Structural Evolution and Sequence of Thrusting in the High Himalayan, Tibetan-Tethys and Indus Suture Zones of Zanskar and Ladakh, Western Himalaya: Discussion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontiers in Earth Sciences
Frontiers in Earth Sciences Series Editors: J.P. Brun, O. Oncken, H. Weissert, W.-C. Dullo . Dennis Brown • Paul D. Ryan Editors Arc-Continent Collision Editors Dr. Dennis Brown Dr. Paul D. Ryan Instituto de Ciencias de la Tierra National University of Ireland, Galway “Jaume Almera”, CSIC Dept. Earth & Ocean Sciences (EOS) C/ Lluis Sole i Sabaris s/n University Road 08028 Barcelona Galway Spain Ireland [email protected] [email protected] This publication was grant-aided by the National University of Ireland, Galway ISBN 978-3-540-88557-3 e-ISBN 978-3-540-88558-0 DOI 10.1007/978-3-540-88558-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011931205 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface One of the key areas of research in the Earth Sciences are processes that occur along the boundaries of the tectonic plates that make up Earth’s lithosphere. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
The Geology of the Enosburg Area, Vermont
THE GEOLOGY OF THE ENOSBURG AREA, VERMONT By JOlIN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, State Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN No. 23 1964 TABLE OF CONTENTS PAGE ABSTRACT 7 INTRODUCTION ...................... 7 Location ........................ 7 Geologic Setting .................... 9 Previous Work ..................... 10 Method of Study .................... 10 Acknowledgments .................... 10 Physiography ...................... 11 STRATIGRAPHY ...................... 12 Introduction ...................... 12 Pinnacle Formation ................... 14 Name and Distribution ................ 14 Graywacke ...................... 14 Underhill Facics ................... 16 Tibbit Hill Volcanics ................. 16 Age......................... 19 Underhill Formation ................... 19 Name and Distribution ................ 19 Fairfield Pond Member ................ 20 White Brook Member ................. 21 West Sutton Slate ................... 22 Bonsecours Facies ................... 23 Greenstones ..................... 24 Stratigraphic Relations of the Greenstones ........ 25 Cheshire Formation ................... 26 Name and Distribution ................ 26 Lithology ...................... 26 Age......................... 27 Bridgeman Hill Formation ................ 28 Name and Distribution ................ 28 Dunham Dolomite .................. 28 Rice Hill Member ................... 29 Oak Hill Slate (Parker Slate) .............. 29 Rugg Brook Dolomite (Scottsmore -
Evidence for Terrane Boundaries and Suture Zones Across Southern Mongolia Detected with a 2‑Dimensional Magnetotelluric Transect Matthew J
Comeau et al. Earth, Planets and Space (2020) 72:5 https://doi.org/10.1186/s40623-020-1131-6 FULL PAPER Open Access Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect Matthew J. Comeau1* , Michael Becken1, Johannes S. Käuf2, Alexander V. Grayver2, Alexey V. Kuvshinov2, Shoovdor Tserendug3, Erdenechimeg Batmagnai2 and Sodnomsambuu Demberel3 Abstract Southern Mongolia is part of the Central Asian Orogenic Belt, the origin and evolution of which is not fully known and is often debated. It is composed of several east–west trending lithostratigraphic domains that are attributed to an assemblage of accreted terranes or tectonic zones. This is in contrast to Central Mongolia, which is dominated by a cratonic block in the Hangai region. Terranes are typically bounded by suture zones that are expected to be deep- reaching, but may be difcult to identify based on observable surface fault traces alone. Thus, attempts to match lithostratigraphic domains to surface faulting have revealed some disagreements in the positions of suspected terranes. Furthermore, the subsurface structure of this region remains relatively unknown. Therefore, high-resolution geophysical data are required to determine the locations of terrane boundaries. Magnetotelluric data and telluric-only data were acquired across Southern Mongolia on a profle along a longitude of approximately 100.5° E. The profle extends ~ 350 km from the Hangai Mountains, across the Gobi–Altai Mountains, to the China–Mongolia border. The data were used to generate an electrical resistivity model of the crust and upper mantle, presented here, that can contribute to the understanding of the structure of this region, and of the evolution of the Central Asian Orogenic Belt. -
Thermochronology of the Miocene Arabia-Eurasia Collision Zone of Southeastern Turkey GEOSPHERE; V
Research Paper GEOSPHERE Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey GEOSPHERE; v. 14, no. 5 William Cavazza1, Silvia Cattò1, Massimiliano Zattin2, Aral I. Okay3, and Peter Reiners4 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy https://doi.org/10.1130/GES01637.1 2Department of Geosciences, University of Padua, 35131 Padua, Italy 3Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469, Istanbul, Turkey 4Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA 9 figures; 3 tables CORRESPONDENCE: william .cavazza@ unibo.it ABSTRACT ocean, and has been linked to mid-Cenozoic global cooling, Red Sea rifting, extension in the Aegean region, inception of the North and East Anatolian CITATION: Cavazza, W., Cattò, S., Zattin, M., Okay, The Bitlis-Pütürge collision zone of SE Turkey is the area of maximum in- strike-slip fault systems, and development of the Anatolian-Iranian continental A.I., and Reiners, P., 2018, Thermochronology of the Miocene Arabia-Eurasia collision zone of southeast- dentation along the >2400-km-long Assyrian-Zagros suture between Arabia and plateau (e.g., Şengör and Kidd, 1979; Dewey et al., 1986; Jolivet and Faccenna, ern Turkey: Geosphere, v. 14, no. 5, p. 2277–2293, Eurasia. The integration of (i) fission-track analyses on apatites, ii( ) (U-Th)/He 2000; Barazangi et al., 2006; Robertson et al., 2007; Allen and Armstrong, 2008; https:// doi .org /10 .1130 /GES01637.1. analyses on zircons, (iii ) field observations on stratigraphic and structural rela- Yılmaz et al., 2010). The age of the continental collision has been the topic of tionships, and (iv) preexisting U-Pb and Ar-Ar age determinations on zircons, much debate, with proposed ages ranging widely from the Late Cretaceous to Science Editor: Raymond M. -
Tectonic Klippe Served the Needs of Cult Worship, Sanctuary of Zeus, Mount Lykaion, Peloponnese, Greece
Tectonic Klippe Served the Needs of Cult Worship, Sanctuary of Zeus, Mount Lykaion, Peloponnese, Greece George H. Davis, Dept. of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA, [email protected] ABSTRACT Mount Lykaion is a rare, historical, cul- tural phenomenon, namely a Late Bronze Age through Hellenistic period (ca. 1500– 100 BC) mountaintop Zeus sanctuary, built upon an unusual tectonic feature, namely a thrust klippe. Recognition of this klippe and its physical character provides the framework for understanding the cou- pling between the archaeology and geology of the site. It appears that whenever there were new requirements in the physical/ cultural expansion of the sanctuary, the overall geologic characteristics of the thrust klippe proved to be perfectly adapt- able. The heart of this analysis consists of detailed geological mapping, detailed structural geologic analysis, and close cross-disciplinary engagement with archaeologists, classicists, and architects. INTRODUCTION Figure 1. Location of the Sanctuary of Zeus, Mount Lykaion, Peloponnese, Greece. In the second century AD, Pausanias authored an invaluable description of the residual worked blocks of built structures The critical geologic emphasis here is Sanctuary of Zeus, Mount Lykaion, and activity areas, including a hippodrome that Mount Lykaion is a thrust klippe. located at latitude 37° 23′ N, longitude and stadium used for athletic games in Thrusting was achieved during tectonic 22° 00′ E, in the Peloponnese (Fig. 1). ancient times (see Romano and Voyatzis, inversion of Jurassic to early Cenozoic Pausanias’ accounts were originally writ- 2014, 2015). Pindos Basin stratigraphy (Degnan and ten in Greek and are available in a number In 2004, I signed on as geologist for the Robertson, 2006; Doutsos et al., 1993; of translations and commentaries, includ- Mount Lykaion Excavation and Survey Skourlis and Doutsos, 2003). -
Download Preprint
EarthArXiv Coversheet 29/04/2021 Caribbean plate boundaries control on the tectonic duality in the back-arc of the Lesser Antilles subduction zone during the Eocene N. G. Cerpa*, R. Hassani, D. Arcay, S. Lallemand, C. Garrocq, M. Philippon, J.-J. Cornée, P. Münch, F. Garel, B. Marcaillou, B. Mercier de Lépinay, and J.-F. Lebrun * corresponding author : [email protected] This manuscript is a non-peer reviewed preprint submitted to Tectonics and thus may be periodically revised. The final version will be available via the ‘Peer-review Publication DOI’ link on the right-hand side of this webpage. Please feel free to contact the corresponding author; we welcome feedback. Caribbean plate boundaries control on the tectonic duality in the back-arc of the Lesser Antilles subduction zone during the Eocene N. G. Cerpa1,2,*, R. Hassani2, D. Arcay1, S. Lallemand1, C. Garrocq1, M. Philippon3, J.-J. Cornée3, P. Münch1, F. Garel1, B. Marcaillou2, B. Mercier de Lépinay2, and J.-F. Lebrun3 1 Geosciences Montpellier, University de Montpellier, CNRS, Université des Antilles, Montpellier, France. 2 Geoazur, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Valbonne, France. 3 Geosciences Montpellier, Université des Antilles, Université de Montpellier, CNRS, Guadeloupe, France. *Corresponding author: Nestor G. Cerpa ([email protected]) Abstract The Eocene tectonic evolution of the easternmost Caribbean Plate (CP) boundary, i.e. the Lesser Antilles subduction zone (LASZ), is debated. Recents works shed light on a peculiar period of tectonic duality in the arc/back-arc regions. A compressive-to-transpressive regime occurred in the north, while rifting and seafloor spreading occurred in Grenada basin to the south. -
Pan-African Orogeny 1
Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1). -
And Eastern Pennsylvania
GEOLOGY OF THE RIDGE AND VALLEY PROVINCE, NORTHWESTERN NEW JERSEY AND EASTERN PENNSYLVANIA JACK B. EPSTEIN U. S. Geological Survey, Reston, Va. 22092 INTRODUCTION The rocks seen in this segment of the field trip range A general transgressive-shelf sequence followed in age from Middle Ordovician to Middle Devonian and characterized mainly by tidal sediments and barrier bars constitute a.deep basin-continental-shallow shelf succes (Poxono Island, Bossardville, Decker, Rondout)~ suc sion. Within this succession, three lithotectonic units, or ceeded by generally subtidal and bar deposits (Helder sequences of rock that were deformed semi burg and Oriskany Groups), and then by deeper sub independently of each other, have somewhat different tidal deposits (Esopus, . Schoharie. and Buttermilk structural characteristics. Both the Alleghenian and Falls), finally giving way to another deep~water to Taconic orogenies have left their imprint on the rocks. shoaling sequence (Marcellus Shale through the Catskill Wind and water gaps are structurally controlled, thus Formation). Rocks of the Marcellus through Catskill placing doubt upon the hypothesis of regional super will not be seen on this trip. position. Wisconsinan deposits and erosion effects are common. We will examine these geologic features as This vertical stratigraphic sequence is complicated a well as some of the economic deposits in the area. bit because most Upper Silurian and Lower Devonian units are much thinner or are absent toward a paleo Figure 1 is an index map of the field-trip area, show positive area a few tens of miles southwest of the field ing the trip route and quadrangle coverage. Figure 2 is a trip area. -
Stylolites: Characteristics and Origin
• STYLOLITES: CHARACTERISTICS AND ORIGIN Joseph M. Montello A senior thesis submitted to fulfill the requirements for the degree of B.S. in Geology and Mineralogy • Winter Quarter, 1984 The Ohio State University ~2.~r·Thesis Advisor Department of Geology and Mineralogy Abstract • Stylolites are alternating interpenetrating columns of stone that form irregular interlocking partings or sutures in rock strata. They are most common along bedding planes of limestone but some are oblique or even perpendicular to bedding . Although the vast majority of stylolites occur in calcareous rocks, stylolites have been found in sandstone, quartzite and gypsum. The word "stylolite" refers to each individual column of stone. A cross section of a group of stylolites parallel to their length presents a rough, jagged line called a "stylolite seam" that resembles the sutures of a human skull. Stylolites always have a dark colored "clay" cap at the ends of the columns. The sides of the columns are typically discolored with a thin film of clay and show parallel flutings or striations that parallel their length. The shapes of individual stylolites vary greatly from broad flat • topped columns to pointed, jagged and tapering forms. After much controversy concerning the origin of stylolites, it is generally believed that they form by a process of chemical solution under pressure in lithified rock along some crack or seam. The interteething is produced because of differential solubilities and pressures within the rock unit. The clay cap on the stylolites is the non-soluble residue of the dissolved rock. Stylolites are only one of the possible end products in the spectrum of limestone responses to stress. -
Economic Review” of District Leh, for the Year 2014-15
PREFACE The District Statistics and Evaluation Agency Leh under the patronage of Directorate of Economic and Statistics (Planning and Development Department) is bringing out annual publication titled “Economic Review” of District Leh, for the year 2014-15. The publication 22st in the series, presents the progress achieved in various socio-economic facts of the district economy. I hope that the publication will be a useful tool in the hands of planners, administrators, Policy makers, academicians and other users and will go a long way in helping them in their respective pursuit. Suggestions to improve the publication in terms of coverage, quality etc. in the future issue of the publication will be appreciated Tashi Tundup District statistics and Evaluation Officer Leh CONTENTS Page No. District Profile 1-6 Agriculture and Allied Activities • Agriculture 7-9 • Horticulture 10 • Animal Husbandry 11-13 • Sheep Husbandry 14-15 • Forest 16 • Soil Conservation 17 • Cooperative 17-18 • Irrigation 19 Industries and Employment • Industries 19-20 • Employment & Counseling Centre 20 • Handicraft/Handloom 21 Economic Infrastructure • Power 21-22 • Tourism 22-23 • Financial institution 24-25 • Transport and communication 24-27 • Information Technology 27-28 Social Sector • Housing 29 • Education 29-31 • Health 31-33 • Water Supply and Rural Sanitation 33 • Women and Child Development 34-36 1 DISTRICT PROFILE . Although, Leh district is one of the largest districts of the country in terms of area, it has the lowest population density across the entire country. The district borders Pakistan occupied Kashmir and Chinese occupied Ladakh in the North and Northwest respectively, Tibet in the east and Lahoul-Spiti area of Himachal Pradesh in the South. -
Anja SCHORN & Franz NEUBAUER
Austrian Journal of Earth Sciences Volume 104/2 22 - 46 Vienna 2011 Emplacement of an evaporitic mélange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria)_______________________________________________ Anja SCHORN*) & Franz NEUBAUER KEYWORDS thin-skinned tectonics deformation analysis Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; sulphate mélange fold-thrust belt *) Corresponding author, [email protected] mylonite Abstract For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Formation of the Northern Calcareous Alps (NCA) (Austria) plays a key role in: (1) understanding the origin of Haselgebirge bearing nappes, (2) revealing tectonic processes not preserved in other units, and (3) in deciphering the mode of emplacement, namely gravity-driven or tectonic. With these aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum quarry Moosegg and its surroun- dings located in the central NCA. There, overlying the Lower Cretaceous Rossfeld Formation, the Haselgebirge Formation forms a tectonic klippe (Grubach klippe) preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault juxtaposing Haselgebirge to the Upper Jurassic Oberalm Formation. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formation, which includes many clasts derived from the Hasel- gebirge Fm. and its exotic blocks deposited in front of the incoming nappe. The main Haselgebirge body contains foliated, massive and brecciated anhydrite and gypsum. A high variety of sulphatic fabrics is preserved within the Moosegg quarry and dominant gyp- sum/anhydrite bodies are tectonically mixed with subordinate decimetre- to meter-sized tectonic lenses of dark dolomite, dark-grey, green and red shales, pelagic limestones and marls, and abundant plutonic and volcanic rocks as well as rare metamorphic rocks.