02 0.05 0.05 0.01 0.06 0.06 0.15

K2O - - - - - 0.01 - - -

Sc2O3 0.07 0.06 0.15 0.14 0.16 0.07 0.01 0.02 0.02 ZnO 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Y2O3 1.05 0.99 0.53 0.32 0.65 1.04 0.62 0.78 0.91

REE2O3 0.48 0.47 0.33 0.19 0.39 0.48 0.30 0.51 0.43 TOTAL 100.99 100.69 100.83 99.88 100.44 101.50 100.90 100.65 100.37

Si apfu 2.96 2.93 2.95 2.96 2.96 2.97 2.95 2.96 2.95 Al 0.04 0.07 0.05 0.04 0.04 0.03 0.05 0.04 0.05 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.90 1.89 1.92 1.95 1.92 1.87 1.92 1.93 1.93 Fe3+ 0.09 0.10 0.07 0.05 0.08 0.07 0.08 0.07 0.07 Fe2+ 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.05 0.04 0.02 0.01 0.03 0.05 0.03 0.03 0.04 REE 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 Fe2+ 1.25 1.23 1.42 1.42 1.44 1.28 1.10 1.14 1.15 Fe3+ 0.00 0.02 0.01 0.02 0.00 0.00 0.03 0.00 0.03 Sc 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Mn 1.53 1.52 1.34 1.34 1.32 1.49 1.74 1.71 1.66 Mg 0.11 0.11 0.15 0.14 0.15 0.12 0.04 0.04 0.04 Ca 0.04 0.04 0.04 0.05 0.04 0.05 0.06 0.06 0.05 Na 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.02 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.55 0.55 0.49 0.49 0.48 0.53 0.61 0.60 0.59

Yttrogarnet % 1.26 1.45 0.77 0.46 0.94 0.8 0.91 1.14 1.33 Sc garnet 0.24 0.22 0.54 0.48 0.59 0.24 0.05 0.06 0.06 Spessartine 50.9 50.78 44.67 44.75 44.07 49.76 58.03 57.23 55.25 Pyrope 3.75 3.76 4.85 4.66 4.86 3.88 1.22 1.28 1.45

127

Almandine 39.18 38.74 46.11 47.37 46.32 39.36 35.98 37.18 38.24 Grossular 0 0 0 0 0 0 0 0 0 Andradite 0.96 0.76 0.86 0.59 0.68 0.06 1.68 1.71 1.16 Skiagite 2.79 2.27 1.11 0 1.67 3.6 0.62 0.71 0

MS2-9 Solås MSB-5 Slobrekka 25409- 25409- 25409- MS2-9- MS2-9- MS2-9- MS2-9- MSB-5- MSB-5- Sample 4 5 6 1 2 3 4 1 2

SiO2 wt% 34.95 35.34 35.14 35.48 35.18 34.87 35.36 35.03 34.84

Al2O3 20.35 20.34 20.32 20.11 20.10 19.77 19.98 20.47 20.54 FeO 14.38 15.41 14.72 12.95 11.95 11.74 12.88 17.46 16.89

Fe2O3 2.02 0.85 1.70 1.67 2.60 2.63 1.38 1.17 1.59 MnO 25.11 24.51 24.88 28.08 28.44 28.34 27.86 21.46 21.69

TiO2 0.07 0.07 0.09 0.11 0.10 0.11 0.12 0.04 0.04 MgO 0.35 0.38 0.41 0.28 0.29 0.31 0.30 0.78 0.81 CaO 0.58 0.56 0.54 0.25 0.24 0.29 0.29 0.64 0.63

Na2O 0.15 0.15 0.16 0.06 0.12 0.09 0.08 0.11 0.13

K2O ------

Sc2O3 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.13 0.13 ZnO 0.02 0.02 0.02 0.04 0.03 0.04 0.03 0.01 0.01

Y2O3 1.94 2.01 2.12 1.64 1.63 1.91 1.86 1.91 1.81

REE2O3 1.15 1.19 1.20 0.38 0.39 0.47 0.45 1.67 1.60 TOTAL 101.08 100.84 101.32 101.08 101.09 100.59 100.61 100.90 100.70

Si apfu 2.89 2.93 2.90 2.93 2.90 2.90 2.93 2.90 2.89 Al 0.11 0.07 0.10 0.07 0.10 0.10 0.07 0.10 0.11 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.88 1.91 1.88 1.88 1.86 1.84 1.89 1.90 1.90 Fe3+ 0.12 0.05 0.10 0.10 0.13 0.16 0.09 0.07 0.10 Fe2+ 0.00 0.03 0.01 0.01 0.00 0.00 0.02 0.03 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.09 0.09 0.09 0.07 0.07 0.08 0.08 0.08 0.08 REE 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.04 0.04 Fe2+ 1.00 1.04 1.00 0.89 0.83 0.82 0.88 1.18 1.17 Fe3+ 0.01 0.00 0.01 0.00 0.03 0.01 0.00 0.00 0.00 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 128

Mn 1.76 1.72 1.74 1.96 1.99 2.00 1.96 1.51 1.52 Mg 0.04 0.05 0.05 0.03 0.04 0.04 0.04 0.10 0.10 Ca 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.06 0.06 Na 0.02 0.02 0.03 0.01 0.02 0.01 0.01 0.02 0.02 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.64 0.62 0.63 0.69 0.71 0.71 0.69 0.55 0.56

Yttrogarnet % 2.86 2.03 2.86 2.31 2.4 2.82 2.12 2.75 2.67 Sc garnet 0.06 0.06 0.07 0.05 0.05 0.08 0.08 0.47 0.49 Spessartine 58.9 57.56 58.24 65.5 66.35 66.65 65.34 50.47 51.04 Pyrope 1.44 1.57 1.7 1.16 1.2 1.28 1.25 3.25 3.34 Almandine 31.67 35.44 32.22 25.49 23.35 21.55 25.91 39.87 39.02 Grossular 0 0 0 0 0 0 0 0 0 Andradite 1.43 1.11 1.45 0.58 0.36 0.45 0.03 1.37 1.27 Skiagite 1.64 0 1.8 4.35 4.17 5.73 3.49 0.66 0.23

25444 Håvardstad MSB-5- MSB-5- MSB-5- MSB-5- 25444- 25444- 25444- 25444- 25444- Sample 3 4 5 6 1 2 3 4 5

SiO2 wt% 34.91 34.91 34.84 34.82 34.91 34.78 35.96 35.76 36.07

Al2O3 20.62 20.59 20.63 20.58 19.67 19.24 20.12 20.05 20.29 FeO 17.31 17.61 17.57 17.86 18.57 17.09 2<0.01 20.42 20.58

Fe2O3 1.11 0.77 1.28 0.58 2.74 3.76 1.18 1.17 1.21 MnO 21.36 21.15 21.32 20.86 21.01 20.97 20.88 20.47 20.38

TiO2 0.06 0.05 0.06 0.08 0.09 0.22 0.16 0.10 0.08 MgO 0.77 0.73 0.77 0.78 0.59 0.50 0.66 0.63 0.63 CaO 0.61 0.63 0.65 0.60 0.49 0.62 0.48 0.32 0.33

Na2O 0.15 0.14 0.08 0.12 0.07 0.25 0.05 0.04 0.10

K2O - - - - - 0.20 - - -

Sc2O3 0.13 0.13 0.13 0.14 0.15 0.16 0.17 0.23 0.23 ZnO 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Y2O3 1.90 1.97 1.96 1.92 0.48 0.58 0.63 0.62 0.54

REE2O3 1.67 1.58 1.57 1.60 0.16 0.21 0.23 0.22 0.17 TOTAL 100.61 100.27 100.87 99.95 98.97 98.61 100.55 100.04 100.63

Si apfu 2.90 2.91 2.89 2.91 2.92 2.92 2.96 2.96 2.96 Al 0.10 0.09 0.11 0.09 0.08 0.08 0.04 0.04 0.04 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 129

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.92 1.93 1.90 1.93 1.86 1.83 1.91 1.91 1.92 Fe3+ 0.07 0.05 0.08 0.03 0.13 0.16 0.07 0.07 0.07 Fe2+ 0.01 0.02 0.01 0.03 0.00 0.00 0.01 0.01 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.08 0.09 0.09 0.09 0.02 0.03 0.03 0.03 0.02 REE 0.04 0.04 0.04 0.04 0.00 0.01 0.01 0.01 0.00 Fe2+ 1.19 1.21 1.21 1.22 1.30 1.20 1.36 1.40 1.41 Fe3+ 0.00 0.00 0.00 0.01 0.04 0.08 0.00 0.00 0.01 Sc 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 Mn 1.50 1.49 1.50 1.47 1.49 1.49 1.46 1.43 1.42 Mg 0.10 0.09 0.10 0.10 0.07 0.06 0.08 0.08 0.08 Ca 0.05 0.06 0.06 0.05 0.04 0.06 0.04 0.03 0.03 Na 0.02 0.02 0.01 0.02 0.01 0.04 0.01 0.01 0.02 K 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 Σ A 3.00 3.01 3.01 3.01 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.55 0.55 0.55 0.54 0.53 0.55 0.51 0.50 0.50

Yttrogarnet % 2.81 2.65 2.9 2.64 0.71 0.87 0.92 0.92 0.78 Sc garnet 0.46 0.47 0.46 0.49 0.56 0.58 0.62 0.65 0.72 Spessartine 50.31 49.95 50.13 49.4 49.7 49.93 48.53 47.81 47.23 Pyrope 3.21 3.02 3.19 3.25 2.45 2.11 2.7 2.61 2.56 Almandine 40.26 41.07 40.07 41.78 40.47 39.35 43.44 44.45 45.79 Grossular 0.42 0.8 0 0.71 0 0 0 0 0 Andradite 0.76 0.57 1.26 0.51 0.57 0.57 0.23 0 0 Skiagite 0 0 0.72 0 2.9 0.83 2.44 2.66 1.33

KH-3 Hovåsen 25447 Røykkvartsbruddet, Birkeland Sample 25444-6 KH-3-1 KH-3-2 KH-3-3 KH-3-4 25447-1 25447-2 25447-3 25447-4

SiO2 wt% 35.78 35.56 35.63 35.27 35.27 34.69 34.79 34.74 34.65

Al2O3 20.34 19.56 19.61 19.65 19.61 20.28 20.15 20.29 20.41 FeO 20.34 10.02 9.84 9.78 9.77 0.78 0.91 1.47 0.51

Fe2O3 1.46 2.85 2.81 2.97 3.12 3.65 3.35 2.94 4.18 MnO 20.27 31.45 31.80 31.39 31.26 39.08 39.04 38.58 39.47

TiO2 0.09 0.15 0.10 0.15 0.12 0.08 0.06 0.06 0.07 MgO 0.64 0.18 0.14 0.22 0.20 - - - - 130

CaO 0.30 0.24 0.25 0.23 0.23 0.79 0.79 0.77 0.73

Na2O 0.07 0.03 0.02 0.01 0.04 0.03 0.04 0.01 0.01

K2O 0.05 ------

Sc2O3 0.30 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ZnO 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Y2O3 0.60 0.05 0.04 0.06 0.05 0.11 0.11 0.09 0.10

REE2O3 0.22 0.05 0.04 0.06 0.06 0.08 0.09 0.07 0.07 TOTAL 100.48 100.17 100.32 99.81 99.77 99.60 99.35 99.05 100.21

Si apfu 2.94 2.95 2.95 2.93 2.93 2.89 2.90 2.90 2.87 Al 0.06 0.05 0.05 0.07 0.07 0.11 0.10 0.10 0.13 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.92 1.86 1.86 1.86 1.86 1.88 1.88 1.90 1.86 Fe3+ 0.08 0.13 0.13 0.13 0.14 0.12 0.11 0.09 0.13 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REE 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.40 0.69 0.68 0.68 0.68 0.05 0.06 0.10 0.04 Fe3+ 0.01 0.05 0.04 0.06 0.06 0.11 0.10 0.09 0.12 Sc 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mn 1.41 2.21 2.23 2.21 2.20 2.75 2.76 2.73 2.77 Mg 0.08 0.02 0.02 0.03 0.03 0.00 0.00 0.00 0.00 Ca 0.03 0.02 0.02 0.02 0.02 0.07 0.07 0.07 0.06 Na 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.50 0.76 0.77 0.76 0.76 0.98 0.98 0.96 0.99

Yttrogarnet % 0.88 0.08 0.06 0.08 0.08 0.16 0.16 0.14 0.14 Sc garnet 0.63 0.01 0 0.01 0 0.01 0.01 0.01 0.01 Spessartine 47.12 73.62 74.32 73.72 73.45 91.83 91.93 91.05 92.28 Pyrope 2.63 0.73 0.58 0.9 0.84 0 0 0 0 Almandine 45.48 18.54 18.22 18.33 18.59 1.81 2.12 3.43 0.67 Grossular 0 0 0 0 0 0 0 0.55 0 Andradite 0 0.24 0.4 0.2 0.29 2.05 2.16 1.58 1.91

131

Skiagite 1.24 4.62 4.48 4.35 4.08 0 0.01 0 0.5

28372 Mølland 25375 Ivedal 28372- 28372- 28372- 28372- 28372- 28372- 25375- 25375- 25375- Sample 1 2 3 4 5 6 1 2 3

SiO2 wt% 36.24 35.75 35.98 35.84 36.08 35.76 35.61 35.47 35.27

Al2O3 20.06 2<0.01 20.12 19.82 19.92 19.69 20.42 20.59 20.58 FeO 20.34 19.68 20.07 17.77 18.23 17.68 17.47 17.20 17.21

Fe2O3 1.41 2.28 1.76 1.90 1.31 1.80 1.30 1.67 1.60 MnO 20.15 20.31 20.19 22.65 22.57 22.72 22.01 22.35 22.12

TiO2 0.09 0.08 0.10 0.10 0.15 0.13 0.03 0.05 0.03 MgO 0.92 0.97 0.97 0.75 0.78 0.79 0.65 0.64 0.59 CaO 0.71 0.62 0.63 0.50 0.52 0.48 0.86 0.88 0.89

Na2O 0.03 0.01 0.01 0.06 0.03 0.04 0.13 0.08 0.09

K2O ------

Sc2O3 0.04 0.01 0.02 0.03 0.03 0.03 0.14 0.14 0.15 ZnO 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Y2O3 0.02 0.03 0.08 0.23 0.23 0.21 1.23 1.21 1.20

REE2O3 0.01 0.01 0.03 0.08 0.08 0.08 0.93 0.93 0.93 TOTAL 100.02 99.78 99.98 99.74 99.94 99.42 100.79 101.24 100.67

Si apfu 2.98 2.95 2.96 2.97 2.98 2.97 2.93 2.91 2.91 Al 0.02 0.05 0.04 0.03 0.02 0.03 0.07 0.09 0.09 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.92 1.90 1.91 1.90 1.91 1.90 1.92 1.90 1.91 Fe3+ 0.07 0.10 0.08 0.09 0.08 0.10 0.08 0.09 0.08 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.00 0.00 0.00 0.01 0.01 0.01 0.05 0.05 0.05 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 Fe2+ 1.40 1.36 1.38 1.23 1.26 1.23 1.20 1.18 1.19 Fe3+ 0.02 0.04 0.03 0.02 0.01 0.02 0.00 0.01 0.01 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Mn 1.40 1.42 1.41 1.59 1.58 1.60 1.54 1.55 1.55 Mg 0.11 0.12 0.12 0.09 0.10 0.10 0.08 0.08 0.07 Ca 0.06 0.06 0.06 0.04 0.05 0.04 0.08 0.08 0.08 132

Na 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.50 0.51 0.51 0.56 0.56 0.57 0.56 0.57 0.57

Yttrogarnet % 0.02 0.04 0.11 0.34 0.34 0.3 1.8 1.76 1.76 Sc garnet 0.13 0.04 0.06 0.11 0.1 0.12 0.51 0.52 0.54 Spessartine 46.77 47.32 46.93 52.93 52.6 53.25 51.33 51.96 51.7 Pyrope 3.77 3.96 3.97 3.07 3.18 3.24 2.65 2.61 2.41 Almandine 45.55 43.51 44.68 38.64 39.63 38.02 40.22 39.47 39.71 Grossular 0 0 0 0 0 0 0.5 0.12 0.75 Andradite 1.66 1.55 1.5 1.06 0.94 0.89 1.43 1.78 1.22 Skiagite 1.05 1.78 1.38 2.36 2.3 2.9 0 0 0

25412 Røykkvartsbruddet, Birkeland 25375- 25375- 25375- 25412- 25412- 25412- 25412- 25412- 25412- Sample 4 5 6 1 2 3 4 5 6

SiO2 wt% 35.07 35.08 35.35 36.15 36.08 36.56 36.35 36.20 35.81

Al2O3 20.12 20.32 20.21 20.47 20.50 20.30 20.56 20.44 20.67 FeO 14.89 15.30 15.95 7.18 5.80 7.91 7.23 7.54 6.38

Fe2O3 2.36 1.88 0.84 1.58 3.12 0.86 1.59 1.10 2.47 MnO 23.45 23.19 22.96 34.32 34.21 34.46 34.94 34.29 34.92

TiO2 0.07 0.10 0.07 0.01 0.01 0.04 0.02 0.01 0.03 MgO 0.72 0.71 0.71 0.02 0.01 <0.01 0.01 - 0.01 CaO 1.04 1.03 1.02 0.51 0.46 0.49 0.49 0.49 0.51

Na2O 0.14 0.15 0.12 0.12 0.15 0.06 0.04 0.08 0.08

K2O - - - - 0.44 - - - -

Sc2O3 0.10 0.11 0.12 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ZnO 0.01 0.01 0.01 0.06 0.06 0.06 0.06 0.06 0.06

Y2O3 1.63 1.63 1.57 0.37 0.41 0.35 0.46 0.41 0.42

REE2O3 1.49 1.51 1.44 0.06 0.07 0.06 0.08 0.07 0.07 TOTAL 101.13 101.02 100.38 100.86 101.33 101.15 101.82 100.69 101.43

Si apfu 2.90 2.90 2.93 2.96 2.94 2.99 2.96 2.97 2.92 Al 0.10 0.10 0.07 0.04 0.06 0.01 0.04 0.03 0.08 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.86 1.88 1.91 1.94 1.91 1.95 1.93 1.95 1.91 Fe3+ 0.14 0.12 0.05 0.06 0.08 0.05 0.07 0.05 0.08 Fe2+ 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.07 0.07 0.07 0.02 0.02 0.02 0.02 0.02 0.02 REE 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.03 1.06 1.08 0.49 0.40 0.54 0.49 0.52 0.44 Fe3+ 0.01 0.00 0.00 0.04 0.11 0.00 0.03 0.02 0.07 Sc 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Mn 1.64 1.62 1.61 2.38 2.36 2.39 2.41 2.39 2.42 Mg 0.09 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.09 0.09 0.09 0.05 0.04 0.04 0.04 0.04 0.04 Na 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 K 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.01 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.61 0.61 0.59 0.83 0.86 0.82 0.83 0.82 0.85

Yttrogarnet % 2.4 2.4 1.78 0.54 0.59 0.29 0.66 0.6 0.6 Sc garnet 0.38 0.41 0.42 0 0 0 0 0 0 Spessartine 54.97 54.36 54.04 79.47 79.3 79.6 80.29 79.54 80.56 Pyrope 2.99 2.92 2.94 0.07 0.02 0.01 0.02 0 0.03 Almandine 33.65 35.34 37 16.41 13.28 17.51 15.57 17.28 14.54 Grossular 0 0 0.87 0.67 1.3 0 0 0.28 0.08 Andradite 2.5 2.34 1.52 0.81 0 1.38 1.36 1.12 1.33 Skiagite 0.82 0.06 0 0 0 0.55 0.83 0 0

25374 Frøyså 25422 Frikstad 25374- 25374- 25374- 25374- 25374- 25374- 25422- 25422- 25422- Sample 1 2 3 4 5 6 1 2 3

SiO2 wt% 35.38 35.41 35.48 35.64 35.79 35.26 36.15 35.61 35.45

Al2O3 20.58 20.61 20.81 20.66 20.63 20.15 20.27 20.28 20.25 FeO 1.58 2.13 1.41 2.04 2.17 1.35 18.62 18.29 17.74

Fe2O3 3.03 2.48 3.22 2.51 2.54 3.34 1.81 2.16 2.20 MnO 39.06 38.48 39.25 38.85 39.11 38.89 22.05 21.74 21.80

TiO2 0.04 0.05 0.06 0.03 0.04 0.04 0.05 0.04 0.06 MgO ------0.80 0.78 0.86 CaO 0.84 0.89 0.80 0.75 0.70 0.78 0.53 0.55 0.65

Na2O 0.02 0.03 0.06 0.06 0.03 0.06 0.05 0.05 0.06 134

K2O - - - - - 0.05 <0.01 - -

Sc2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.07 0.06 0.14 ZnO 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01

Y2O3 0.16 0.17 0.17 0.14 0.15 0.14 0.52 0.55 0.52

REE2O3 0.11 0.12 0.12 0.08 0.10 0.08 0.44 0.45 0.57 TOTAL 100.82 100.37 101.37 100.79 101.30 100.15 101.38 100.58 100.32

Si apfu 2.91 2.92 2.90 2.92 2.92 2.92 2.95 2.93 2.92 Al 0.09 0.08 0.10 0.08 0.08 0.08 0.05 0.07 0.08 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.90 1.92 1.90 1.92 1.91 1.88 1.90 1.90 1.89 Fe3+ 0.10 0.08 0.09 0.08 0.09 0.12 0.10 0.10 0.10 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 REE 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Fe2+ 0.11 0.15 0.10 0.14 0.15 0.09 1.27 1.26 1.22 Fe3+ 0.09 0.08 0.10 0.08 0.07 0.09 0.02 0.04 0.03 Sc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Mn 2.72 2.69 2.72 2.70 2.71 2.72 1.52 1.52 1.52 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.11 Ca 0.07 0.08 0.07 0.07 0.06 0.07 0.05 0.05 0.06 Na 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.96 0.95 0.97 0.95 0.95 0.97 0.55 0.55 0.55

Yttrogarnet % 0.24 0.25 0.25 0.21 0.22 0.2 0.76 0.8 0.76 Sc garnet 0 0 0 0 0 0 0.25 0.22 0.52 Spessartine 90.59 89.53 90.5 90.01 90.25 90.88 50.89 50.59 50.86 Pyrope 0 0 0 0 0.02 0 3.25 3.19 3.55 Almandine 3.61 4.9 3.21 4.67 4.94 3.11 40.46 40.66 39.88 Grossular 0.54 1.36 1.15 1.22 0.21 0.06 0 0 0 Andradite 1.79 1.09 1 0.89 1.7 2.13 1.13 1.29 1.18 Skiagite 0 0 0 0 0 0 1.97 1.36 0.98

135

MB-3 Brattekleiv 25421 Frikstad 25422- MB-3- MB-3- MB-3- 25421- 25421- 25421- 25421- Sample 4 MB-3-1 2 3 4 1 2 3 4

SiO2 wt% 35.50 35.68 35.62 35.75 35.66 35.25 35.13 35.11 35.39

Al2O3 19.94 20.36 20.22 20.30 20.37 20.45 20.73 20.61 20.40 FeO 17.91 20.74 20.42 21.25 21.72 1.12 0.41 0.53 1.07

Fe2O3 2.16 1.17 1.65 1.17 1.23 3.10 3.53 3.66 2.86 MnO 21.85 19.79 20.01 19.49 18.97 39.31 4<0.01 39.87 39.70

TiO2 0.06 0.14 0.12 0.08 0.09 0.06 0.05 0.05 0.04 MgO 0.83 0.51 0.52 0.52 0.53 0.01 - 0.01 <0.01 CaO 0.57 0.62 0.65 0.47 0.51 0.75 0.79 0.74 0.73

Na2O 0.06 0.07 0.06 0.07 0.05 0.05 0.02 0.02 0.01

K2O - - - - - <0.01 - - -

Sc2O3 0.15 0.16 0.18 0.11 0.11 <0.01 - - - ZnO 0.01 0.01 0.01 0.01 0.01 0.06 0.06 0.06 0.06

Y2O3 0.69 0.65 0.64 0.54 0.57 0.14 0.13 0.13 0.12

REE2O3 0.79 0.50 0.48 0.46 0.50 0.07 0.07 0.07 0.07 TOTAL 100.52 100.38 100.56 100.21 100.32 100.37 100.87 100.86 100.47

Si apfu 2.93 2.94 2.94 2.95 2.95 2.91 2.88 2.88 2.92 Al 0.07 0.06 0.06 0.05 0.05 0.09 0.12 0.12 0.08 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.87 1.92 1.90 1.93 1.93 1.90 1.89 1.88 1.90 Fe3+ 0.12 0.07 0.09 0.06 0.07 0.10 0.11 0.12 0.10 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.03 0.03 0.02 0.03 0.01 0.01 0.01 0.01 REE 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Fe2+ 1.24 1.43 1.41 1.47 1.50 0.08 0.03 0.04 0.07 Fe3+ 0.01 0.01 0.01 0.01 0.01 0.09 0.11 0.11 0.08 Sc 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 Mn 1.53 1.38 1.40 1.36 1.33 2.75 2.78 2.77 2.77 Mg 0.10 0.06 0.06 0.06 0.07 0.00 0.00 0.00 0.00 Ca 0.05 0.05 0.06 0.04 0.04 0.07 0.07 0.07 0.06 Na 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 136

Mn/Fe2+Mn 0.55 0.49 0.50 0.48 0.47 0.97 0.99 0.99 0.97

Yttrogarnet % 1.02 0.95 0.94 0.79 0.84 0.2 0.18 0.19 0.18 Sc garnet 0.54 0.57 0.63 0.39 0.38 0 0 0 0 Spessartine 51.09 46.17 46.64 45.52 44.29 91.58 92.74 92.52 92.41 Pyrope 3.43 2.1 2.14 2.16 2.19 0.06 0 0.03 0.02 Almandine 38.72 47.37 45.71 48.41 49.45 2.58 0.93 1.22 2.42 Grossular 0 0 0 0 0 0 0.76 0.16 0 Andradite 0.94 0.83 0.89 0.76 0.82 1.6 1.39 1.87 2.02 Skiagite 2.62 0.41 1.29 0.6 0.63 0 0 0 0.05

KH-1 Hovåsen, Eftevann KT-1 Thortveittunnelen Sample KH-1-1 KH-1-2 KH-1-3 KH-1-4 KT-1-1 KT-1-2 KT-1-3 KT-1-4 KT-1-5

SiO2 wt% 36.14 35.92 36.32 36.11 36.58 36.42 36.21 36.03 36.41

Al2O3 19.98 19.93 20.02 20.03 19.92 19.82 20.06 19.88 20.21 FeO 13.06 12.94 13.02 12.80 14.95 14.47 14.70 13.69 13.80

Fe2O3 1.76 1.56 1.63 1.61 1.94 2.06 1.42 1.72 1.88 MnO 28.54 28.42 28.77 28.78 25.23 25.35 25.05 26.17 26.54

TiO2 0.18 0.21 0.11 0.10 0.15 0.19 0.18 0.19 0.17 MgO 0.52 0.52 0.50 0.47 1.10 1.13 1.13 1.01 1.03 CaO 0.27 0.31 0.26 0.28 0.95 1.11 0.74 0.72 0.73

Na2O 0.03 0.02 0.03 0.03 0.05 0.04 0.10 0.08 0.05

K2O ------<0.01 - <0.01

Sc2O3 0.04 0.05 0.06 0.06 0.36 0.35 0.35 0.29 0.18 ZnO 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

Y2O3 0.77 0.81 0.90 0.92 0.92 1.02 0.97 0.76 0.24

REE2O3 0.19 0.19 0.22 0.22 0.60 0.64 0.62 0.48 0.07 TOTAL 101.49 100.90 101.85 101.42 102.75 102.61 101.56 101.03 101.34

Si apfu 2.96 2.95 2.96 2.96 2.95 2.94 2.95 2.95 2.96 Al 0.04 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.04 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.88 1.88 1.88 1.89 1.84 1.83 1.87 1.87 1.89 Fe3+ 0.11 0.10 0.10 0.10 0.12 0.13 0.09 0.11 0.10 Fe2+ 0.00 0.00 0.01 0.01 0.03 0.03 0.03 0.01 0.00 137

Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.01 REE 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.00 Fe2+ 0.89 0.89 0.88 0.87 0.98 0.95 0.97 0.93 0.94 Fe3+ 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 Sc 0.00 0.00 0.00 0.00 0.03 0.02 0.03 0.02 0.01 Mn 1.98 1.98 1.99 1.99 1.72 1.73 1.73 1.81 1.83 Mg 0.06 0.06 0.06 0.06 0.13 0.14 0.14 0.12 0.13 Ca 0.02 0.03 0.02 0.02 0.08 0.10 0.06 0.06 0.06 Na 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+Mn 0.69 0.69 0.69 0.69 0.63 0.64 0.63 0.66 0.66

Yttrogarnet % 0.62 1.13 0.53 0.02 0.07 0.06 0.39 0.52 0.42 Sc garnet 0.68 0.71 0.36 0.06 0.07 0.07 0.26 0.31 0.23 Spessartine 57.39 58.9 56.9 60.37 59.86 60.49 57.79 58.45 58.69 Pyrope 2.09 1.94 2.34 3.14 3.16 3.15 3.01 2.91 2.8 Almandine 34.92 31.71 35.41 32.4 32.85 31.33 33.73 31.34 33.55 Grossular 0 0 0 0 0 0 0 0 0 Andradite 0 0 0 0.49 0.35 0.51 0.76 0.5 0.51 Skiagite 2.83 5.03 2.2 1.74 1.84 2.48 2.94 4.24 2.98

KG2-5 Granatgruva, KG-4 Granatgruva, MS-6 Solås Knipan Knipan MS-6- MS-6- MS-6- MS-6- KG2-5- KG2-5- KG2-5- KG2-5- Sample 1 2 3 4 1 2 3 4 KG-4-1

SiO2 wt% 35.96 35.77 35.68 35.38 35.54 35.46 35.42 35.35 36.29

Al2O3 20.23 19.90 19.98 19.81 19.77 19.48 19.92 19.97 20.21 FeO 16.69 16.55 16.16 14.97 15.68 15.49 14.40 14.48 17.53

Fe2O3 1.18 1.32 1.62 3.01 2.06 2.10 2.15 2.11 1.93 MnO 24.04 24.08 24.70 24.07 24.68 24.32 25.60 25.44 23.42

TiO2 0.04 0.08 0.07 0.09 0.17 0.25 0.22 0.25 0.15 MgO 0.62 0.61 0.52 0.65 0.68 0.59 0.71 0.66 0.81 CaO 0.34 0.31 0.32 0.34 0.41 0.45 0.43 0.45 0.56

Na2O 0.10 0.09 0.05 0.22 0.05 0.19 0.09 0.11 0.02

K2O - - - 0.14 - - - - -

Sc2O3 0.02 0.03 0.02 0.03 0.12 0.12 0.25 0.23 0.16 ZnO 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01

138

Y2O3 0.67 0.57 0.81 0.84 0.82 0.77 1.12 1.07 0.26

REE2O3 0.25 0.16 0.42 0.48 0.28 0.30 0.60 0.50 0.19 100.1 100.3 100.0 TOTAL 7 99.50 8 6 100.30 99.56 100.93 100.64 101.56

Si apfu 2.97 2.97 2.95 2.93 2.94 2.95 2.92 2.92 2.95 Al 0.03 0.03 0.05 0.07 0.06 0.05 0.08 0.08 0.05 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.93 1.92 1.90 1.87 1.87 1.86 1.85 1.86 1.89 Fe3+ 0.06 0.07 0.10 0.13 0.12 0.12 0.13 0.12 0.10 Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.03 0.03 0.04 0.04 0.04 0.03 0.05 0.05 0.01 REE 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.00 Fe2+ 1.15 1.15 1.12 1.04 1.09 1.08 0.99 1.00 1.19 Fe3+ 0.01 0.01 0.00 0.06 0.01 0.01 0.00 0.01 0.02 Sc 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.01 Mn 1.68 1.69 1.73 1.69 1.73 1.72 1.79 1.78 1.61 Mg 0.08 0.08 0.06 0.08 0.08 0.07 0.09 0.08 0.10 Ca 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 Na 0.02 0.02 0.01 0.04 0.01 0.03 0.01 0.02 0.00 K 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Mn/Fe2+M n 0.59 0.60 0.61 0.62 0.61 0.61 0.64 0.64 0.58

Yttrogarnet % 0.48 0.47 0.56 1.05 1.04 0.46 0.72 0.09 0.09 Sc garnet 0.12 0.12 0.13 0.3 0.31 0.45 0.31 0 0 Spessartine 52.49 52.9 52.93 52.17 49.88 55.36 55.24 92.55 93.05 Pyrope 3.11 3.26 3.3 3.68 3.76 3.73 3.54 0 0 Almandine 40.24 37.18 38.87 37.64 42.22 35.84 36.47 1.66 0.74 Grossular 0 0 0 0 0 0 0 0 0 Andradite 0.77 0.76 0.62 0.86 1.25 0.76 0.9 1.86 1.6 Skiagite 1.91 3.3 2.72 3.49 1.22 1.55 1.79 0.53 0.85

139

22330 Torvelona Sample KG-4-2 KG-4-3 KG-4-4 KG-4-5 KG-4-6 22330-1 22330-2 22330-3 22330-4

SiO2 wt% 36.12 36.66 35.32 36.27 36.53 35.72 35.52 35.24 35.38

Al2O3 20.12 20.03 20.01 20.28 20.15 19.35 19.42 19.20 19.29 FeO 17.35 17.93 16.47 17.77 16.64 11.66 11.56 11.11 11.17

Fe2O3 1.62 0.84 1.57 1.47 1.32 1.96 2.25 2.97 2.86 MnO 23.44 23.24 23.24 23.17 24.28 28.27 28.37 28.37 28.62

TiO2 0.22 0.09 0.17 0.20 0.14 0.19 0.20 0.21 0.23 MgO 0.80 0.82 0.82 0.84 0.82 0.71 0.70 0.72 0.69 CaO 0.57 0.69 0.55 0.51 0.45 0.69 0.60 0.67 0.67

Na2O 0.03 0.02 0.05 0.04 0.10 0.09 0.08 0.08 0.06

K2O - - - - 0.04 - - - -

Sc2O3 0.26 0.22 0.07 0.22 0.24 0.32 0.31 0.30 0.29 ZnO 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

Y2O3 0.15 0.21 0.59 0.21 0.18 0.78 0.76 0.73 0.73

REE2O3 0.08 0.11 0.26 0.13 0.09 0.47 0.45 0.43 0.45 TOTAL 100.78 100.87 99.13 101.11 100.99 100.24 100.24 100.03 100.45

Si apfu 2.96 2.99 2.94 2.96 2.98 2.96 2.94 2.93 2.93 Al 0.04 0.01 0.06 0.04 0.02 0.04 0.06 0.07 0.07 Σ T 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.90 1.92 1.91 1.91 1.91 1.84 1.84 1.81 1.81 Fe3+ 0.09 0.05 0.08 0.08 0.08 0.12 0.14 0.18 0.17 Fe2+ 0.00 0.02 0.00 0.00 0.00 0.02 0.01 0.00 0.00 Σ B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Y 0.01 0.01 0.03 0.01 0.01 0.03 0.03 0.03 0.03 REE 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 Fe2+ 1.19 1.20 1.15 1.21 1.13 0.79 0.79 0.77 0.77 Fe3+ 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 Sc 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 Mn 1.62 1.61 1.64 1.60 1.68 1.98 1.99 2.00 2.01 Mg 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 Ca 0.05 0.06 0.05 0.04 0.04 0.06 0.05 0.06 0.06 Na 0.00 0.00 0.01 0.01 0.02 0.02 0.01 0.01 0.01 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Σ A 3.00 3.00 3.00 3.00 3.00 3.01 3.00 3.00 3.00

140

Mn/Fe2+Mn 0.58 0.57 0.59 0.57 0.60 0.71 0.71 0.72 0.72

Yttrogarnet % 0.1 0.1 0.21 0.23 0.24 0.08 0.14 0.17 1.29 Sc garnet 0 0 0.18 0.18 0.19 0.11 0.1 0.1 0.23 Spessartine 93.18 93.18 37.88 37.99 38.32 35.5 35.76 35.77 50.12 Pyrope 0 0 2.01 2.03 2 2.28 2.31 2.09 3.74 Almandine 0 0 57.55 56.59 56.17 59.1 58.76 58.78 41.13 Grossular 0 0 0 0 0 0 0 0 0 Andradite 1.75 1.58 1.16 1.15 1.14 1.05 0.97 1.07 0.8 Skiagite 1.42 0.71 0.68 1.2 0.77 1.21 1.09 0.6 1.32

Trace elements:

KB-1 25432 Heia, Heliodorgruva Ljosland Sampl KB- KB- KB- KB- KB- 2543 2543 e KB-1-1 1-2 1-3 1-4 1-5 1-6 25432-1 2-2 2-3 Sc45 ppm 2055 2209 2265 104 132 133 565 414 429 V51 10 10 11 4 5 4 14 12 12 Cr53 7 - - 5 - 5 - - - Zn66 80 93 80 263 243 245 115 128 122 Y89 6110 6191 6342 96 389 318 2859 2288 1955 La139 ------Ce140 <1 <1 <1 - <1 - <1 <1 <1 Pr141 <1 <1 <1 <1 <1 - <1 <1 <1 Nd143 4 4 4 1 1 1 5 7 7 Sm147 29 29 28 23 25 24 44 58 60 Eu151 ------Gd157 118 119 112 69 90 84 144 169 165 Tb159 44 44 43 9 17 14 40 39 38 Dy163 383 379 386 13 44 37 266 220 209 Ho165 78 78 81 1 3 3 42 31 27 Er166 335 329 344 1 7 6 137 90 71 Tm169 107 103 110 <1 1 1 33 20 15 Yb173 1506 1454 1557 1 11 9 345 209 139 Lu175 305 288 311 <1 1 1 54 30 19

KTU-7 Tuftane, MS-9 Frikstad Solås

141

Sampl 2543 2543 2543 KTU- KTU- KTU- MS- e 2-4 2-5 2-6 KTU-7-1 7-2 7-3 7-4 MS-9-1 9-2 Sc45 ppm 225 217 234 553 562 814 569 3 - V51 6 6 6 7 7 14 5 <1 - Cr53 - - - - 7 12 - - - Zn66 116 135 139 77 87 72 72 478 476 Y89 2636 2559 3042 5700 5866 2484 3876 499 500 La139 - - - - <1 - - - - Ce140 - - - - <1 - - <1 <1 Pr141 - - - - <1 - - <1 <1 Nd143 - <1 <1 1 1 <1 1 2 2 Sm147 6 9 9 10 11 3 6 32 32 Eu151 - - - <1 <1 - - - - Gd157 51 62 64 67 70 23 46 113 113 Tb159 20 22 23 31 32 12 21 49 49 Dy163 190 198 216 369 385 159 270 219 216 Ho165 48 46 50 118 124 54 90 9 9 Er166 235 218 236 696 723 323 540 9 9 Tm169 77 68 75 246 254 108 182 1 1 Yb173 1022 887 973 3670 3781 1516 2601 11 11 Lu175 234 202 214 909 938 370 666 2 2

25427 Steli, 25370 Tveit Kåbuland MS- MS- 25427 25427 25427 25427 25427 Sample 9-3 9-4 25427-1 -2 -3 -4 -5 -6 25370-1 Sc45 ppm 1 - 182 176 230 333 336 340 433 V51 - - 4 4 5 5 5 5 1 Cr53 - - - - 9 - - - - Zn66 501 468 111 113 112 98 97 100 70 Y89 531 560 763 932 504 1218 1295 1049 8268 La139 ------Ce140 <1 <1 - - <1 <1 - <1 <1 Pr141 <1 <1 <1 <1 - <1 <1 <1 <1 Nd143 2 2 3 3 2 3 4 3 2 Sm147 33 33 28 29 31 31 30 31 28 Eu151 ------<1 Gd157 118 116 83 90 91 97 102 96 183 Tb159 51 52 20 22 19 29 31 27 71 Dy163 226 231 111 129 86 168 177 150 722 Ho165 10 10 14 17 9 19 20 16 189

142

Er166 9 10 32 43 20 42 43 33 788 Tm169 1 1 5 7 3 7 7 5 178 Yb173 11 10 35 54 26 51 52 37 1687 Lu175 2 1 4 6 3 5 5 3 305

25409 Landås 25370- 25370- 25370- 25370- 25370- 25370- 25409- 25409- Sample 2 3 4 5 6 7 25409-1 2 3 Sc45 ppm 402 404 886 1079 1092 469 88 100 107 V51 1 1 6 9 10 1 5 6 4 Cr53 ------Zn66 74 71 64 64 64 74 187 176 179 Y89 7783 7671 2498 5111 4088 8720 4912 6151 7158 La139 ------Ce140 <1 - - - - <1 - - - Pr141 <1 <1 - - <1 <1 - - - Nd143 2 2 <1 1 1 3 1 <1 1 Sm147 22 26 3 8 6 30 6 6 7 Eu151 - - - - - <1 - - <1 Gd157 159 170 28 64 50 200 55 55 65 Tb159 64 66 14 31 24 78 28 29 35 Dy163 663 672 185 390 314 787 352 420 489 Ho165 183 177 61 125 105 205 115 158 169 Er166 786 745 307 619 540 843 537 853 805 Tm169 180 171 78 161 144 188 129 226 189 Yb173 1703 1643 838 1726 1589 1763 1241 2327 1731 Lu175 316 294 157 315 313 316 196 417 248

MS2-9 MSB-5 Solås Slobrekka 25409 25409 25409 MS2- MS2- MS2- MSB- Sample -4 -5 -6 MS2-9-1 9-2 9-3 9-4 MSB-5-1 5-2 Sc45 ppm 108 112 118 86 93 141 149 845 874 V51 <1 - - 2 2 2 2 5 5 Cr53 - - - - - 6 - 10 - Zn66 154 156 160 294 281 284 279 84 80 Y89 15300 15817 16685 12966 12924 15027 14619 15053 14227 La139 ------Ce140 - <1 - <1 <1 <1 <1 - - Pr141 - <1 <1 <1 <1 <1 <1 - - 143

Nd143 1 1 1 5 5 7 5 1 1 Sm147 13 12 14 47 46 58 46 11 10 Eu151 - - - <1 - - - - - Gd157 120 124 128 283 276 332 292 115 109 Tb159 68 71 73 117 116 136 125 67 63 Dy163 1010 1060 1078 1064 1059 1247 1186 1089 1015 Ho165 358 375 381 201 203 240 233 457 431 Er166 1870 1951 1968 590 601 727 708 2685 2534 Tm169 502 518 527 108 111 136 131 715 686 Yb173 5239 5444 5449 846 884 1097 1047 7897 7647 Lu175 867 879 874 100 104 130 123 1629 1565

25444 Håvardstad MSB- MSB- MSB- MSB- 25444 25444 25444 25444 Sample 5-3 5-4 5-5 5-6 25444-1 -2 -3 -4 -5 Sc45 ppm 831 833 830 883 1005 1033 1133 1479 1479 V51 5 4 4 4 80 48 67 44 44 Cr53 20 ------Zn66 82 85 83 86 83 76 83 77 81 Y89 14935 15490 15464 15134 3772 4583 4979 4917 4219 La139 ------Ce140 - - - - <1 - <1 - - Pr141 - <1 - - <1 <1 <1 - - Nd143 1 1 1 1 3 3 2 2 2 Sm147 10 9 10 10 33 30 29 21 20 Eu151 ------Gd157 113 113 116 113 176 168 165 127 117 Tb159 67 65 68 65 61 62 65 53 48 Dy163 1098 1069 1061 1045 441 497 539 470 403 Ho165 466 447 445 434 66 86 96 93 72 Er166 2722 2599 2573 2556 192 281 309 325 232 Tm169 717 683 678 685 40 60 68 71 51 Yb173 7840 7369 7395 7572 361 560 636 679 498 Lu175 1584 1469 1457 1519 48 81 91 98 69

KH-3 25447 Hovåsen, Røykkvartsbruddet, Eftevann Birkeland Samp 2544 KH- KH- KH- 2544 2544 2544 le 4-6 KH-3-1 3-2 3-3 3-4 25447-1 7-2 7-3 7-4

144

Sc45 ppm 1952 12 14 10 9 15 11 11 13 V51 47 2 2 2 2 <1 <1 <1 <1 Cr53 - 7 - 9 - 13 - - - Zn66 77 238 192 216 231 262 267 259 260 Y89 4740 375 403 430 448 819 837 725 731 La13 9 <1 - <1 - - <1 - - - Ce14 0 - <1 <1 <1 <1 <1 <1 <1 <1 Pr141 - <1 <1 <1 <1 <1 <1 <1 <1 Nd14 3 2 10 9 7 7 2 2 2 2 Sm14 7 22 103 94 91 96 12 12 12 11 Eu15 1 ------<1 Gd15 7 124 231 217 254 267 38 38 33 34 Tb15 9 52 35 34 40 42 28 28 25 26 Dy16 3 438 68 72 80 83 303 310 273 283 Ho16 5 77 2 3 2 2 47 48 42 42 Er166 264 2 5 2 2 124 127 109 109 Tm16 9 68 <1 1 <1 <1 20 21 17 17 Yb17 3 747 2 14 2 2 128 132 107 106 Lu17 5 112 <1 3 <1 <1 13 13 10 11

28372 25375 Mølland Ivedal 28372 28372 28372 28372 28372 25375 25375 Sample 28372-1 -2 -3 -4 -5 -6 25375-1 -2 -3 Sc45 ppm 239 68 112 191 190 208 916 944 984 V51 4 4 5 7 7 7 9 9 9 Cr53 ------Zn66 114 105 103 97 97 97 140 136 136 Y89 121 198 596 1821 1803 1628 9653 9493 9460 La139 ------Ce140 - - <1 - - <1 - - - 145

Pr141 - - <1 <1 <1 <1 - - - Nd143 1 1 2 3 2 3 <1 <1 <1 Sm147 7 18 24 26 25 26 4 4 5 Eu151 - - - <1 <1 - - - - Gd157 12 38 75 94 93 92 55 57 57 Tb159 2 6 16 26 26 25 36 36 37 Dy163 12 24 72 169 166 155 604 607 616 Ho165 2 3 8 27 26 24 254 257 260 Er166 6 8 22 89 86 79 1496 1495 1496 Tm169 2 2 5 22 21 19 409 407 407 Yb173 33 26 54 243 237 214 4455 4451 4414 Lu175 8 6 10 42 41 37 856 849 842

25412 Røykkvartsbruddet, Birkeland Sampl 2537 2537 2537 2541 2541 2541 2541 2541 e 5-4 5-5 5-6 25412-1 2-2 2-3 2-4 2-5 2-6 Sc45 ppm 740 756 755 2 2 2 3 2 2 V51 12 12 13 ------Cr53 ------Zn66 117 116 117 476 485 486 450 489 472 1285 1235 1369 Y89 4 0 9 2947 3216 2767 3584 3252 3281 La139 - - - <1 - - - - - Ce140 - - - - <1 - <1 <1 - Pr141 - - - <1 - - <1 - - Nd143 <1 1 1 1 1 1 1 1 1 Sm14 7 7 7 8 19 20 19 18 16 17 Eu151 ------Gd157 92 87 99 137 150 139 139 117 121 Tb159 57 54 60 53 58 53 56 48 49 Dy163 929 886 967 276 301 267 332 303 299 Ho165 394 378 414 19 21 17 30 28 27 Er166 2340 2233 2464 26 27 22 48 46 47 Tm16 9 654 622 681 3 4 3 6 6 6 Yb173 7247 6895 7592 27 25 20 39 36 44 Lu175 1503 1438 1579 4 3 3 4 4 6

146

25374 25422 Frøyså Frikstad 25374 25374 25374 25374 25374 25422 25422 Sample 25374-1 -2 -3 -4 -5 -6 25422-1 -2 -3 Sc45 ppm 2 2 2 4 2 4 295 474 734 V51 - - - - - <1 1 2 7 Cr53 ------10 Zn66 258 250 252 262 263 260 144 142 95 Y89 1294 1373 1348 1114 1194 1089 5866 3661 4060 La139 ------Ce140 <1 <1 <1 <1 <1 <1 - - <1 Pr141 <1 <1 <1 <1 <1 <1 - - - Nd143 1 2 2 1 1 1 1 <1 <1 Sm147 11 12 11 9 10 8 8 5 5 Eu151 <1 <1 <1 <1 <1 <1 - - - Gd157 36 39 38 32 34 30 79 45 46 Tb159 28 30 30 25 27 24 38 22 23 Dy163 353 376 368 301 331 286 496 302 329 Ho165 63 68 68 48 56 47 165 108 124 Er166 193 209 208 129 162 128 832 574 718 Tm169 36 40 40 21 29 22 225 158 211 Yb173 245 271 271 131 187 137 2450 1801 2580 Lu175 21 24 24 11 16 12 455 366 586

MB-3 25421 Brattekleiv Frikstad 25422 MB- MB- MB- 25421 25421 25421 Sample -4 MB-3-1 3-2 3-3 3-4 25421-1 -2 -3 -4 Sc45 ppm 944 1107 876 926 700 2 - 3 - V51 12 10 10 10 13 - - - - Cr53 - - - - - 7 - 7 - Zn66 91 74 71 80 78 444 428 446 456 Y89 4092 5362 4784 4612 4225 1000 1002 1038 1016 La139 ------Ce140 - <1 <1 - <1 <1 <1 <1 <1 Pr141 <1 <1 <1 <1 <1 <1 <1 <1 <1 Nd143 1 2 1 1 <1 2 2 2 2 Sm147 5 11 10 9 7 33 29 34 35 Eu151 - <1 - - - - <1 - - Gd157 46 61 55 53 46 127 112 132 131 Tb159 24 30 27 26 23 56 50 58 57

147

Dy163 327 356 317 315 288 291 267 300 294 Ho165 126 108 95 92 89 17 17 17 17 Er166 739 585 524 486 498 19 21 20 19 Tm169 226 197 179 161 171 2 3 2 2 Yb173 2813 2676 2455 2153 2385 15 22 17 15 Lu175 671 560 518 440 523 2 3 2 2

KT-1 KH-1 Hovåsen, Thortveittgruv Eftevann a Sampl KH- KH- KH- KT- KT- KT- KT- e KH-1-1 1-2 1-3 1-4 KT-1-1 1-2 1-3 1-4 1-5 Sc45 ppm 279 323 385 405 2353 2279 2316 1920 1159 V51 2 2 3 3 58 57 57 41 9 Cr53 - - 13 ------Zn66 155 121 124 128 46 46 46 50 48 Y89 6029 6355 7053 7233 7232 8059 7646 5973 1927 La139 - - <1 <1 - - - - - Ce140 <1 <1 <1 <1 - <1 <1 <1 <1 Pr141 <1 <1 <1 <1 <1 <1 <1 <1 <1 Nd143 4 5 5 5 2 3 2 1 2 Sm147 40 43 46 43 20 23 21 17 23 Eu151 - - - - <1 <1 <1 <1 <1 Gd157 184 200 212 208 94 107 101 96 82 Tb159 68 73 77 79 39 44 42 38 23 Dy163 499 527 583 593 402 455 428 355 151 Ho165 73 76 86 87 103 118 110 85 22 Er166 202 209 245 249 548 620 584 432 73 Tm16 9 44 45 54 54 203 221 212 156 18 Yb173 445 448 546 552 3142 3309 3226 2456 211 Lu175 57 56 70 70 732 742 737 576 34

KG2-5 KG-4 MS-6 Granatgruva, Granatgruva, Solås Knipan Knipan Samp MS-6- MS- MS- MS- KG2 KG2 KG2 le 1 6-2 6-3 6-4 KG2-5-1 -5-2 -5-3 -5-4 KG-4-1 Sc45 ppm 123 166 141 165 755 797 1629 1497 461 V51 3 4 4 5 7 7 3 5 10 Cr53 - - 7 - 11 - 6 - - 148

Zn66 243 221 242 242 188 195 154 129 88 448 637 662 Y89 5247 4 4 2 6461 6051 8815 8452 4628 La13 9 <1 - - - <1 - <1 - - Ce14 0 <1 <1 - - <1 <1 <1 <1 <1 Pr141 <1 <1 <1 - <1 <1 <1 <1 <1 Nd14 3 1 1 1 1 4 4 6 7 3 Sm14 7 12 12 9 9 32 29 34 38 33 Eu15 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 Gd15 7 107 103 85 80 133 112 139 153 143 Tb15 9 45 40 40 38 47 40 51 54 48 Dy16 3 456 346 462 465 398 348 496 497 388 Ho16 5 110 67 137 149 79 73 122 114 77 Er166 418 227 657 739 314 311 593 520 304 Tm16 9 89 49 167 194 90 98 201 170 84 Yb17 175 209 3 801 465 5 8 1141 1346 2943 2359 1006 Lu17 5 127 79 353 438 220 277 662 510 186

22330 Torvelona KG-4- KG-4- KG-4- KG-4- KG-4- 22330- 22330- 22330- Sample 2 3 4 5 6 22330-1 2 3 4 Sc45 ppm 1058 1716 1445 1069 1342 2090 2020 1949 1922 V51 5 5 5 7 2 8 8 8 8 Cr53 - 7 - 2 - 7 - - - Zn66 50 109 96 82 80 86 137 79 79 Y89 2062 1151 1616 2591 2303 6104 5999 5747 5719 La139 - - <1 - - - <1 - - Ce140 - - <1 <1 <1 <1 2 <1 <1 Pr141 - <1 <1 <1 <1 <1 <1 <1 <1 Nd143 1 2 2 2 5 2 4 2 2 Sm147 6 14 14 18 30 18 20 17 17 149

Eu151 - <1 <1 <1 <1 <1 <1 <1 - Gd157 30 35 42 69 81 66 69 62 63 Tb159 12 10 14 23 22 25 25 24 24 Dy163 133 86 119 201 163 243 240 229 231 Ho165 36 19 27 44 33 61 60 58 59 Er166 193 90 119 194 143 340 325 312 326 Tm169 67 28 37 59 45 142 135 128 136 Yb173 994 351 475 777 595 2600 2479 2317 2490 Lu175 224 69 91 158 120 668 630 582 642

150