Uniquely Designed Nuclear Structures of Lower Eukaryotes

Total Page:16

File Type:pdf, Size:1020Kb

Uniquely Designed Nuclear Structures of Lower Eukaryotes Available online at www.sciencedirect.com ScienceDirect Uniquely designed nuclear structures of lower eukaryotes 1 1,2,3 Masaaki Iwamoto , Yasushi Hiraoka and 1,2,3 Tokuko Haraguchi The nuclear structures of lower eukaryotes, specifically Dictyostelium discoideum (Amoebozoa) that share common protists, often vary from those of yeasts and metazoans. NE proteins with the NEs of multicellular organisms [1 ]. Several studies have demonstrated the unique and fascinating Yet another example is the structurally distinct NPCs features of these nuclear structures, such as a histone- formed in the ciliated protozoa Tetrahymena (Alveolata, independent condensed chromatin in dinoflagellates and two SAR), which possesses two structurally and functionally structurally distinct nuclear pore complexes in ciliates. Despite distinct nuclei within a single cell. These unicellular their unique molecular/structural features, functions required eukaryotes are generally called protists across all phylo- for formation of their cognate molecules/structures are highly genetic supergroups. In this review, we highlight the conserved. This provides important information about the unique nuclear structures of protists and discuss their structure–function relationship of the nuclear structures. In this attractiveness as potential biological systems for studying review, we highlight characteristic nuclear structures found in nuclear structures. lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures. Virus-derived non-histone proteins packed Addresses into highly condensed chromatins in 1 Advanced ICT Research Institute, National Institute of Information and dinoflagellates Communications Technology (NICT), Kobe, Japan Dinoflagellates, which belong to the Alveolata superphy- 2 Graduate School of Frontier Biosciences, Osaka University, Suita, lum (Figure 1) [2], contain a strikingly different chroma- Japan 3 tin structure from most eukaryotes. The chromatin in Graduate School of Science, Osaka University, Toyonaka, Japan dinoflagellates remains largely condensed, even in inter- Corresponding author: Haraguchi, Tokuko ([email protected]) phase [3]. In most eukaryotes, chromatin is mainly com- posed of DNA and histone proteins within a nucleosome, which efficiently packs the DNA into a condensed form. Current Opinion in Cell Biology 2016, 40:66–73 In contrast, dinoflagellates have an unusual chromatin This review comes from a themed issue on Cell nucleus structure that does not contain bulk histones [4]. As such, Edited by Ulrike Kutay and Orna Cohen-Fix they were once considered an evolutionary intermediate species between histone-less prokaryotes and eukaryotes [4,5]. However, recent genomic and transcriptomic anal- yses of the dinoflagellates Lingulodinum demonstrated http://dx.doi.org/10.1016/j.ceb.2016.02.019 that they have a set of genes encoding all core histones 0955-0674/# 2016 The Authors. Published by Elsevier Ltd. This is an [6], and the genes are expressed as mRNAs, although open access article under the CC BY license (http://creativecommons. proteins produced from the genes are below detectable org/licenses/by/4.0/). levels [7]. Interestingly, biochemical and transcriptomic analyses of the toxigenic marine dinoflagellate Hemato- dinium sp. identified no histones, but revealed a novel Introduction non-histone basic protein named dinoflagellate/viral nu- Most of our knowledge about the ‘typical’ nuclear struc- cleoprotein (DVNP) that functions as a bulk protein for tures of eukaryotes, such as chromatin, the nuclear enve- packing the genomic DNA (Figure 2) [8 ]. DVNPs lope (NE), and the nuclear pore complex (NPC), has originated from the algal virus protein EsV-152 been acquired from studies in classical model organisms (Figure 2) [8 ]. This discovery strongly suggests that such as yeasts and humans, which belong to the group dinoflagellates stopped using histones to package the Opisthokonta (Figure 1). However, recent technical DNA because they gained new proteins with superseding advances in genomic DNA sequencing and protein anal- functions, not because they lost histone genes. The ysis have facilitated the study of organisms other than genome size of dinoflagellates that evolved DVNPs is Opisthokonta, unveiling astonishingly unusual nuclear much larger than that of related histone-bearing unicel- structures that had not previously been observed. One lular eukaryotes, such as Perkinsus marinus, a parasite of example is the ‘dinokaryon’ chromatin structure of dino- marine mollusks (4800 Æ 500 Mbp in Hematodinium sp. vs flagellates (Alveolata, SAR) that lacks bulk histones. 58 Æ 9 Mbp in Perkinsus marinus, about an 80-fold in- Other examples are the NEs in the Filasterea Capsaspora crease) [3,9,10]. This coincident increase in genome size owczarzaki (Opisthokonta) and the Dictyostelia with the acquisition of DVNPs leads to the supposition Current Opinion in Cell Biology 2016, 40:66–73 www.sciencedirect.com Unique nuclear structures of lower eukaryotes Iwamoto, Hiraoka and Haraguchi 67 Figure 1 EXCAVATA SAR Radiolaria Foraminifera Discoba Cercozoa Malawimonas Stramenopiles Metamonada Dinoflagellata Apicomplexa Tubulinea Rhizaria ARCHAEPLASTIDA Ciliates Dictyostelia Alveolata Green plants AMOEBOZOA Fungi Red algae Nuclearia Glaucophyta Filasterea Telonema Choano- monada LECA Haptophyta Centrohelida Metazoa OPISTHOKONTA Cryptophyta Apusomonadidae Rigidifilida Breviatea Collodictyonidae Current Opinion in Cell Biology Eukaryotic evolutionary tree according to Adl et al. [63 ]. The five supergroups are represented by different line colors. Groups containing the species described in the text are underlined. Dotted lines indicate uncategorized groups. LECA means the last eukaryotic common ancestor. Figure 2 DVNP.5 (132 aa, pI=11.89) EsV-152 (122 aa, pI=9.73) E-value=2e-09 Helix turn helix H2A (130 aa, pI=10.9) E-value=0.62 H2B (126 aa, pI=10.31) No significant similarity H3 (136 aa, pI=11.13) E-value=0.31 H4 (103 aa, pI=11.36) E-value=0.1 Histone fold Current Opinion in Cell Biology Molecular features of the dinoflagellate Hematodinium DVNP.5 (GenBank accession number JX839700), phycodnavirus EsV-152 (NP_077537), and human core histones. Orange and green boxes represent a-helices and b-strands, respectively, predicted by psipred (http://bioinf.cs.ucl.ac.uk/ psipred/). Vertical lines indicate the positions of basic residues; black and blue lines represent lysine and arginine, respectively. Red diamonds indicate serine/threonine phosphorylation sites. The phosphorylation sites of DVNP.5 and EsV-152 were predicted by Motif Scan (http://myhits. isb-sib.ch/cgi-bin/motif_scan). pI values were calculated at http://web.expasy.org/compute_pi/. E-values were obtained by PSI-BLAST applied against DVNP.5 with the default settings of algorithm parameters. Although DVNP.5 and EsV-152 have a helix-turn-helix motif similar to that of the histone fold, they are evolutionarily distinct from histones. www.sciencedirect.com Current Opinion in Cell Biology 2016, 40:66–73 68 Cell nucleus that condensation with DVNPs results in more compact the yeast Schizosaccharomyces pombe have been shown to packaging of their large genome. It remains unknown be conserved in metazoans: the LEM domain proteins how DNA is packed with DVNPs. Understanding the Lem2 and Man1, the SUN domain protein Sad1, and the structure of DNA condensed with DVNPs requires future KASH domain protein Kms1, among others [14–17]. In investigation. It is also worth investigating how acquisi- addition, two SUN domain proteins have been identified tion of DVNPs and the subsequent condensed chromatin in Dictyostelium discoideum (Dictyostelia, Amoebozoa) [18– structure is advantageous for maintaining the remarkably 20]; however, no other NE proteins have been experi- large sized genome in the extremely diversified dinofla- mentally identified in unicellular eukaryotes other than gellate species. To address this last question, finding new Opisthokonta, although in silico analysis of genomic se- species that exhibit intermediate-usage between histones quencing predicts the presence of conserved NE proteins and DVNPs is required. Further studies on dinoflagel- in unicellular organisms [21]. lates will provide additional information about the mo- lecular basis of genome organization. Because many of the NE proteins are associated with tissue-specific diseases [13,22,23] — for example, muta- Unexpectedly common NE proteins in tions in the A-type lamin gene and the lamin-interacting unicellular eukaryotes genes emerin and barrier-to-autointegration factor cause The discovery of 67 novel kinds of nuclear membrane various tissue-specific diseases in humans — how and proteins in rodent cells via subtractive proteomics analysis when these NE proteins appeared during evolution from [11] paved the way for the subsequent detection of unicellular to multicellular organisms is an important several hundred NE transmembrane proteins (NETs). question to address. Recently, the unicellular Opistho- These NETs are differentially expressed in different konta Capsaspora owczarzaki (Filasterea), was proposed to tissues and at different times in the same cells [12,13]. be a relative of a direct unicellular ancestor of metazoans Compared to the successful identification of NETs in (multicellular animals) [24] because its genome sequence higher eukaryotic cells, knowledge of NETs in lower [25 ] contains the gene predicted to encode the lamin eukaryotes has been limited. Several NE proteins of protein
Recommended publications
  • Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
    bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Recent Dinoflagellate Cysts from the Chesapeake Estuary (Maryland and Virginia, U.S.A.): Taxonomy and Ecological Preferences
    Recent dinoflagellate cysts from the Chesapeake estuary (Maryland and Virginia, U.S.A.): taxonomy and ecological preferences. Tycho Van Hauwaert Academic year 2015–2016 Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Science in Geology Promotor: Prof. Dr. S. Louwye Co-promotor: Dr. K. Mertens Tutor: P. Gurdebeke Jury: Dr. T. Verleye, Dr. E. Verleyen Picture on the cover An exceptionally dense bloom of Alexandrium monilatum was observed in lower Chesapeake Bay along the north shore of the York River between Sarah's Creek and the Perrin River on 17 August 2015. Credit: W. Vogelbein/VIMS ii ACKNOWLEDGEMENTS First of all I want to thank my promoters, Prof. Dr. S. Louwye and Dr. K. Mertens. They introduced me into the wonderful world of dinoflagellates and the dinocysts due to the course Advanced Micropaleontology. I did not have hesitated long to choose a subject within the research unit of paleontology. Thank you for the proofreading, help with identification and many discussions. A special mention for Pieter Gurdebeke. This appreciation you can imagine as a 22-minutes standing ovation for the small talks and jokes only! If you include the assistance in the thesis, I would not dare to calculate the time of applause. I remember when we were discussing the subject during the fieldtrip to the Alps in September. We have come a long way and I am pleased with the result. Thank you very much for helping me with the preparation of slides, identification of dinocysts, some computer programs, proofreading of the different chapters and many more! When I am back from my trip to Canada, I would like to discuss it with a (small) bottle of beer.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Functional Ecology of Aquatic Phagotrophic Protists – Concepts, Limitations, and Perspectives
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 55 (2016) 50–74 Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives a,∗ b c d b Thomas Weisse , Ruth Anderson , Hartmut Arndt , Albert Calbet , Per Juel Hansen , e David J.S. Montagnes a University of Innsbruck, Research Institute for Limnology, Mondseestr. 9, 5310 Mondsee, Austria b University of Copenhagen, Marine Biological Section, Strandpromenaden 5, 3000 Helsingør, Denmark c University of Cologne, Biocenter, Institute for Zoology, General Ecology, Zuelpicher Str. 47b, 50674 Cologne (Köln), Germany d Dept. Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC) Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain e Institute of Integrative Biology, University of Liverpool, BioScience Building, Crown Street, Liverpool L69 7ZB, UK Available online 31 March 2016 Abstract Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator–prey dynamics ranging from Lotka–Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations.
    [Show full text]
  • 23.3 Groups of Protists
    Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes.
    [Show full text]
  • Genetic Diversity and Habitats of Two Enigmatic Marine Alveolate Lineages
    AQUATIC MICROBIAL ECOLOGY Vol. 42: 277–291, 2006 Published March 29 Aquat Microb Ecol Genetic diversity and habitats of two enigmatic marine alveolate lineages Agnès Groisillier1, Ramon Massana2, Klaus Valentin3, Daniel Vaulot1, Laure Guillou1,* 1Station Biologique, UMR 7144, CNRS, and Université Pierre & Marie Curie, BP74, 29682 Roscoff Cedex, France 2Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CMIMA, CSIC. Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain 3Alfred Wegener Institute for Polar Research, Am Handelshafen 12, 27570 Bremerhaven, Germany ABSTRACT: Systematic sequencing of environmental SSU rDNA genes amplified from different marine ecosystems has uncovered novel eukaryotic lineages, in particular within the alveolate and stramenopile radiations. The ecological and geographic distribution of 2 novel alveolate lineages (called Group I and II in previous papers) is inferred from the analysis of 62 different environmental clone libraries from freshwater and marine habitats. These 2 lineages have been, up to now, retrieved exclusively from marine ecosystems, including oceanic and coastal waters, sediments, hydrothermal vents, and perma- nent anoxic deep waters and usually represent the most abundant eukaryotic lineages in environmen- tal genetic libraries. While Group I is only composed of environmental sequences (118 clones), Group II contains, besides environmental sequences (158 clones), sequences from described genera (8) (Hema- todinium and Amoebophrya) that belong to the Syndiniales, an atypical order of dinoflagellates exclu- sively composed of marine parasites. This suggests that Group II could correspond to Syndiniales, al- though this should be confirmed in the future by examining the morphology of cells from Group II. Group II appears to be abundant in coastal and oceanic ecosystems, whereas permanent anoxic waters and hy- drothermal ecosystems are usually dominated by Group I.
    [Show full text]
  • Phylogenomics Invokes the Clade Housing Cryptista, Archaeplastida, and Microheliella Maris
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomics invokes the clade housing Cryptista, 2 Archaeplastida, and Microheliella maris. 3 4 Euki Yazaki1, †, *, Akinori Yabuki2, †, *, Ayaka Imaizumi3, Keitaro Kume4, Tetsuo Hashimoto5,6, 5 and Yuji Inagaki6,7 6 7 1: RIKEN iTHEMS, Wako, Saitama 351-0198, Japan 8 2: Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 236-0001, 9 Japan 10 3: College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. 11 4: Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan 12 5: Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305- 13 8572, Japan 14 6: Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 15 Ibaraki, 305-8572, Japan 16 7: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, 17 Japan 18 19 †EY and AY equally contributed to this work. 20 *Correspondence addressed to Euki Yazaki: [email protected] and Akinori Yabuki: 21 [email protected] 22 23 Running title: The clade housing Cryptista, Archaeplastida, and Microheliella maris. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Distinctive Nuclear Features of Dinoflagellates with a Particular
    microorganisms Review Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins Sadaf Riaz 1,2, Zhenghong Sui 1,*, Zeeshan Niaz 1,3, Sohrab Khan 1,3, Yuan Liu 1 and Haoxin Liu 1 1 Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; [email protected] (S.R.); [email protected] (Z.N.); [email protected] (S.K.); [email protected] (Y.L.); [email protected] (H.L.) 2 Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan 3 Department of Microbiology, Hazara University, Mansehra 21120, Pakistan * Correspondence: [email protected]; Tel./Fax: +86-532-8203-1128 Received: 8 November 2018; Accepted: 11 December 2018; Published: 14 December 2018 Abstract: Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates “dinokaryon” have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Hematodinium-Like Disease of Dungeness Crabs
    crustacean Protozoa Hematodinium-like Disease of Dungeness Crabs I. Causative Agent and Disease developmental stages if confirmed to be Obligate parasitic dinoflagellates Hematodinium sp. that belong to the genus Hematodinium sp. are in the protozoan phylum Alveo- V. Diagnosis lata, subphylum Dinoflagellida, order Stained blood smears contain myriad Syndinida and family Syndiniceae. numbers of apparent prespore stages, A major feature of classification for some of which have dinokaryon type all dinoflagellates is the biflagellated condensed chromosomes in V-shaped grooved dinospore stage. Hematodimium configuration. Tissues were not available parasites have been described from for further diagnostic analysis. several species of crustaceans, certain fishes and cephalopods. In crustaceans VI. Prognosis for Host the type species is H. perezi parasitizing The single parasitized crab was one the European shore crab. All Hema- of several being held in crowded 10 todinium described from crustaceans foot circular tanks for a size at maturity parasitize the hemolymph causing study. Minor mortality, beginning in systemic disease and mortality affecting early July, occurred in the captive crab at least 26 species of crustacean hosts in groups, some of which was due to stress- Europe, Australia and North America caused bacterial septicemia while other including many commercially important mortality was reportedly caused by this crab species and 13 species of benthic Hematodinium-like parasite. amphipods. VII. Human Health Significance II. Host Species There are no zoonotic human health A Hematodinium-like parasite was concerns regarding dinoflagellate para- observed in a single captive subadult sitism in crabs. However, parasitized Dungeness crab collected from the crabs often have an unpalatable flavor waters of Kodiak Island, Alaska in and undesirable meat texture.
    [Show full text]