Printmgr File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accounting and Analysis of Industrial Carbon Emission of Changsha City
2017 2nd International Conference on Environmental Science and Engineering (ESE 2017) ISBN: 978-1-60595-474-5 Accounting and Analysis of Industrial Carbon Emission of Changsha City 1,* 2 3 De-hua MAO , Hong-yu WU and Rui-zhi GUO 1College of Resources and Environment Science, Hunan Normal University, No. 36, Lushan road, Changsha, Hunan Province, China, PA 410081 2College of Resources and Environment Science, Hunan Normal University, No. 36, Lushan Road, Changsha, Hunan Province, China, PA 410081 3College of Mathematics and Computer Science, Hunan Normal University, No. 36, Lushan Road, Changsha, Hunan Province, China , PA 410081 *Corresponding author email: [email protected] Keywords: Industry, Energy Consumption, Production Process, Carbon Emission, Accounting, Temporal and Spatial Change. Abstract. Comprehensive considering the industrial production process and energy consumption, industrial carbon emissions of Changsha City were accounted for 2004 and 2013 and analyzed. The results show that: total industrial carbon emissions and average carbon emission per land area show a growth trend; carbon emission intensity showed a decreasing trend. The heavy industry accounted for the largest proportion of 54.33% in the carbon emissions structure, the spatial distribution showed characteristics that city central area is low and the edge area is high. Introduction Changsha city is the capital of Hunan Province, is located in the North of centre Hunan and includes three counties and six districts. It is situated at 111°53′E-114°15′E, 27°51′N-28°41'N which the total area is 11816 km2. The study area includes six districts: Furong district, Yuelu District, Wangcheng District, Tianxin District, Yuhua District, Kaifu District, and the area is 1909.9 km2. -
Prevalence of Reduced Visual Acuity Among School- Aged Children and Adolescents in 6 Districts of Changsha City: a Population-Based Survey
Prevalence of reduced visual acuity among school- aged children and adolescents in 6 districts of Changsha city: a population-based survey Menglian Liao Central South University Zehuai Cai Central South University https://orcid.org/0000-0002-1025-6056 Muhammad Ahmad Khan Central South University Wenjie Miao Changsha Aier eye Hospital Ding Lin Central South University Qiongyan Tang ( [email protected] ) https://orcid.org/0000-0002-8148-0274 Research article Keywords: reduced visual acuity, cloud platform, epidemiology, risk factors Posted Date: August 19th, 2020 DOI: https://doi.org/10.21203/rs.2.21160/v4 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on August 26th, 2020. See the published version at https://doi.org/10.1186/s12886-020-01619-2. Page 1/15 Abstract Background: To calculate and evaluate the prevalence of reduced uncorrected distant visual acuity (UCDVA) in primary, middle and high schools in 6 districts of Changsha, Hunan, China. Methods: A population-based retrospective study was conducted in 239 schools in 6 districts of Changsha. After routine eye examination to rule out diseases that can affect refraction, 250,980 eligible students from primary, middle and high schools were enrolled in the survey. Then the uncorrected distant and near visual acuity of each eye were measured. Categories of schools, districts, grades, eye exercises and sports time were also documented and analyzed. Results: The overall prevalence of reduced UCDVA was 51.8% (95% condence interval [CI]: 51.6%-52.0%) in 6 districts of Changsha. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
World Bank Document
RP1230v1 AMAIL Public Disclosure Authorized World Bank’s Loan: Hunan Integrated Economic Development Of Small Towns Project Public Disclosure Authorized Resettlement Action Plan Public Disclosure Authorized Hunan Integrated Economic Development Demonstration Town Project Utilizing WB Loans Project Management Office December 15, 2011 Public Disclosure Authorized Table of Contents TOWN RESETTLEMENT PLAN .....................................................................1 1 BASIC SITUATION OF THE PROJECT..................................................... 21 1.1 Project Background .............................................................................. 21 1.2 Brief Introduction to the Project ............................................................ 41 1.3 Project Preparation and Progress ........................................................ 41 1.4 Identification of Associated Projects ..................................................... 51 1.5 Project Affected Areas .......................................................................... 51 1.5.1 Positive Impacts of the Project....................................................... 51 1.5.2 Impact of Land Acquisition and Demolition of the Project .............. 61 1.6 Total Investment and Implementation Plan of the Project................... 11 1 1.7 Measures for Mitigating the Project Impacts....................................... 11 1 1.7.1 Project Planning and Design Stages .................................................... 11 1 1.7.2 Construction Stage of the Engineering -
Evaluating Economic Growth, Industrial Structure, and Water Quality of the Xiangjiang River Basin in China Based on a Spatial Econometric Approach
International Journal of Environmental Research and Public Health Article Evaluating Economic Growth, Industrial Structure, and Water Quality of the Xiangjiang River Basin in China Based on a Spatial Econometric Approach Xiaohong Chen 1,2, Guodong Yi 1,2, Jia Liu 3,*, Xiang Liu 4,* and Yang Chen 1,2 1 School of Business, Central South University, Changsha 410083, China; [email protected] (X.C.); [email protected] (G.Y.); [email protected] (Y.C.) 2 Institute of Big Data and Internet Innovation, Hunan University of Commerce, Changsha 410205, China 3 School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China 4 Institute of Finance, Guangzhou University, Guangzhou 510006, China * Correspondence: [email protected] (J.L.); [email protected] (X.L.); Tel.: +86-130-3711-0850 (J.L.); +86-185-7153-0906 (X.L.) Received: 30 July 2018; Accepted: 20 September 2018; Published: 25 September 2018 Abstract: This research utilizes the environmental Kuznets curve to demonstrate the interrelationship between economic growth, industrial structure, and water quality of the Xiangjiang river basin in China by employing spatial panel data models. First, it obtains two variables (namely, CODMn, which represents the chemical oxygen demand of using KMnO4 as chemical oxidant, and NH3-N, which represents the ammonia nitrogen content index of wastewater) by pretreating the data of 42 environmental monitoring stations in the Xiangjiang river basin from 2005 to 2015. Afterward, Moran’s I index is adopted to analyze the spatial autocorrelation of CODMn and NH3-N concentration. Then, a comparative analysis of the nonspatial panel model and spatial panel model is conducted. -
The Spatial Effect of Administrative Division on Land-Use Intensity
land Article The Spatial Effect of Administrative Division on Land-Use Intensity Pengrui Wang 1, Chen Zeng 1,*, Yan Song 2, Long Guo 3, Wenping Liu 4 and Wenting Zhang 3 1 Department of Public Management-Land Management, Huazhong Agricultural University, Wuhan 430070, China; [email protected] 2 Department of City and Regional Planning, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Department of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (L.G.); [email protected] (W.Z.) 4 College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; [email protected] * Correspondence: [email protected]; Tel.: +86-132-9668-3817 Abstract: Land-use intensity (LUI) is one of the most direct manifestations of regional land use efficiency. The study of cross-administrative LUI in urban agglomerations is of great importance for the sustainable development of land, new urbanization, and territorial spatial planning. In this study, the urban agglomeration in the middle reaches of the Yangtze River in China was used as the case study area to explore the spatial spillover effect through the administrative division, underlying driving mechanism, and spatial interactions or constraints of LUI. First, LUI was measured using the index of the proportion of construction land to the total area of the administrative region. Second, the adjacency relationship of the county-level administrative units was identified on the basis of the queen-type adjacency criterion under the county-level administrative division system. Thereafter, spatial weight matrix for spatial modeling was constructed. -
Paulson City Assessment Tool: Changsha Pilot Project August 2014
Sustainable Urbanization Paulson City Assessment Tool: Changsha Pilot Project August 2014 Xiangjiang River, Changsha © Steve Webel In partnership with: China City Development Academy China Center for International Economic Exchanges With support from: Energy Innovation Energy Foundation ! EXECUTIVE SUMMARY As part of its Sustainable Urbanization program, The Paulson Institute has designed the Paulson City Assessment Tool (PCAT) to assist Chinese Mayors and other municipal leaders in determining their sustainability priorities. We have partnered with the China City Development Academy (CCDA), under the Chinese Ministry of Housing and Urban Development, the China Center for International Economic Exchanges, Energy Innovation, and the Energy Foundation to create the categories and criteria most useful to municipal leaders in developing their cities. The Assessment Tool is designed to help mayors and municipal leaders glean meaningful insight into how their city is performing on key domestic and international sustainability and livability measures. Armed with this information, mayors and key stakeholders can better prioritize how time, resources and efforts are allocated for maximum efficiency when building Cities of the Future. The tool ranks data collected against national and/or international criteria in categories of urbanization such as transportation, urban planning, clean water, clean air, and so on. The tool builds on one designed by McKinsey & Company and used by the Inter-American Development Bank in Latin America. It assesses the data against a simple but effective “stop light” methodology, which places metrics in the green category for meeting or exceeding standards; the yellow category for falling within a certain bandwidth that merits cause for additional monitoring; and, the red category for indicators that necessitate immediate attention. -
Zhongliang Holdings Group Company Limited 中 梁 控 股 集 團 有 限 公 司 (Incorporated in the Cayman Islands with Limited Liability) (Stock Code: 2772)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. Zhongliang Holdings Group Company Limited 中 梁 控 股 集 團 有 限 公 司 (Incorporated in the Cayman Islands with limited liability) (Stock code: 2772) ANNOUNCEMENT OF ANNUAL RESULTS FOR THE YEAR ENDED 31 DECEMBER 2020 RESULTS HIGHLIGHTS . Contracted sales for 2020 amounted to RMB168.8 billion, increased by approximately 10.7% as compared with 2019. Total revenue for 2020 amounted to RMB65.94 billion, increased by approximately 16.4% as compared with 2019. Core net profit of the Company (adjusted) for 2020 amounted to RMB6.59 billion, increased by approximately 4.6% as compared with 2019. Core net profit attributable to owners of the Company (adjusted) for 2020 amounted to RMB3.75 billion, decreased by approximately 3.8% as compared with 2019. Proposed a final dividend for 2020 of HK32.5 cents (equivalent to RMB27.3 cents) per Share payable in cash. In aggregate with the interim dividend paid of HK16.3 cents (equivalent to RMB14.6 cents) per Share, total dividends for 2020 amounted to HK48.8 cents (equivalent to RMB41.9 cents) per Share, representing approximately 40% of the core net profit attributable to owners of the Company. Cash and bank balances amounted to RMB34.23 billion and deposits received from customers (contract liabilities) amounted to RMB120.91 billion as at 31 December 2020. -
Downloaded Whenever It Is Needed
Liao et al. BMC Ophthalmology (2020) 20:347 https://doi.org/10.1186/s12886-020-01619-2 RESEARCH ARTICLE Open Access Prevalence of reduced visual acuity among school-aged children and adolescents in 6 districts of Changsha city: a population- based survey Menglian Liao1,2, Zehuai Cai1,2, Muhammad Ahmad Khan1,2, Wenjie Miao2, Ding Lin1,2,3 and Qiongyan Tang1,2* Abstract Background: To calculate and evaluate the prevalence of reduced uncorrected distant visual acuity (UCDVA) in primary, middle and high schools in 6 districts of Changsha, Hunan, China. Methods: A population-based retrospective study was conducted in 239 schools in 6 districts of Changsha. After routine eye examination to rule out diseases that can affect refraction, 250,980 eligible students from primary, middle and high schools were enrolled in the survey. Then the uncorrected distant and near visual acuity of each eye were measured. Categories of schools, districts, grades, eye exercises and sports time were also documented and analyzed. Results: The overall prevalence of reduced UCDVA was 51.8% (95% confidence interval [CI]: 51.6–52.0%) in 6 districts of Changsha. Results of individual districts were as follows: Furong district 59.9%(95% CI: 57.9–61.8%), Tianxin district 62.3%(95% CI: 60.5–64.0%), Wangcheng district 47.8%(95% CI: 46.8–48.8%), Kaifu district 58.5%(95% CI: 58.0–58.9%), Yuhua district 47.0%(95% CI: 46.7–47.4%) and Yuelu district 52.6%(95% CI: 52.3–52.9%). The proportion of normal VA is seen to decrease from primary grade 3. -
Green Residential Buildings in Hunan Province Province As a Central-South Region Where Economic Development Grew Relatively Slow
Available online at www.sciencedirect.com Available online at www.sciencedirect.com Energy Procedia 00 (2017) 000–000 Energy Procedia 00 (2017) 000–000 AvailableAvailable onlineScienceDirect online at at www.sciencedirect.com www.sciencedirect.com www.elsevier.com/locate/procedia ScienceDirect www.elsevier.com/locate/procedia 2 Xu et al. / Energy Procedia 00 (2017) 000–000 ScienceDirectScienceDirect 1. Introduction EnergyEnergy Procedia Procedia 12100 (20(2017)17) 000150–157–000 Implementation of ESFGB has been officially launched in China since 2008 and great achievements have been www.elsevier.com/locate/procedia made through 8 years of development of GBL. By the end of 2015, 3979 GBL schemes were certificated and the Improving Residential Energy Efficiency International Conference, IREE 2017 overall floorage reached to 460 million square meters [1]. GBL scheme can be divided in to two different building InternationalImproving Residential Conference Energy on Improving Efficiency Residential International Energy Conference, Efficiency, IREE IREE 2017 2017 types and two different appraisal stages. One building type is GBL Public Building Scheme (GBLPBS) and the Study on developing status and appropriate technologies analysis of other is GBL Residential Building Scheme (GBLRBS). One appraisal stage is GBL Design Stage (GBLDS) and the Study on developing status and appropriate technologies analysis of other is GBL Operation Stage (GBLOS). Certificated GBL scheme can be divided into 3 star levels, i.e. one-star, greenThe 15th residential International Symposium buildings on inDistrict Hunan Heating Province and Cooling two-star and three-star which is the highest level [2]. Green buildings were developed relatively late in Hunan green residential buildings in Hunan Province Province as a central-south region where economic development grew relatively slow. -
Chinese Mainland
Address List of Special Warehousing Service Note: The address marked in red are newly added address. (Effective date:October 1, 2021) Province / Directly- controlled City District/county Town, Sub-district and House Number Municipality / Autonomous Region/SAR B4-25, Gate 1, ProLogis Logistics Park, No.1 Tiedi Road, Anhui Province Hefei Shushan District High-tech Zone No.18 Tianzhushan Road, Longshan Sub-district, Wuhu Anhui Province Wuhu Jiujiang District Economic and Technological Development Zone Anhui Province Chuzhou Langya District Longji Leye Photovoltaic Co., Ltd., No.19 Huai'an Road 3/F, No.8 Building, South Area, Lixiang Innovation Park, Anhui Province Chuzhou Nanqiao District Chuzhou, 018 Township Road Anhui Province Chuzhou Nanqiao District No.19 Huai'an Road Yuanrong New Material Holding Co., Ltd., 50 Meters Anhui Province Hefei Shushan District Westward of Bridge of Intersection of Changning Avenue and Ningxi Road Anhui Province Hefei Yaohai District No.88 Dayu Road Anhui Province Hefei Yaohai District No.2177 Dongfang Avenue Beijing BOE Vision-Electronic Technology Co., Ltd., No. Anhui Province Hefei Yaohai District 2177 Dongfang Avenue Anhui Province Hefei Yaohai District No.668 Longzihu Road Anhui Province Hefei Yaohai District No. 668 Longzihu Road Anhui Province Hefei Yaohai District No.2177 Tongling North Road Anhui Province Hefei Yaohai District No.3166 Tongling North Road Anhui Province Hefei Yaohai District No.8 Xiangwang Road Anhui Province Wuhu Jiujiang District No. 8 Anshan Road Anhui Province Wuhu Jiujiang District -
Advance Edited Version Distr.: General 5 June 2020
A/HRC/WGAD/2020/11 Advance Edited Version Distr.: General 5 June 2020 Original: English Human Rights Council Working Group on Arbitrary Detention Opinions adopted by the Working Group on Arbitrary Detention at its eighty-seventh session, 27 April–1 May 2020 Opinion No. 11/2020 concerning Cheng Yuan, Liu Dazhi and Wu Gejianxiong (China) 1. The Working Group on Arbitrary Detention was established in resolution 1991/42 of the Commission on Human Rights. In its resolution 1997/50, the Commission extended and clarified the mandate of the Working Group. Pursuant to General Assembly resolution 60/251 and Human Rights Council decision 1/102, the Council assumed the mandate of the Commission. The Council most recently extended the mandate of the Working Group for a three-year period in its resolution 42/22. 2. In accordance with its methods of work (A/HRC/36/38), on 29 October 2019 the Working Group transmitted to the Government of China a communication concerning Yuan Cheng, Dazhi Liu and Gejianxiong Wu. The Government replied to the communication on 13 December 2019. The State is not a party to the International Covenant on Civil and Political Rights. 3. The Working Group regards deprivation of liberty as arbitrary in the following cases: (a) When it is clearly impossible to invoke any legal basis justifying the deprivation of liberty (as when a person is kept in detention after the completion of his or her sentence or despite an amnesty law applicable to him or her) (category I); (b) When the deprivation of liberty results from the exercise