The Effect of Using the History of Science in Science Lessons On

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Using the History of Science in Science Lessons On THE EFFECT OF USING THE HISTORY OF SCIENCE IN SCIENCE LESSONS ON MEANINGFUL LEARNING DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hayati Seker, MSc ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Arthur L. White, Adviser Professor Donna F. Berlin Adviser Professor Gordon Aubrecht College of Education Graduate Program ABSTRACT Incorporating the history of science into the instructional process has been proposed by national endeavors in science education because of the advantages for understanding scientific inquiry, the nature of scientific knowledge, interaction between science and society, and humanizing scientific knowledge. Because studies of the effectiveness of history of science in promoting student understanding report mixed results for student learning of science and interest in science, only its effect on understanding aspects of the nature of science has been emphasized by science educators. This dissertation presents a four-month study which investigated the effectiveness of curriculum materials incorporating the history of science on learning science, understanding the nature of science, and students’ interest in science. With regards to these objectives, three different class contexts were developed three main types of historical information: history of scientific concepts, the nature of science, and stories from scientists’ personal lives. In the first class context, which is termed the “Meaningful Class”, the similarities between students’ alternative ideas and scientific concepts from the history of science were considered in developing teaching materials. In the second ii context, which is termed the “Nature of Science (NOS) Class”, the teacher developed discussion sessions on the ways scientists produce scientific knowledge. In the third class context, which is termed the “Interest Class”, short stories about scientists’ personal lives were used without connection to the concepts of science or nature of science. Ninety-four eighth-grade students were randomly assigned to four classes taught by the same science teacher. The concepts in the motion unit and in the force unit were taught. The curriculum of the school district was followed in the development of the three class contexts. Three of the four classrooms were taught using the contexts provided by the history of science while the fourth class was taught in the same way that the teacher had used in previous years. The effects on student learning of science, understanding the nature of science, and interest in science were evaluated at the beginning, at the middle, and at the end of the study to compare differences between historical class contexts and the Traditional Class. Three separate instruments were administered, class sessions were videotaped, and semi-structured interviews were audio taped. Student learning was measured using concept mapping before and after the motion and force units. Results of analysis showed that for each class independent of each other, student Meaningful Learning for both the motion and force units increased significantly from pretest to posttest. However, the results of statistical analysis showed iii that the differences between classes were not significant for either the motion or force unit. Students’ views of the nature of science were measured by using Perspectives on Scientific Epistemology (POSE) instrument. The percentage of Naïve and Informed views of students was observed for the following aspects of the nature of science: Scientific Method, Tentativeness, Inference, and Subjectivity. The history of science affected student perceptions of scientific process and role of Inference in the process of science. The Interest Survey measured components of interest: Individual Interest, Situational Interest, Involvement Component of Interest, Meaningful Component of Interest, and Story Component of Interest. The effect of the different types of historical information on the levels of student interest was analyzed. Results of the study showed that stories from scientists’ personal lives stimulated the Story Component of Interest, while discussions of scientific methods without these stories decreased student interest. The positive effects of stories relating scientist’ personal life on student interest in science has major importance for the teaching of science. This research also helps to clarify the different class contexts which can be provided with different types and uses of historical information. iv Dedicated to my mother, to my father, and to my sister v ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Arthur L. White, for his support and insight during this research project and during my program of study leading up to my project. I would also like to thank committee members Dr. Donna Berlin and Dr. Gordon Aubrecht for their time, careful reading of my numerous drafts of my dissertation, and thoughtful suggestions. Thankfulness goes to Laura Welsh for her willingness to conduct this research in her classes. My gratitude is expressed to Bengu Borkan for her statistical advice and help with analysis of data. vi VITA The Ohio State University……………….Ph.D., Science Education, 1999- present Marmara University………………………………………….M. Sc. Physics, 1999 Marmara University…………………………B.S. in Ed., Physics Education, 1995 vii FIELDS OF STUDY Major Field: Education Doctoral Studies in: Science Education with Arthur L. White, Donna F. Berlin, Michael Beeth. Physics with Gordon Aubrecht. viii TABLE OF CONTENTS Page Abstract............................................................................................................................... ii Dedication…………………………………………………………………………………v Acknowledgments ............................................................................................................. vi Vita.................................................................................................................................... vii Acknowledgements............................................................................................................ vi List of Figures................................................................................................................. xvii Chapters: 1. Introduction.................................................................................................................... 1 Standards.............................................................................................................. 2 Studies before the 1970s ...................................................................................... 3 Studies after the 1970s......................................................................................... 4 Aspects of using history of science...................................................................... 5 Learning science ............................................................................................. 5 Understanding the nature of science ............................................................... 8 Interest in science.......................................................................................... 10 Class contexts..................................................................................................... 12 Meaningful class ........................................................................................... 13 Nature of science (NOS) class ...................................................................... 13 Interest class.................................................................................................. 14 Considerations.................................................................................................... 14 Choosing historical materials........................................................................ 14 Appropriateness for the grade level .............................................................. 16 Standards, benchmarks, and curriculum ....................................................... 16 Students’ expectations .................................................................................. 17 Teachers’ reluctance ..................................................................................... 17 ix Theoretical framework....................................................................................... 18 Purpose of the study........................................................................................... 24 Research questions............................................................................................. 25 Definition of terms............................................................................................. 26 2. Literature review........................................................................................................... 28 Introduction........................................................................................................ 28 Constructivism ................................................................................................... 28 Meaningful learning........................................................................................... 35 Assessment of propositional learning ................................................................ 36 Concept mapping ............................................................................................... 38 The effects of using the history of science
Recommended publications
  • History of Science (HIST SCI) 1
    History of Science (HIST SCI) 1 HIST SCI 133 — BIOLOGY AND SOCIETY, 1950 - TODAY HISTORY OF SCIENCE (HIST 3 credits. From medical advancements to environmental crises and global food SCI) shortages, the life sciences are implicated in some of the most pressing social issues of our time. This course explores events in the history of biology from the mid-twentieth century to today, and examines how HIST SCI/ENVIR ST/HISTORY 125 — GREEN SCREEN: ENVIRONMENTAL developments in this science have shaped and are shaped by society. In PERSPECTIVES THROUGH FILM the first unit, we investigate the origins of the institutions, technologies, 3 credits. and styles of practice that characterize contemporary biology, such From Teddy Roosevelt's 1909 African safari to the Hollywood blockbuster as the use of mice as "model organisms" for understanding human King Kong, from the world of Walt Disney to The March of the Penguins, diseases. The second unit examines biological controversies such as the cinema has been a powerful force in shaping public and scientific introduction of genetically modified plants into the food supply. The final understanding of nature throughout the twentieth and twenty-first unit asks how biological facts and theories have been and continue to be century. How can film shed light on changing environmental ideas and used as a source for understanding ourselves. Enroll Info: None beliefs in American thought, politics, and culture? And how can we come Requisites: None to see and appreciate contested issues of race, class, and gender in Course Designation: Breadth - Either Humanities or Social Science nature on screen? This course will explore such questions as we come Level - Elementary to understand the role of film in helping to define the contours of past, L&S Credit - Counts as Liberal Arts and Science credit in L&S present, and future environmental visions in the United States, and their Repeatable for Credit: No impact on the real world struggles of people and wildlife throughout the Last Taught: Spring 2021 world.
    [Show full text]
  • Science Standards
    SCIENCE It is the policy of the Oklahoma State Department of Education (OSDE) not to discriminate on the basis of race, color, religion, gender, national origin, age, or disability in its programs or employment practices as required by Title VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Civil rights compliance inquiries related to the OSDE may be directed to the Affirmative Action Officer, Room 111, 2500 North Lincoln Boulevard, Oklahoma City, Oklahoma 73105-4599, telephone number (405) 522-4930; or, the United States Department of Education’s Assistant Secretary for Civil Rights. Inquires or concerns regarding compliance with Title IX by local school districts should be presented to the local school district Title IX coordinator. This publication, printed by the State Department of Education Printing Services, is issued by the Oklahoma State Department of Education as authorized by 70 O.S. § 3-104. Five hundred copies have been prepared using Title I, Part A, School Improvement funds at a cost of $.15 per copy. Copies have been deposited with the Publications Clearinghouse of the Oklahoma Department of Libraries. DECEMBER 2013. SCIENCE Table of Contents 5-8 Introduction 9 K-5 Overview 10-18 ■ KINDERGARTEN 19-28 ■ 1ST GRADE 29-39 ■ 2ND GRADE 40-54 ■ 3RD GRADE 55-68 ■ 4TH GRADE 69-82 ■ 5TH GRADE 83 6-12 Overview 84-101 ■ 6TH GRADE 102-119 ■ 7TH GRADE 120-137 ■ 8TH GRADE 138-152 ■ PHYSICAL SCIENCE 153-165 ■ CHEMISTRY 166-181 ■ PHYSICS 182-203 ■ BIOLOGY I 204-219 ■ EARTH & SPACE SCIENCE 220-235 ■ ENVIRONMENTAL SCIENCE Introduction Science uses observation and experimentation to explain natural phenomena.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
    applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M.
    [Show full text]
  • The Nobel Laureate CV Raman and His Contacts with the European Men of Science in Political Context
    The Global and the Local: The History of Science and the Cultural Integration of Europe. nd Proceedings of the 2 ICESHS (Cracow, Poland, September 6-9, 2006) / Ed. by M. Kokowski. Rajinder Singh * The Nobel Laureate CV Raman and his contacts with the European men of science in political context (1) Introduction In 1928 C.V. Raman1 (1888–1970) [see Figure 1 and Box 1] and K.S. Krishnan (1898–1961) observed that if monochromatic light is passed through a transparent medium, thereafter the scattering light is accompanied by other colours. This phenomenon was later named as Raman effect.2 The effect helps to find out the molecular structure of substances. In 1930 Raman was award the Physics Nobel prize ―for his work on light scattering and the discovery of the effect named after him.‖ He was the first Asian to receive this honour. This made him extremely popular. C.V. Raman interacted with the wide scientific community for about half a century and visited many countries. Some of the important physicists who corresponded with Raman were Wladyslaw Natanson,3 Niels Bohr, Max Born, Erwin Schrödinger, Arnold Sommerfeld and Ernest Rutherford. * University of Oldenburg, Faculty V, Institute of Physics – EHF, Research Group: Physics Education, History / Philosophy of Science, Oldenburg, Germany; email: [email protected] . 1 For biographical details, see: C.V. Raman: A Short Biographical Sketch (1938); J. Mehra, Chandrasekhara Venkata Raman, (in: Dictionary of Scientific Biography, C.C. Gillispie, ed.), Vol. XI (1975), pp. 264–267; G.H. Keswani, Raman and His Effect (1980); P.R.
    [Show full text]
  • Molecular Biology for Computer Scientists
    CHAPTER 1 Molecular Biology for Computer Scientists Lawrence Hunter “Computers are to biology what mathematics is to physics.” — Harold Morowitz One of the major challenges for computer scientists who wish to work in the domain of molecular biology is becoming conversant with the daunting intri- cacies of existing biological knowledge and its extensive technical vocabu- lary. Questions about the origin, function, and structure of living systems have been pursued by nearly all cultures throughout history, and the work of the last two generations has been particularly fruitful. The knowledge of liv- ing systems resulting from this research is far too detailed and complex for any one human to comprehend. An entire scientific career can be based in the study of a single biomolecule. Nevertheless, in the following pages, I attempt to provide enough background for a computer scientist to understand much of the biology discussed in this book. This chapter provides the briefest of overviews; I can only begin to convey the depth, variety, complexity and stunning beauty of the universe of living things. Much of what follows is not about molecular biology per se. In order to 2ARTIFICIAL INTELLIGENCE & MOLECULAR BIOLOGY explain what the molecules are doing, it is often necessary to use concepts involving, for example, cells, embryological development, or evolution. Bi- ology is frustratingly holistic. Events at one level can effect and be affected by events at very different levels of scale or time. Digesting a survey of the basic background material is a prerequisite for understanding the significance of the molecular biology that is described elsewhere in the book.
    [Show full text]
  • Outline of Science
    Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of
    [Show full text]
  • Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA
    Principal Scientist, Pharmacology (DMPK) at Entrada Therapeutics Full-Time Opportunity in Boston, MA Company Overview Entrada Therapeutics is a biotechnology company dedicated to transforming the treatment of devastating diseases through the intracellular delivery of biologics. Entrada’s technology enables the efficient intracellular delivery of proteins, peptides and nucleic acids, thus allowing for the development of programs across several intracellular target classes. The Company’s novel approach addresses current challenges associated with both large and small molecule therapeutics and represents a fundamental advancement in the delivery of molecules into the cytosol. Entrada is comprised of experts and leaders in both biologics development and the rare disease space. In December 2018, Entrada closed a $59 million Series A from 5AM Ventures, MPM Capital, Roche Venture Fund, MRL Ventures Fund and Agent Capital. Position Summary Entrada is hiring for a highly motivated, collaborative and innovative Principal Scientist, specializing in pharmacokinetics and pharmacology to join the Company’s intracellular biologics discovery and development efforts. The candidate will work with a world-class, multidisciplinary team of drug discovery scientists and lead the in vitro and in vivo ADME, PK, PD and toxicokinetic efforts. Specifically, the candidate will design, manage and execute in vitro and in vivo programs both in- house and at contract research organizations. The candidate will also be responsible for analyzing, interpreting and modeling
    [Show full text]
  • Mothers in Science
    The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond.
    [Show full text]
  • Science Education (SCIED) 1
    Science Education (SCIED) 1 to other non-science majors. Throughout the course, students engage SCIENCE EDUCATION (SCIED) in a series of investigations that lead towards the development of evidence-based explanations for patterns observed in the current SCIED 110: Introduction to Engineering for Educators Solar System. Investigations will include computer-based simulations, night-sky observations, and use of simple laboratory equipment. 3 Credits These investigations lead students towards an understanding of how This course focuses on physics content, engineering design principles, observations of the current Solar System can be explained by the model and elementary science education pedagogy. of its formation. The course is designed to build from students' own personal observations of the day and night sky towards developing Cross-listed with: ENGR 110 increasingly sophisticated explanations for those phenomena and beyond. Conducting these astronomy investigations will help students SCIED 112: Climate Science for Educators understand fundamental aspects of physics, thus broadly preparing them for future science teaching in these domains. The course models 3 Credits evidence-based pedagogy, thus helping to prepare students for future Concepts of climate sciences highlighted by evidence-based teaching careers as they learn effective strategies for teaching science. explanations and scientific discourse in preparation for K-6 science Cross-listed with: ASTRO 116 teaching. This introductory, multidisciplinary course will focus on the interactions among physical science concepts, earth science concepts, SCIED 118: Field Natural History for Teachers and scientific practices to develop understandings about Earth's climate system. The course is primarily intended for prospective elementary 3 Credits school teachers (Childhood and Early Adolescent Education, PK-4 and 4-8 majors), although it is available to other non-science majors.
    [Show full text]
  • How Science Works
    PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community.
    [Show full text]
  • The Historical Turn in the Philosophy of Science
    THE HISTORICAL TURN IN THE PHILOSOPHY OF SCIENCE 1 Developments in the History of Science The history of science has a long history. Aristotle’s scientific works are prefaced by historical account of those sciences, and this model persisted through medieval times until and including the rise of modern science in the era of the scientific revolution. Joseph Priestley, for example, entitled two of his books of pioneering research The History and Present State of Electricity and The History and Present State of Discov- eries Relating to Vision, Light, and Colours. For many such early modern authors the history of science serves as a propaedeutic. William Whewell’s A History of the Induc- tive Sciences (1857) is regarded as the first genuinely modern work of the history of science. Even so, Whewell’s scholarship has an extra-historical purpose, which was to furnish the materials against which a satisfactory philosophy of science could be con- structed. While Whewell rejected a Leibnizian logic of discovery, he did nonetheless believe that general principles of scientific inference could be uncovered by careful consideration of the history of scientific research. Whewell’s approach was followed by several early positivists, notably, Mach, Ostwald, and Duhem. Nonetheless, as positivism developed philosophically it also became more ahis- torical. Carnap’s programme of a priori inductive logic was premised on a distinction between a context of discovery and a context of justification. The former concerned the process of coming up with an hypothesis, whereas the latter concerns its justification relative to the evidence. The former would be the province of psychology, although it may depend so much on details of individual biography that few general principles may be derived even a posteriori.
    [Show full text]