Stylolites: Characteristics and Origin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontiers in Earth Sciences
Frontiers in Earth Sciences Series Editors: J.P. Brun, O. Oncken, H. Weissert, W.-C. Dullo . Dennis Brown • Paul D. Ryan Editors Arc-Continent Collision Editors Dr. Dennis Brown Dr. Paul D. Ryan Instituto de Ciencias de la Tierra National University of Ireland, Galway “Jaume Almera”, CSIC Dept. Earth & Ocean Sciences (EOS) C/ Lluis Sole i Sabaris s/n University Road 08028 Barcelona Galway Spain Ireland [email protected] [email protected] This publication was grant-aided by the National University of Ireland, Galway ISBN 978-3-540-88557-3 e-ISBN 978-3-540-88558-0 DOI 10.1007/978-3-540-88558-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011931205 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface One of the key areas of research in the Earth Sciences are processes that occur along the boundaries of the tectonic plates that make up Earth’s lithosphere. -
GEO 2008 Conference Abstracts, Bahrain GEO 2008 Conference Abstracts
GEO 2008 conference abstracts, Bahrain GEO 2008 Conference Abstracts he abstracts of the GEO 2008 Conference presentations (3-5 March 2008, Bahrain) are published in Talphabetical order based on the last name of the first author. Only those abstracts that were accepted by the GEO 2008 Program Committee are published here, and were subsequently edited by GeoArabia Editors and proof-read by the corresponding author. Several names of companies and institutions to which presenters are affiliated have been abbreviated (see page 262). For convenience, all subsidiary companies are listed as the parent company. (#117804) Sandstone-body geometry, facies existing data sets and improve exploration decision architecture and depositional model of making. The results of a recent 3-D seismic reprocessing Ordovician Barik Sandstone, Oman effort over approximately 1,800 square km of data from the Mediterranean Sea has brought renewed interest in Iftikhar A. Abbasi (Sultan Qaboos University, Oman) deep, pre-Messinian structures. Historically, the reservoir and Abdulrahman Al-Harthy (Sultan Qaboos targets in the southern Mediterranean Sea have been the University, Oman <[email protected]>) Pliocene-Pleistocene and Messinian/Pre-Messinian gas sands. These are readily identifiable as anomalousbright The Lower Paleozoic siliciclastics sediments of the amplitudes on the seismic data. The key to enhancing the Haima Supergroup in the Al-Haushi-Huqf area of cen- deeper structure is multiple and noise attenuation. The tral Oman are subdivided into a number of formations Miocene and older targets are overlain by a Messinian- and members based on lithological characteristics of aged, structurally complex anhydrite layer, the Rosetta various rock sequences. -
Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J
Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J. BROOKS J/iLl THIS VOLUME IS DEDICATED TO THE WORK OF HENDRIK JAN ZWART GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 54 Deformation Mechanisms, Rheology and Tectonics EDITED BY R. J. KNIPE Department of Earth Sciences Leeds University UK & E. H. RUTTER Department of Geology Manchester University UK ASSISTED BY S. M. AGAR R. D. LAW Department of Earth Sciences Department of Geological Sciences Leeds University Virginia University UK USA D. J. PRIOR R. L. M. VISSERS Department of Earth Sciences Institute of Earth Sciences Liverpool University University of Utrceht UK Netherlands 1990 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Geological Society of London was founded in 1807 for the purposes of 'investigating the mineral structures of the earth'. It received its Royal Charter in 1825. The Society promotes all aspects of geological science by means of meetings, speeiat lectures and courses, discussions, specialist groups, publications and library services. It is expected that candidates for Fellowship will be graduates in geology or another earth science, or have equivalent qualifications or experience. Alt Fellows are entitled to receive for their subscription one of the Society's three journals: The Quarterly Journal of Engineering Geology, the Journal of the Geological Society or Marine and Petroleum Geology. On payment of an additional sum on the annual subscription, members may obtain copies of another journal. Membership of the specialist groups is open to all Fellows without additional charge. Enquiries concerning Fellowship of the Society and membership of the specialist groups should be directed to the Executive Secretary, The Geological Society, Burlington House, Piccadilly, London W1V 0JU. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Evidence for Terrane Boundaries and Suture Zones Across Southern Mongolia Detected with a 2‑Dimensional Magnetotelluric Transect Matthew J
Comeau et al. Earth, Planets and Space (2020) 72:5 https://doi.org/10.1186/s40623-020-1131-6 FULL PAPER Open Access Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect Matthew J. Comeau1* , Michael Becken1, Johannes S. Käuf2, Alexander V. Grayver2, Alexey V. Kuvshinov2, Shoovdor Tserendug3, Erdenechimeg Batmagnai2 and Sodnomsambuu Demberel3 Abstract Southern Mongolia is part of the Central Asian Orogenic Belt, the origin and evolution of which is not fully known and is often debated. It is composed of several east–west trending lithostratigraphic domains that are attributed to an assemblage of accreted terranes or tectonic zones. This is in contrast to Central Mongolia, which is dominated by a cratonic block in the Hangai region. Terranes are typically bounded by suture zones that are expected to be deep- reaching, but may be difcult to identify based on observable surface fault traces alone. Thus, attempts to match lithostratigraphic domains to surface faulting have revealed some disagreements in the positions of suspected terranes. Furthermore, the subsurface structure of this region remains relatively unknown. Therefore, high-resolution geophysical data are required to determine the locations of terrane boundaries. Magnetotelluric data and telluric-only data were acquired across Southern Mongolia on a profle along a longitude of approximately 100.5° E. The profle extends ~ 350 km from the Hangai Mountains, across the Gobi–Altai Mountains, to the China–Mongolia border. The data were used to generate an electrical resistivity model of the crust and upper mantle, presented here, that can contribute to the understanding of the structure of this region, and of the evolution of the Central Asian Orogenic Belt. -
Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration
Journal of Structural Geology 95 (2017) 160e170 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Mechanical stratigraphic controls on natural fracture spacing and penetration * Ronald N. McGinnis a, , David A. Ferrill a, Alan P. Morris a, Kevin J. Smart a, Daniel Lehrmann b a Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166, USA b Geoscience Department, Trinity University, One Trinity Place, San Antonio, TX 78212, USA article info abstract Article history: Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as Received 20 July 2016 unconventional hydrocarbon reservoirs. Fracturing e both natural and induced e is extremely important Received in revised form for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture 21 December 2016 networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation Accepted 7 January 2017 in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate Available online 8 January 2017 nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, Keywords: Mechanical stratigraphy dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed be- Natural fractures tween fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured Fracture spacing from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into Fracture penetration the vertically adjacent mudrock beds. -
Thermochronology of the Miocene Arabia-Eurasia Collision Zone of Southeastern Turkey GEOSPHERE; V
Research Paper GEOSPHERE Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey GEOSPHERE; v. 14, no. 5 William Cavazza1, Silvia Cattò1, Massimiliano Zattin2, Aral I. Okay3, and Peter Reiners4 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy https://doi.org/10.1130/GES01637.1 2Department of Geosciences, University of Padua, 35131 Padua, Italy 3Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469, Istanbul, Turkey 4Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA 9 figures; 3 tables CORRESPONDENCE: william .cavazza@ unibo.it ABSTRACT ocean, and has been linked to mid-Cenozoic global cooling, Red Sea rifting, extension in the Aegean region, inception of the North and East Anatolian CITATION: Cavazza, W., Cattò, S., Zattin, M., Okay, The Bitlis-Pütürge collision zone of SE Turkey is the area of maximum in- strike-slip fault systems, and development of the Anatolian-Iranian continental A.I., and Reiners, P., 2018, Thermochronology of the Miocene Arabia-Eurasia collision zone of southeast- dentation along the >2400-km-long Assyrian-Zagros suture between Arabia and plateau (e.g., Şengör and Kidd, 1979; Dewey et al., 1986; Jolivet and Faccenna, ern Turkey: Geosphere, v. 14, no. 5, p. 2277–2293, Eurasia. The integration of (i) fission-track analyses on apatites, ii( ) (U-Th)/He 2000; Barazangi et al., 2006; Robertson et al., 2007; Allen and Armstrong, 2008; https:// doi .org /10 .1130 /GES01637.1. analyses on zircons, (iii ) field observations on stratigraphic and structural rela- Yılmaz et al., 2010). The age of the continental collision has been the topic of tionships, and (iv) preexisting U-Pb and Ar-Ar age determinations on zircons, much debate, with proposed ages ranging widely from the Late Cretaceous to Science Editor: Raymond M. -
The Role of Pressure Solution Seam and Joint Assemblages In
THE ROLE OF PRESSURE SOLUTION SEAM AND JOINT ASSEMBLAGES IN THE FORMATION OF STRIKE-SLIP AND THRUST FAULTS IN A COMPRESSIVE TECTONIC SETTING; THE VARISCAN OF SOUTHWESTERN IRELAND Filippo Nenna and Atilla Aydin Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 e-mail: [email protected] scale such as strike-slip faults and thrust-cored folds in Abstract various stages of their development. In this study we focus on the initiation and development of strike-slip The Ross Sandstone in County Clare, Ireland, was faults by shearing of the initial JVs and PSSs and deformed by an approximately north-south compression formation of thrust faults by exploiting weak shale during the end-Carboniferous Variscan orogeny. horizons and the strike-parallel PSSs in the adjacent Orthogonal sets of fundamental structures form the sandstone intervals. initial assemblage; mutually abutting arrays of 170˚ Development of faults from shearing of initial oriented set 1 joints/veins (JVs) and approximately 75˚ fundamental structural elements with either opening or pressure solution seams (PSSs) that formed under the closing modes in a wide range of structural settings has same stress conditions. Orientations of set 2 (splay) JVs been extensively reported. Segall and Pollard (1983), and PSSs suggest a clockwise remote stress rotation of Martel and Pollard (1989) and Martel (1990) have about 35˚ responsible for the contemporaneous described strike-slip faults formed by shearing of shearing of the set 1 arrays. Prominent strike-slip faults thermal fractures in granitic rocks. Myers and Aydin are sub-parallel to set 1 JVs and form by the linkage of (2004) and Flodin and Aydin (2004) reported strike-slip en-echelon segments with broad damage zones faulting formed by shearing of joints formed by an responsible for strike-slip offsets of hundreds of metres. -
Sedimentary Stylolite Networks and Connectivity in Limestone
Sedimentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint To cite this version: Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint. Sed- imentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution. Journal of Structural Geology, Elsevier, 2014, pp.online first. <10.1016/j.jsg.2014.02.010>. <hal-00961075v2> HAL Id: hal-00961075 https://hal.archives-ouvertes.fr/hal-00961075v2 Submitted on 19 Mar 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. 1 2 Sedimentary stylolite networks and connectivity in 3 Limestone: Large-scale field observations and 4 implications for structure evolution 5 6 Laronne Ben-Itzhak L.1, Aharonov E.1, Karcz Z.2,*, 7 Kaduri M.1,** and Toussaint R.3,4 8 9 1 Institute of Earth Sciences, The Hebrew University, Jerusalem, 91904, Israel 10 2 ExxonMobil Upstream Research Company, Houston TX, 77027, U.S.A 11 3 Institut de Physique du Globe de Strasbourg, University of Strasbourg/EOST, CNRS, 5 rue 12 Descartes, F-67084 Strasbourg Cedex, France. -
Download Preprint
EarthArXiv Coversheet 29/04/2021 Caribbean plate boundaries control on the tectonic duality in the back-arc of the Lesser Antilles subduction zone during the Eocene N. G. Cerpa*, R. Hassani, D. Arcay, S. Lallemand, C. Garrocq, M. Philippon, J.-J. Cornée, P. Münch, F. Garel, B. Marcaillou, B. Mercier de Lépinay, and J.-F. Lebrun * corresponding author : [email protected] This manuscript is a non-peer reviewed preprint submitted to Tectonics and thus may be periodically revised. The final version will be available via the ‘Peer-review Publication DOI’ link on the right-hand side of this webpage. Please feel free to contact the corresponding author; we welcome feedback. Caribbean plate boundaries control on the tectonic duality in the back-arc of the Lesser Antilles subduction zone during the Eocene N. G. Cerpa1,2,*, R. Hassani2, D. Arcay1, S. Lallemand1, C. Garrocq1, M. Philippon3, J.-J. Cornée3, P. Münch1, F. Garel1, B. Marcaillou2, B. Mercier de Lépinay2, and J.-F. Lebrun3 1 Geosciences Montpellier, University de Montpellier, CNRS, Université des Antilles, Montpellier, France. 2 Geoazur, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Valbonne, France. 3 Geosciences Montpellier, Université des Antilles, Université de Montpellier, CNRS, Guadeloupe, France. *Corresponding author: Nestor G. Cerpa ([email protected]) Abstract The Eocene tectonic evolution of the easternmost Caribbean Plate (CP) boundary, i.e. the Lesser Antilles subduction zone (LASZ), is debated. Recents works shed light on a peculiar period of tectonic duality in the arc/back-arc regions. A compressive-to-transpressive regime occurred in the north, while rifting and seafloor spreading occurred in Grenada basin to the south. -
Pan-African Orogeny 1
Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1). -
Stress and Fluid Control on De Collement Within Competent Limestone
Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.