Electroporation Ofalcaligenes Eutrophus With

Total Page:16

File Type:pdf, Size:1020Kb

Electroporation Ofalcaligenes Eutrophus With APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1994, p. 3585-3591 Vol. 60, No. 10 0099-2240/94/$04.00+0 Copyright © 1994, American Society for Microbiology Electroporation of Alcaligenes eutrophus with (Mega) Plasmids and Genomic DNA Fragments SAFIEH TAGHAVI, DANIEL VAN DER LELIE,* AND MAX MERGEAY Environmental Division, Flemish Institute for Technological Research, B-2400 Mol, Belgium Received 7 March 1994/Accepted 10 July 1994 Electroporation was used as a tool to explore the genetics of the heavy-metal-resistant strain Alcaligenes eutrophus CH34. A 12.9-kb A. eutrophus-Escherichia coli shuttle vector, pMOL850, was constructed to optimize electroporation conditions. This vector is derived from the E. coli plasmid pSUP202 and contains the replication region of the A. eutrophus megaplasmid pMOL28. Electroporation was used to transform A. eutrophus CH34 derivatives with megaplasmids (sizes up to 240 kb), and transformants were selected for resistance to heavy metals. Electroporation was also performed with endonuclease-digested genomic DNA. Transformation of markers affecting lysine biosynthesis (lysA194) and biosynthesis of the siderophore alcaligin E we,rs observed. Transfer of the nonselected markers pheB332 and aro-333, linked to lysA194, confirmed the intervention of homologous recombination. However, during transformation of ale::TnS-Tc, illegitimate recombination and transposition were also observed as an alternative for the inheritance of the Tn5-Tc markers. Isolates ofAlcaligenes eutrophus have been found in a variety recipients in intra- and intergeneric matings mediated by of biotopes severely polluted with heavy metals or organic pULB113 (12). Plasmids pULB113 and pMOL50, a rear- xenobiotics and therefore seem to be well adapted to the ranged derivative of pMOL28 that displayed chromosome- constraints imposed by such environments (3). The represen- mobilizing activity, were recently used to construct a circular tative strain among the metal-resistant Alcaligenes strains genetic map of the A. eutrophus CH34 chromosome (20). isolated is A. eutrophus CH34, which was isolated from the However, a tool for precise gene mapping is still required, sediment of a zinc factory (15, 16). This facultative chemolitho- since transducing phages are not available in A. eutrophus trophic bacterium carries two megaplasmids, pMOL28 (165 despite intensive searching (5). Therefore, other techniques kb) and pMOL30 (240 kb), bearing multiple resistances to have to be developed to determine the relative positions of heavy metals (for an overview, see reference 4), which can closely linked genetic markers, and as such, electroporation transfer at low frequency. Both plasmids have narrow replica- might be a good alternative. tion ranges and can replicate only in A. eutrophus. Other During the last few years, many papers on the efficient isolates of metallotolerant A. eutrophus were shown to carry transformation of soil bacteria by electroporation as an alter- similar plasmids (3). In soils with high levels of heavy metals, native to other transformation or DNA transfer systems have heterotrophic resistant bacteria closely related to A. eutrophus been published. Examples are the electroporation ofAgrobac- CH34 constitute a substantial fraction of the aerobic micro- terium tumefaciens (18, 29), Agrobacterium rhizogenes (29), flora (3). Therefore, genetic approaches to the study of A. Acetobacter xylinum (8), Pseudomonas aeruginosa (24), and eutrophus CH34 and related strains would be relevant in the Pseudomonas stutzeri (27). Most of these studies used recom- general context of genetic exchanges between microbes in binant plasmids with easily selectable antibiotic markers in- environments with strong selection pressure, an example being stead of endogenous plasmids (8, 18). Only in the case of soils polluted by heavy metals. Many interesting properties of Pseudomonas putida did the authors use a 74.1-kb plasmid A. eutrophus, like multiple resistance to heavy metals, xenobi- conferring resistance to silver (27). otic degradation, and various genes involved in nitrate reduc- In this paper, we describe electroporation of A. eutrophus tion and chemolitotrophy (hydrogenases) (7) are carried by with endogenous megaplasmids with sizes up to 240 kb. To megaplasmids. Therefore, the analysis of newly isolated Alcali- optimize electroporation of A. eutrophus, we first constructed genes strains in general focuses on the endogenous (mega)plas- an Escherichia coli-A. eutrophus shuttle vector, designated mids. This is either done by hybridization or by transferral of pMOL850. This vector is based on the E. coli vector pSUP202 the endogenous megaplasmids to plasmid-free recipients by (23), in which we cloned a replication-competent region of conjugation. Although some megaplasmids may conjugate at pMOL28. high frequencies (4, 20), most either transfer at low frequency We also used electroporation for the transformation of A. or are not transferable at all. Also, conjugation might be eutrophus CH34 and its derivatives with endonuclease-digested hindered by the absence of markers to counterselect the donor chromosomal DNA. This technique, which is a good tool for strain. Earlier, we recognized that A. eutrophus CH34 was the introduction of short DNA fragments, can be used for amenable to genetic manipulation by conjugation and that strain construction and might be an alternative for transduc- auxotrophic mutants of this strain, obtained by temperature- tion in A. eutrophus. induced mutagenesis and mortality (17, 20, 28), could serve as MATERIALS AND METHODS * Corresponding author. Phone: 32-14-333111, ext. 5116. Fax: 32- Bacterial strains, plasmids, and media. The bacterial strains 14-320372. and plasmids used are described in Table 1. A. eutrophus and 3585 3586 TAGHAVI ET AL. APPL. ENVIRON. MICROBIOL. TABLE 1. Bacterial strains and plasmids Strain or plasmid Relevant marker(s) Plasmid(s) or property of plasmid Origin or reference' A. eutrophus CH34 (Wild type) pMOL28, pMOL30 15, 16 AE3 aut-3 pMOL50 4 AE332 lysA194 pheB332 20 AE333 lysA4194 aro-333 20 AE587 leu-54 This study AE1093 aleA1093::Tn5-Tc pMOL28, pMOL30 M. A. Khan AE1152 aleB1152::TnS-Tc pMOL28, pMOL30 M. A. Khan AE126 pMOL28 16 AE128 pMOL30 16 E. coli CM404 Leu- Pro- Thi- Lac- Kmr pRK2013 6 Plasmids pSUP202 Apr Tcr Cmr Mob' Tra- ColEl origin unable to replicate in A. eutrophus 23 pRK2013 Kmr Tra+ Unable to replicate in A. eutrophus 6 pMOL850 Apr Tcr Mob' Tra- A. eutrophus-E. coli shuttle vector This study pMOL28 Nir Cor CrO4r Hgr 16 pMOL30 Cd' Znr Cor Hgr Cur 16 pMOL50 Nir Cor CrO4r Hgr Enlarged derivative of pMOL28 derepressed in 4 self-transfer E. coli were cultured and plated at 30 and 37°C, respectively, in cation that after addition of the lysis solution (0.1 N NaOH, 869 broth supplemented with 2 mM CaCl2 and on 869 agar 1% SDS, pH 12.8) the mixture was gently mixed for 15 min at (14). Resistance to heavy-metal salts was tested on a minimal room temperature before being cooled down on ice for 5 min. medium as described before (16, 19). If necessary, amino acids Total DNA was isolated from A. eutrophus as described for were added at a concentration of 40 ,ug/ml. For plasmid DNA Bacillus subtilis according to the method of Bron and Venema extraction from A. eutrophus, cells were grown in nutrient (1). broth 3 (Difco Laboratories) without selective pressure. Elec- Restriction enzymes, phosphatase, and T4 DNA ligase were trocompetent cells were prepared with cultures grown either in purchased from Gibco BRL and used as recommended by the SOB medium (9) without Mg2+ or in nutrient broth 3. After supplier. Molecular cloning techniques were performed as electroporation, bacteria were resuspended and incubated for described by Maniatis et al. (13). 1 h in SOC medium (9). Tetracycline-resistant clones of E. coli Conjugations. Solid-surface matings between A. eutrophus and A. eutrophus were selected on 869 agar supplemented with and E. coli strains were performed as described by Lejeune et 20 jLg of the antibiotic per ml. al. (12). E. coli CM404(pRK2013) (6) was used as the helper DNA isolation and manipulation. A modified method based strain in triparental matings involving the mobilizable plasmid on the alkaline lysis procedure from Kado and Liu (11) was pMOL850. employed for the isolation of megaplasmid DNA from A. Electroporation of E. coli and A. eutrophus. Electrocompe- eutrophus. Cells grown overnight in 15 ml of nutrient broth 3 tent cells of E. coli were prepared and transformed with the were harvested and washed with 5 ml of E buffer (40 mM Bio-Rad Gene Pulser (Bio-Rad Laboratories, Richmond, Ca- Tris-acetate, 2 mM EDTA, pH 7.9). After washing, the cells lif.) according to the manufacturer's instructions. To obtain were resuspended in 1 ml of E buffer and 2 ml of freshly electrocompetent cells of A. eutrophus, overnight cultures of prepared lysis solution (40 mM Tris, 1% sodium dodecyl sulfate [SDS]; final pH, 12.6 with 5 N NaOH) was added. The mixture was incubated for 20 min at room temperature under S gentle agitation and subsequently incubated at 68°C for 75 H B/ P E H ItI min. After incubation, 0.5 ml of 4 M NaCl and 8 ml of -* - > - =4 pSUP202 phenol-chloroform (1:1, H20 saturated, pH 4.8) were added and the suspension was gently mixed for 30 min at room Tc Ap Cm temperature. After centrifugation in a Sorvall SS34 rotor (30 min, 12,000 rpm at 4°C) and storage for 2 h at 4°C, the aqueous S x phase was transferred into another tube and extracted with 2 H B/ P E H/ S B E H ml of diethyl ether. The upper phase was discarded, and the ILII I H_/I l l l residual ether was evaporated for 20 min at 37°C. Aliquots (1.8 > - I ml) of the DNA solution were transferred and centrifuged for TC Ap P p pMOL850 3 h in a Ti 50 rotor (40,000 rpm, 4°C) to pellet the DNA.
Recommended publications
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering
    Environmental Science Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters Environmental Science and Engineering Environmental Science Series editors Rod Allan, Burlington, ON, Canada Ulrich Förstner, Hamburg, Germany Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Shree Nath Singh Editor Microbial Degradation of Synthetic Dyes in Wastewaters 123 Editor Shree Nath Singh Plant Ecology and Environmental Science Division CSIR—National Botanical Research Institute Lucknow, Uttar Pradesh India ISSN 1431-6250 ISBN 978-3-319-10941-1 ISBN 978-3-319-10942-8 (eBook) DOI 10.1007/978-3-319-10942-8 Library of Congress Control Number: 2014951157 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L
    applied sciences Article The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms Artur Banach 1,* , Agnieszka Ku´zniar 1, Radosław Mencfel 2 and Agnieszka Woli ´nska 1 1 Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] (A.K.); [email protected] (A.W.) 2 Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-454-5442 Received: 6 May 2019; Accepted: 24 May 2019; Published: 26 May 2019 Abstract: The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome.
    [Show full text]
  • Extreme Environments and High-Level Bacterial Tellurite Resistance
    microorganisms Review Extreme Environments and High-Level Bacterial Tellurite Resistance Chris Maltman 1,* and Vladimir Yurkov 2 1 Department of Biology, Slippery Rock University, Slippery Rock, PA 16001, USA 2 Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +724-738-4963 Received: 28 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments. Keywords: tellurite; tellurite resistance; extreme environments; metalloids; bioremediation; biometallurgy 1. Introduction Microorganisms possess a wide range of extraordinary abilities, from the production of bioactive molecules [1] to resistance to and transformation of highly toxic compounds [2–5]. Of great interest are bacteria which can convert the deleterious oxyanion tellurite to elemental tellurium (Te) through reduction. Currently, research into bacterial interactions with tellurite has been lagging behind investigation of the oxyanions of other metals such as nickel (Ni), molybdenum (Mo), tungsten (W), iron (Fe), and cobalt (Co).
    [Show full text]
  • COULD LIFE SURVIVE in ALIEN ENVIRONMENTS? Defining Environments Suitable for Life
    biology | B09 teach with space → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Defining environments suitable for life teacher guide & student worksheets Teacher guide Fast facts page 3 Introduction page 4 Background page 6 Activity: Life in space? page 8 Links page 10 Annex page 11 teach with space – could life survive in alien environments? | B09 www.esa.int/education The ESA Education Office welcomes feedback and comments [email protected] An ESA Education production in collaboration with ESERO Poland Copyright 2019 © European Space Agency → COULD LIFE SURVIVE IN ALIEN ENVIRONMENTS? Could life survive in alien environments? Fast facts Brief description Subject: Biology In this activity students will consider whether Age range: 13-16 years old life found in extreme environments on Earth could survive elsewhere in the Solar System. Type: student activity Students will examine the characteristics Complexity: medium of different places in the Solar System Cost: Low (0 - 10 euros) and then use fact cards of some example Lesson time required: 1 hour extremophiles to hypothesize which they think might be able to survive in the different Location: Classroom extra-terrestrial environments. Includes the use of: Internet, books, library Keywords: Biology, Solar System, Planets, Moons, Extremophiles, Abiotic factors, Search for life Learning objectives • Learn what extremophiles are. • Consider ecological tolerance. • Consider the abiotic factors that affect adaptation and survival of lifeforms. • Learn about the environmental conditions of various Solar System objects. • Understand that changes in environmental conditions have an impact on the evolution of living organisms. teach with space – could life survive in alien environments? | B09 3 → Introduction The more scientists look on Earth, the more life they find.
    [Show full text]
  • ABSTRACT OZDEMIR, INCI. Role of S-Layer Homology Domain
    ABSTRACT OZDEMIR, INCI. Role of S-layer Homology Domain Proteins in Plant Biomass Conversion to Biofuels by Extremely Thermophilic Caldicellulosiruptor species. (Under the direction of Robert M. Kelly.) Second-generation biofuels require the conversion of lignocellulose from agricultural waste, non-edible parts of crops, and grasses into fermentable sugars. Lignocellulose is composed of pectin, hemicellulose, cellulose and lignin, all of which form a matrix that must be penetrated and deconstructed by physical, chemical and biological methods to facilitate conversion to biofuels. Certain microorganisms have the capacity to extract the carbohydrate content of lignocellulose through the coordinated action of glycoside hydrolases and other metabolic processes, which together can contribute to biofuel production. Of interest here are extremely thermophilic bacteria from the genus Caldicellulosiruptor. One of the intriguing features of these bacteria is that they do not produce cellulosomes but rather produce multi-domain (hemi)cellulolytic enzymes. Some of these biocatalysts contain S-layer homology (SLH) domains, anchoring the enzymes to the cell envelope, and also have carbohydrate-binding domains (CBM), which bind the enzyme to the substrate. This can be a very efficient way of degrading plant biomass since enzymes are localized in close proximity of the cell where control its local microenvironment is possible. Six different groups of SLH-domain proteins with GH domains could be identified in the genome sequences of Caldicellulosiruptor species. Representatives from each group were produced recombinantly in E. coli and examined with respect to biochemical and biophysical properties. Csac_0678 (bifunctional cellulase/xylanase from C. saccharolyticus with homologs in all eight genome- sequenced Caldicellulosiruptor species), Calkr_2245 (xylanase from C.
    [Show full text]
  • Plant and Environment
    Plant and Environment https://journals.pagepal.org/index.php/plant-and-environment Application of Bioremediation as sustainable approach to remediate heavy metal and pesticide polluted environments Muhammad Mahroz Hussain*1,2, Zia Ur Rahman Farooqi*1,3, Waqas Mohy-Ud-Din1, Fazila Younas1, Muhammad Tahir Shahzad1, Muhammad Usman Ghani1,5, Muhammad Ashar Ayub1 and Abdul Qadeer1 1Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan-38040. 2University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany 3Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, Scotland, UK Article Info Abstract Keyword s: Bioremediation is a technique, which involves different organisms and different Pollutants types, sources, substances to treat or detoxify the pollutants in an eco-friendly way. It involves plants, contamination, toxicity, microbes, fungus, and different nutrients and gasses. It can detoxify an extensive array remediation erosion of pollutants both the organic and inorganic e.g. heavy metals and different types of pesticides. The use of microbes for this purpose is the most common practice as these Date: are ecofriendly and can be used anywhere i.e. in-situ and ex-situ. The pesticides and Received: 7 April 2020 the heavy metals are predictable. Regardless of their harmful effects, their use is Accepted: 16 September 2020 increasing. there are many techniques to cope with their harmful effects but there is Published: 15 February 2021 another issue regarding the side effects of these techniques.
    [Show full text]
  • Structural Studies of the Extremophilic Viruses P23-77 and STIV2
    Life on the Edge: Structural Studies of the Extremophilic Viruses P23-77 and STIV2 Lotta J. Happonen Institute of Biotechnology and Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki and Viikki Doctoral Programme in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences, University of Helsinki, in the auditorium 1041 of Biocenter 2, Viikinkaari 5, Helsinki, on June 8th 2012 at 12 o´clock noon. HELSINKI 2012 ii Supervisor Professor Sarah J. Butcher Institute of Biotechnology and Department of Biosciences University of Helsinki Finland Reviewers Nicola G. A. Abrescia, Ph.D. Structural Biology Unit Center for Cooperative Research in Biosciences (CIC bioGUNE) Bilbao Spain and Docent Pirkko Heikinheimo Department of Biochemistry and Food Chemistry University of Turku Finland Opponent Professor Timothy S. Baker Department of Chemistry and Biochemistry University of California San Diego USA Custos Professor Minna Nyström Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki Finland ©Lotta Happonen 2012 Cover picture: Pasi Laurinmäki and Lotta Happonen ISBN 978-952-10-8001-2 (paperback) ISBN 978-952-10-8002-9 (PDF) ISSN 1799-7372 UNIGRAFIA Helsinki 2012 iii The pursuit of truth and beauty is a sphere of activity in which we are permitted to remain children all our lives. – Albert Einstein iv ORIGINAL PUBLICATIONS The thesis is based on the following articles, which are referred to in the text by their Roman numerals, and which are reprinted at the end of this thesis with permission from the publishers.
    [Show full text]
  • WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/060903 Al 28 March 2019 (28.03.2019) W 1P O PCT (51) International Patent Classification: #324, Charlottesville, Virginia 22901 (US). ZOMORODI, C12N 15/70 (2006.01) Sepehr; 1600 Jefferson Park Ave. #307, Charlottesville, Virginia 22903 (US). POURTAHERI, Payam; 4000 City (21) International Application Number: Walk Way #213, Charlottesville, Virginia 22902 (US). PCT/US20 18/052690 (74) Agent: HOLLY, David C. et al; 1299 Pennsylvania Av¬ (22) International Filing Date: enue NW, Suite 700, Washington, District of Columbia 25 September 2018 (25.09.2018) 20004-2400 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/562,723 25 September 2017 (25.09.2017) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/666,981 04 May 2018 (04.05.2018) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: AGROSPHERES, INC. [US/US]; 1180 Semi¬ KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, nole Trail, Suite 100, Charlottesville, Virginia 22901 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (72) Inventors: SHAKEEL, Ameer Hamza; 43 136 Shadow SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Terrace, Leesburg, Virginia 20176 (US).
    [Show full text]
  • In Tropical Iron Ore Systems Alan Levett B.Sc. H. Majoring in Geological
    Development of ferruginous duricrusts (canga) in tropical iron ore systems Alan Levett B.Sc. H. Majoring in Geological Sciences (UQ) 2014 B.Sc. Extended Major in Biomedical Sciences (UQ) 2011 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland – 2020 School of Earth and Environmental Sciences Abstract Iron-rich duricrusts (canga) that cap iron ore deposits in Brazil evolve by the redox-based cycling of iron oxide minerals, continually forming new iron-rich cements that effectively prevent the physical erosion of these landforms. This thesis aimed to understand the biological influences on the geochemical cycling of iron within canga, to determine if these processes could be used to accelerate iron cement formation, for example, in a post-mining context. Re- cementing waste material (canga) from iron ore mining may provide an environmentally- friendly solution for iron ore mine remediation in Brazil and the restoration of a rare ecosystem associated with canga outcrops. Field emission scanning electron microscopy revealed an array of microorganisms fossilised within canga, highlighting the innate role of microorganisms in the evolution of canga horizons. Nanoscale elemental mapping of these microfossils revealed a role for aluminium in the long-term preservation of organic and inorganic biosignatures. A suite of high-resolution analytical techniques were correlated to understand the fossilisation processes that contribute to biosignature preservation in near-neutral iron-rich environments. Further investigation of the microfossils in canga, revealed the complex weathering patterns induced by microorganisms. Grains within canga could be completely weathered and texturally replaced by microfossils; only remnants of the grain’s shape and traces of most immobile elements (for example, thorium) were left behind.
    [Show full text]
  • Συγκριτική Μελέτη Πρωτεϊνών Του Ακραιόφιλου Αρχαίου Metallosphaera Sedula Με Ομόλογες Πρωτεΐνες Άλλων Οργανισμών
    Πτυχιακή Εργασία Συγκριτική μελέτη πρωτεϊνών του ακραιόφιλου αρχαίου Metallosphaera sedula με ομόλογες πρωτεΐνες άλλων οργανισμών Σαμαράς Δημήτριος ΑΕΜ 1664 Επιβλέπουσα Καθηγήτρια: Δρ. Φαδούλογλου Βασιλική Αλεξανδρούπολη 2021 Περιεχόμενα Περιεχόμενα 1 Ευχαριστίες 2 Περίληψη 3 Abstract 4 1. Εισαγωγή 5 1.1. Οι ακραιόφιλοι οργανισμοί 5 Θερμόφιλα 7 Ψυχρόφιλα 8 Οξεόφιλα 9 Αλκαλόφιλα 9 Αλόφιλα 9 1.2. Εφαρμογές στη βιοτεχνολογία 10 1.3. Το αρχαίο Metallosphaera sedula 12 1.4. Σκοπός 13 2. Υλικά και μέθοδοι 14 3. Αποτελέσματα 17 3.1 Αναγωγάση του υδραργύρου 18 3.2 Μηλική αφυδρογονάση 23 3.3 Κιτρική συνθάση 29 3.4 Αποκαρβοξυλάση της 5’-μονοφωσφορικής οροτιδίνης 35 3.5 Δεϋδρατάση του 3-υδροξυπροπιονυλο-CoA 39 3.6 Vacuolar protein sorting 4 AAA-ATPase 44 4. Συμπεράσματα – Συζήτηση 50 5. Βιβλιογραφικές αναφορές 55 6. Παράρτημα 59 1 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω ειλικρινά την επιβλέπουσα καθηγήτριά μου Δρ. Βασιλική Φαδούλογλου που με δέχθηκε στο εργαστήριό της και μου έδωσε την ευκαιρία να εκπονήσω την πτυχιακή μου εργασία υπό την επίβλεψή της. Ήταν διαθέσιμη και πρόθυμη να μου παρέχει οποιαδήποτε βοήθεια και καθοδήγηση κάθε φορά που τη χρειάστηκα. Με την υπομονή και επιμονή που έδειξε με βοήθησε να αποκτήσω θεωρητικές γνώσεις πάνω στο αντικείμενο της εργασίας, μου έδωσε σημαντικά εφόδια για τη μετέπειτα σταδιοδρομία μου, ενώ συνέβαλε και στη γενικότερη βελτίωσή μου ως άνθρωπο και εκκολαπτόμενο επιστήμονα. Φυσικά δε θα μπορούσα να μην ευχαριστήσω την οικογένεια μου που στήριξε και συνεχίζει να στηρίζει την κάθε μου επιλογή και το κάθε μου βήμα. 2 Περίληψη Οι ακραιόφιλοι οργανισμοί (extremophiles) έχουν αναπτύξει πληθώρα μηχανισμών με τους οποίους καθίσταται δυνατή η επιβίωση τους σε περιβάλλοντα όπου επικρατούν ακραίες συνθήκες.
    [Show full text]
  • Yellowstone ABC's
    YELLOWSTONE ABC’s Acid, Base, Chemistry — Student Workbook Astrobiology Biogeocatalysis Research Center The Astrobiology Biogeocatalysis Research Center at Montana State University Our team supports the work of the NASA Astrobiology opportunities. Life in the extreme environments of Institute (NAI), a multidisciplinary umbrella for Yellowstone’s thermal features is thought to resemble conducting research on the origin and evolution of life conditions of early Earth. Yellowstone’s abundant and on Earth and elsewhere in the universe. unique thermal features give researchers insights into the origin, evolution and future of life. The origin of life, sustainable energy, and global climate change are intimately linked, and the answers we seek Whether you are a potential MSU student, a research to solve our energy needs of the future are etched into investigator, a teacher or a citizen, we welcome you Earth’s history. ABRC’s work supports NASA’s missions, to the world of astrobiology. ABRC is committed to such as Mars exploration and possibilities of habitation sharing our work and its impact with the people of of other worlds. Our research also focuses on the future Montana and beyond, through formal and informal of life on Earth. These efforts support the fundamental education; public outreach; and communications to groundwork for Goal 3 (Origins of Life) of the NASA many different audiences. Astrobiology Roadmap. Our outreach and education activities are strengthened ABRC involves investigators with expertise in by many factors, including MSU’s proximity to geochemistry, experimental and theoretical physical Yellowstone National Park, the expertise and chemistry, materials science, nanoscience, and experience of our faculty and close partners, the iron-sulfur cluster biochemistry who work to define outstanding commitment from our MSU students to and conduct integrated research and education in share their work with the public, and a rich network of astrobiology.
    [Show full text]