Phylogenetic Position of Multicilia Marina and the Evolution of Amoebozoa

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Position of Multicilia Marina and the Evolution of Amoebozoa Article Phylogenetic position of Multicilia marina and the evolution of Amoebozoa NIKOLAEV, Sergey Igorievich, et al. Abstract Recent molecular phylogenetic studies have led to the erection of the phylum Amoebozoa, uniting naked and testate lobose amoebae, the mycetozoan slime moulds and amitochondriate amoeboid protists (Archamoebae). Molecular data together with ultrastructural evidence have suggested a close relationship between Mycetozoa and Archamoebae, classified together in the Conosea, which was named after the cone of microtubules that, when present, is characteristic of their kinetids. However, the relationships of conoseans to other amoebozoans remain unclear. Here, we obtained the complete small-subunit (SSU) rRNA gene sequence (2746 bp) of the enigmatic, multiflagellated protist Multicilia marina, which has formerly been classified either in a distinct phylum, Multiflagellata, or among lobose amoebae. Our study clearly shows that Multicilia marina belongs to the Amoebozoa. Phylogenetic analyses including 60 amoebozoan SSU rRNA gene sequences revealed that Multicilia marina branches at the base of the Conosea, together with another flagellated amoebozoan, Phalansterium solitarium, as well as with Gephyramoeba sp., Filamoeba nolandi [...] Reference NIKOLAEV, Sergey Igorievich, et al. Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. International Journal of Systematic and Evolutionary Microbiology, 2006, vol. 56, no. 6, p. 1449-1458 DOI : 10.1099/ijs.0.63763-0 Available at: http://archive-ouverte.unige.ch/unige:121594 Disclaimer: layout of this document may differ from the published version. 1 / 1 International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1449–1458 DOI 10.1099/ijs.0.63763-0 Phylogenetic position of Multicilia marina and the evolution of Amoebozoa Sergey I. Nikolaev,1,231 Ce´dric Berney,241 Nikolai B. Petrov,1 Alexandre P. Mylnikov,3 Jose´ F. Fahrni2 and Jan Pawlowski2 Correspondence 1Department of Evolutionary Biochemistry, A. N. Belozersky Institute of Physico-Chemical Sergey Nikolaev Biology, Moscow State University, Moscow, Russia Sergey.Nikolaev@medecine. 2Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland unige.ch 3Institute of Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya obl., Borok, Ce´dric Berney Russia [email protected] Recent molecular phylogenetic studies have led to the erection of the phylum Amoebozoa, uniting naked and testate lobose amoebae, the mycetozoan slime moulds and amitochondriate amoeboid protists (Archamoebae). Molecular data together with ultrastructural evidence have suggested a close relationship between Mycetozoa and Archamoebae, classified together in the Conosea, which was named after the cone of microtubules that, when present, is characteristic of their kinetids. However, the relationships of conoseans to other amoebozoans remain unclear. Here, we obtained the complete small-subunit (SSU) rRNA gene sequence (2746 bp) of the enigmatic, multiflagellated protist Multicilia marina, which has formerly been classified either in a distinct phylum, Multiflagellata, or among lobose amoebae. Our study clearly shows that Multicilia marina belongs to the Amoebozoa. Phylogenetic analyses including 60 amoebozoan SSU rRNA gene sequences revealed that Multicilia marina branches at the base of the Conosea, together with another flagellated amoebozoan, Phalansterium solitarium, as well as with Gephyramoeba sp., Filamoeba nolandi and two unidentified amoebae. This is the first report showing strong support for a clade containing all flagellated amoebozoans and we discuss the position of the root of the phylum Amoebozoa in the light of this result. INTRODUCTION single kinetosome surrounded by a conical microtubular sheath. Submembrane interkinetosomal fibres connect Multicilia marina is a multiflagellated amoeboid protist that each kinetosome to a neighbouring one and coordinate was first isolated in 1880 by L. Cienkowski (Cienkowski, the movement of the flagella. No microtubular connectives 1881) at the Solovetskaya station (Onega Bay, White Sea). between the basal apparatus and the nucleus have been Its cells are usually spherical, about 30–40 mm in diameter, observed (Mikrjukov & Mylnikov, 1996, 1998). The mito- although some of them can have an oblong or irregular chondrial cristae are tubular. Multicilia marina normally form. Typically, each cell has approximately 20–30 flagella. feeds by phagocytosis, using lobopodia for the capture of The basal apparatus of each flagellum is represented by a large prey (gymnamoebae). 3Present address: Department of Genetic Medicine and Development, Cienkowski (1881) described Multicilia as an intermediate Centre Me´dical Universitaire, 1 rue Michel-Servet, 1211 Geneva 4, stage between flagellates and heliozoans. Kudo (1954) con- Switzerland. sidered it to be a member of the order Rhizomastigina 4Present address: Department of Zoology, University of Oxford, The Butschli, together with the family Mastigamoebidae and two Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK. groups of heliozoans, the actinophryids and the dimorphids. 1These authors contributed equally to this work. Later ultrastructural studies revealed that the unusually Abbreviations: BV, bootstrap value; GTR, general time-reversible; ML, weak and oscillating movements of the flagella of Multicilia maximum likelihood; PP, posterior probability; SSU, small subunit. marina (resulting in their superficial similarity to heliozoan The GenBank/EMBL/DDBJ accession numbers for the SSU rRNA axopodia), together with the poor coordination in their gene sequences of Multicilia marina and the unidentified eukaryote activity and a lack of anterior and posterior ends, make clone Borok are AY268037 and AY626163, respectively. Multicilia marina distinct from all other known multi- A figure showing the predicted secondary structure of the small-subunit flagellated/ciliated protistan taxa, such as Caryoblastea, rRNA gene of Multicilia marina is available as supplementary material in Pseudociliata, Hemimastigophora, Ciliophora, Opalinata IJSEM Online. and Parabasalida. A new phylum, Multiflagellata, of 63763 G 2006 IUMS Printed in Great Britain 1449 S. I. Nikolaev and others uncertain affinities was proposed to include the genus vector system (Promega), transformed in XL-2 ultracompetent cells Multicilia (Mikrjukov & Mylnikov, 1996, 1998). In contrast, (Stratagene), sequenced using an ABI PRISM BigDye Terminator cycle Cavalier-Smith (1998) proposed that Multicilia belongs sequencing kit and analysed using an ABI-377 DNA sequencer (Perkin Elmer), all according to the manufacturers’ instructions. in the phylum Amoebozoa, uniting lobose amoebae, the mycetozoan slime moulds and the amitochondriate enta- In addition, we obtained the SSU rRNA gene sequence (as described moebids and pelobionts (Archamoebae), and that the genus above) of an unidentified amoeba (unidentified eukaryote clone is either related to Archamoebae (Cavalier-Smith, 2000) or Borok), which was a contaminant in a culture of the centrohelid to Vannellidae (Cavalier-Smith, 2003; Cavalier-Smith et al., Clathrulina elegans isolated from waste treatment plants in Borok. 2004). In the second edition of the Illustrated Guide to the SSU rRNA gene phylogenetic analyses and secondary- Protozoa, Multicilia was placed among ‘residual hetero- structure modelling. Complete SSU rRNA gene sequences of trophic flagellates’ (Patterson et al., 2000). Multicilia marina and the unidentified eukaryote clone Borok were aligned manually with sequences from diverse eukaryotes using the In spite of the rapid accumulation of sequences from amoe- Genetic Data Environment software (Larsen et al., 1993), following boid organisms during the past few years (Amaral Zettler the secondary-structure model proposed by Wuyts et al. (2001). A et al., 2000; Bolivar et al., 2001; Fahrni et al., 2003; Peglar first dataset, including the two sequences obtained in this study and et al., 2003; Cavalier-Smith et al., 2004; Nikolaev et al., 2004, sequences of 23 lobose amoebae, 25 opisthokonts and 50 bikonts, 2005), to date no molecular data have been reported for was used to infer the position of Multicilia marina among eukary- Multicilia. Previous molecular phylogenetic studies, based otes (1421 unambiguously aligned positions). More-detailed phylo- genetic relationships within the Amoebozoa were then assessed on actin and small-subunit (SSU) rRNA gene sequences, using an alignment of 64 sequences, including the two sequences indicated the monophyly of Amoebozoa, although with obtained in this study and 58 sequences of other amoebozoans very weak support (Bolivar et al., 2001; Fahrni et al., 2003; (including the more divergent mycetozoans, pelobionts and enta- Cavalier-Smith et al., 2004). Furthermore, several higher- moebids) and four opisthokonts as an outgroup (1290 unambigu- level taxonomic lineages have been distinguished within ously aligned positions). GenBank/EMBL/DDBJ accession numbers Amoebozoa (e.g. Smirnov et al., 2005). However, the for all sequences used in our analyses are indicated in Figs 1 and 2. relationships between and within these lineages remain For both datasets, a maximum-likelihood (ML) tree was obtained with unclear. It has been proposed that the ancestral amoebozoan PAUP* (Swofford, 1998), using the general time-reversible (GTR) may have been a flagellated organism similar to Phalans- model of evolution (Lanave et al., 1984; Rodriguez et al., 1990), taking terium
Recommended publications
  • Download This Publication (PDF File)
    PUBLIC LIBRARY of SCIENCE | plosgenetics.org | ISSN 1553-7390 | Volume 2 | Issue 12 | DECEMBER 2006 GENETICS PUBLIC LIBRARY of SCIENCE www.plosgenetics.org Volume 2 | Issue 12 | DECEMBER 2006 Interview Review Knight in Common Armor: 1949 Unraveling the Genetics 1956 An Interview with Sir John Sulston e225 of Human Obesity e188 Jane Gitschier David M. Mutch, Karine Clément Research Articles Natural Variants of AtHKT1 1964 The Complete Genome 2039 Enhance Na+ Accumulation e210 Sequence and Comparative e206 in Two Wild Populations of Genome Analysis of the High Arabidopsis Pathogenicity Yersinia Ana Rus, Ivan Baxter, enterocolitica Strain 8081 Balasubramaniam Muthukumar, Nicholas R. Thomson, Sarah Jeff Gustin, Brett Lahner, Elena Howard, Brendan W. Wren, Yakubova, David E. Salt Matthew T. G. Holden, Lisa Crossman, Gregory L. Challis, About the Cover Drosophila SPF45: A Bifunctional 1974 Carol Churcher, Karen The jigsaw image of representatives Protein with Roles in Both e178 Mungall, Karen Brooks, Tracey of various lines of eukaryote evolution Splicing and DNA Repair Chillingworth, Theresa Feltwell, refl ects the current lack of consensus as Ahmad Sami Chaouki, Helen K. Zahra Abdellah, Heidi Hauser, to how the major branches of eukaryotes Salz Kay Jagels, Mark Maddison, fi t together. The illustrations from upper Sharon Moule, Mandy Sanders, left to bottom right are as follows: a single Mammalian Small Nucleolar 1984 Sally Whitehead, Michael A. scale from the surface of Umbellosphaera; RNAs Are Mobile Genetic e205 Quail, Gordon Dougan, Julian Amoeba, the large amoeboid organism Elements Parkhill, Michael B. Prentice used as an introduction to protists for Michel J. Weber many school children; Euglena, the iconic Low Levels of Genetic 2052 fl agellate that is often used to challenge Soft Sweeps III: The Signature 1998 Divergence across e215 ideas of plants (Euglena has chloroplasts) of Positive Selection from e186 Geographically and and animals (Euglena moves); Stentor, Recurrent Mutation Linguistically Diverse one of the larger ciliates; Cacatua, the Pleuni S.
    [Show full text]
  • Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
    bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017.
    [Show full text]
  • Entamoeba Histolytica
    Journal of Clinical Microbiology and Biochemical Technology Piotr Nowak1*, Katarzyna Mastalska1 Review Article and Jakub Loster2 1Laboratory of Parasitology, Department of Microbiology, University Hospital in Krakow, 19 Entamoeba Histolytica - Pathogenic Kopernika Street, 31-501 Krakow, Poland 2Department of Infectious Diseases, University Protozoan of the Large Intestine in Hospital in Krakow, 5 Sniadeckich Street, 31-531 Krakow, Poland Humans Dates: Received: 01 December, 2015; Accepted: 29 December, 2015; Published: 30 December, 2015 *Corresponding author: Piotr Nowak, Laboratory of Abstract Parasitology, Department of Microbiology, University Entamoeba histolytica is a cosmopolitan, parasitic protozoan of human large intestine, which is Hospital in Krakow, 19 Kopernika Street, 31- 501 a causative agent of amoebiasis. Amoebiasis manifests with persistent diarrhea containing mucus Krakow, Poland, Tel: +4812/4247587; Fax: +4812/ or blood, accompanied by abdominal pain, flatulence, nausea and fever. In some cases amoebas 4247581; E-mail: may travel through the bloodstream from the intestine to the liver or to other organs, causing multiple www.peertechz.com abscesses. Amoebiasis is a dangerous, parasitic disease and after malaria the second cause of deaths related to parasitic infections worldwide. The highest rate of infections is observed among people living Keywords: Entamoeba histolytica; Entamoeba in or traveling through the tropics. Laboratory diagnosis of amoebiasis is quite difficult, comprising dispar; Entamoeba moshkovskii; Entamoeba of microscopy and methods of molecular biology. Pathogenic species Entamoeba histolytica has to histolytica sensu lato; Entamoeba histolytica sensu be differentiated from other nonpathogenic amoebas of the intestine, so called commensals, that stricto; commensals of the large intestine; amoebiasis very often live in the human large intestine and remain harmless.
    [Show full text]
  • Protistology Mitochondrial Genomes of Amoebozoa
    Protistology 13 (4), 179–191 (2019) Protistology Mitochondrial genomes of Amoebozoa Natalya Bondarenko1, Alexey Smirnov1, Elena Nassonova1,2, Anna Glotova1,2 and Anna Maria Fiore-Donno3 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia 2 Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, 194064 Saint Petersburg, Russia 3 University of Cologne, Institute of Zoology, Terrestrial Ecology, 50674 Cologne, Germany | Submitted November 28, 2019 | Accepted December 10, 2019 | Summary In this mini-review, we summarize the current knowledge on mitochondrial genomes of Amoebozoa. Amoebozoa is a major, early-diverging lineage of eukaryotes, containing at least 2,400 species. At present, 32 mitochondrial genomes belonging to 18 amoebozoan species are publicly available. A dearth of information is particularly obvious for two major amoebozoan clades, Variosea and Tubulinea, with just one mitochondrial genome sequenced for each. The main focus of this review is to summarize features such as mitochondrial gene content, mitochondrial genome size variation, and presence or absence of RNA editing, showing if they are unique or shared among amoebozoan lineages. In addition, we underline the potential of mitochondrial genomes for multigene phylogenetic reconstruction in Amoebozoa, where the relationships among lineages are not fully resolved yet. With the increasing application of next-generation sequencing techniques and reliable protocols, we advocate mitochondrial
    [Show full text]
  • Product Information Sheet for NR-2597
    Product Information Sheet for NR-2597 Entamoeba histolytica 200:NIH Clone 1 nitrogen carrier is preferred. Please read the following recommendations prior to using this material. Catalog No. NR-2597 Growth Conditions: Growth Media: (Derived from ATCC® 50555™) ATCC medium 2154: or equivalent Incubation: For research use only. Not for human use. Temperature: 35–37°C Atmosphere: Axenic and microaerophilic Contributor: Propagation: ATCC® 1. To establish a culture from the frozen state, place a vial in a 35°C water bath for 2 to 3 minutes, until thawed. Product Description: Immerse the vial just enough to cover the frozen Protozoa Classification: Entamoebidae, Entamoeba material. Do not agitate the vial. Agent: Entamoeba histolytica 2. Transfer the vial contents to a 16 x 125 mm screw- Strain: 200:NIH Clone 1 capped borosilicate glass test tube containing 13 mL of 1 ® Source: Strain 200:NIH (ATCC 30458™) monoxenized and growth medium. cloned via microisolation, then reaxenized 3. Screw the cap on tightly and incubate at a 15° horizontal Comments: Entamoeba histolytica 200:NIH was deposited at slant at 35°C. Observe the culture daily and subculture ® 2-5 ATCC in 1975 by Dr. Louis S. Diamond , Laboratory of when peak trophozoite density is observed. Parasitic Diseases, National Institute of Allergy and 4. To subculture, ice the culture for 10 minutes and gently Infectious Diseases, National Institutes of Health, invert 20 times. Bethesda, Maryland. 5. Aseptically transfer a 0.1 and 0.25 mL aliquot to freshly prepared 16 x 125 mm screw-capped borosilicate glass Entamoeba histolytica is a pathogenic protozoan parasite that test tubes containing 13 mL of growth medium.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Acanthamoeba Spp., Balamuthia Mandrillaris, Naegleria Fowleri, And
    MINIREVIEW Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris , Naegleria fowleri , and Sappinia diploidea Govinda S. Visvesvara1, Hercules Moura2 & Frederick L. Schuster3 1Division of Parasitic Diseases, National Center for Infectious Diseases, Atlanta, Georgia, USA; 2Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; and 3Viral and Rickettsial Diseases Laboratory, California Department of Health Services, Richmond, California, USA Correspondence: Govinda S. Visvesvara, Abstract Centers for Disease Control and Prevention, Chamblee Campus, F-36, 4770 Buford Among the many genera of free-living amoebae that exist in nature, members of Highway NE, Atlanta, Georgia 30341-3724, only four genera have an association with human disease: Acanthamoeba spp., USA. Tel.: 1770 488 4417; fax: 1770 488 Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba 4253; e-mail: [email protected] spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised Received 8 November 2006; revised 5 February humans. Balamuthia is also associated with disease in immunocompetent chil- 2007; accepted 12 February 2007. dren, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba First published online 11 April 2007. keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in DOI:10.1111/j.1574-695X.2007.00232.x immunocompetent children and young adults. In addition to human infections, Editor: Willem van Leeuwen Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Keywords Sappinia diploidea is known, generalizations about the organism as an agent of primary amoebic meningoencephalitis; disease are premature.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida) Inferred
    FOLIA PARASITOLOGICA 55: 256–264, 2008 Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida) inferred from SSU rDNA sequences of the type strain of Flabellula citata Schaeffer, 1926 and newly isolated strains of marine amoebae Iva Dyková1,2, Ivan Fiala1,2, Hana Pecková1 and Helena Dvořáková1 1Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; 2Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic Key words: Amoebozoa, Leptomyxida, Flabellulidae, Flabellula citata, SSU rDNA phylogeny Abstract. New strains of non-vannellid flattened amoebae isolated from fish, an invertebrate and the marine environment were studied together with Flabellula citata Schaeffer, 1926 selected by morphology as a reference strain. The study revealed a pau- city of features distinguishing individual strains at the generic level, but clearly evidenced mutual phylogenetic relationships within the assemblage of strains as well as their affiliation to the Leptomyxida. In this study, the SSU rDNA dataset of lepto- myxids was expanded and a new branching pattern was presented within this lineage of Amoebozoa. Sequences of three newly introduced strains clustered in close relationship with the type strain of F. citata, the type species of the genus. Three strains, including one resembling Flamella sp., were positioned within a sister-group containing Paraflabellula spp. Results of phyloge- netic analysis confirmed doubts of previous authors regarding generic assignment of several Rhizamoeba and Ripidomyxa strains. Naked amoebae with fan-shaped trophozoites flat- In phylogenetic analyses based on SSU rDNA se- tened to a substrate were described in the early period of quences, two representatives of Flabellulidae, P.
    [Show full text]