A Small Molecule Drug Screening Identifies the Antibiotic Colistin Sulfate As an Enhancer of Nk Cell Cytotoxicity

Total Page:16

File Type:pdf, Size:1020Kb

A Small Molecule Drug Screening Identifies the Antibiotic Colistin Sulfate As an Enhancer of Nk Cell Cytotoxicity A SMALL MOLECULE DRUG SCREENING IDENTIFIES THE ANTIBIOTIC COLISTIN SULFATE AS AN ENHANCER OF NK CELL CYTOTOXICITY Serena Cortés-Kaplan Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the MSc degree in Microbiology and Immunology Department of Biochemistry, Microbiology, and Immunology Faculty of Medicine University of Ottawa © Serena Cortés-Kaplan, Ottawa, Canada, 2021 Abstract Cancer immunotherapy is an encompassing term referring to therapeutic strategies that aim to boost the immune system to fight cancer. These strategies include administering immune cells that have been altered to have greater anti-tumor activity or using biologics and small molecules that target immune components to also promote tumor clearance. Natural Killer (NK) cells are cells of the innate immune system that recognize and kill abnormal cells such as cancer cells and play an important role in the anti-tumor response. Because of their crucial role in tumor immunity, NK cells are prime targets for immunotherapies. Repurposing small molecule drugs is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we screened 1,200 approved drugs from the Prestwick Chemical Library to identify drugs that increase NK cell cytotoxicity. We used a high-throughput luciferase-release cytotoxicity assay to measure the killing of the myeloid leukemia cell line, K562 cells expressing nano luciferase (NL) by NK92 cells, a human NK cell line. From the drug candidates identified from the screening assay, the antibiotic colistin sulfate increased cytotoxicity of the NK92 cell line and unstimulated human NK cells towards K562-NL cells. This increase in NK cytotoxicity was short-lived as pre-treating NK92 cells with colistin for 1 hour or 24 hours did not increase cytotoxicity. Also, we show pre- treating K562-NL target cells with colistin does not sensitize them to NK-mediated killing. Further studies are needed to uncover the mechanism of action of colistin, thus contributing to knowledge of fundamental NK cell biology regarding NK cell cytotoxicity which will aid in identifying additional small molecule drugs that enhance NK cell activity. ii Acknowledgements I would like to acknowledge and thank my supervisor Dr. Michele Ardolino for his guidance and support throughout my time in his laboratory and for the great learning opportunities and experiences that were provided. I would like to thank all past and present lab members for their help, support, and feedback throughout my project. I would like to thank members of the Diallo lab for their help throughout this project. I would like to thank my Thesis Advisory Committee members, Dr. Carolina Ilkow and Dr. Jean-Simon Diallo for their time, suggestions, and feedback. Thank you to laboratories of the Cancer Therapeutics Program at the OHRI for sharing advice, equipment, reagents, and protocols. Thank you to the BMI Department at uOttawa for the education provided. I would also like to thank the OHRI and uOttawa flow cytometry facilities. Finally, a huge thank you to my family and friends who have supported me throughout my studies. iii Table of Contents Abstract ........................................................................................................................................................ ii Acknowledgements .................................................................................................................................... iii Table of Contents ....................................................................................................................................... iv List of Abbreviations ................................................................................................................................. vi List of Figures and Tables ........................................................................................................................ vii 1. Introduction ............................................................................................................................................. 1 1.1. Cancer immunotherapy overview ...................................................................................................... 1 1.2. NK cells overview .............................................................................................................................. 2 1.3. NK cell surface markers, receptors, and cytotoxicity ........................................................................ 2 1.4. NK cells, cancer, and NK cell-based immunotherapies ..................................................................... 4 1.5. Drug repurposing and NK cell drug library screenings .................................................................... 5 1.6. Rationale, Objectives and Aims ......................................................................................................... 5 2. Materials & Methods .............................................................................................................................. 7 2.1. Cell culture......................................................................................................................................... 7 2.2. Reagents and drugs ............................................................................................................................ 7 2.3. Generating K562-NL and A375-NL cells ........................................................................................... 8 2.4. Luciferase-release NK92 cytotoxicity assays ..................................................................................... 9 2.5. Flow cytometry-based cytotoxicity assays ....................................................................................... 10 2.6. Screening of the Prestwick Chemical Library and plate configuration ........................................... 10 2.7. Z’ factor, fold-change and normalization analysis .......................................................................... 11 2.8. Dose-response experiments.............................................................................................................. 12 2.9. Colistin pre-treatment experiments .................................................................................................. 12 2.10. Human PBMC isolation ................................................................................................................. 12 2.11. Human NK cell cytotoxicity assays with colistin treatment ........................................................... 13 2.12. Statistical analysis ......................................................................................................................... 13 3. Results .................................................................................................................................................... 14 3.1. Preparing for a high-throughput drug screening ....................................................................... 14 3.1.1. Establishing K562-NL target cells ................................................................................................ 14 3.1.2. Optimizing conditions for a high-throughput luciferase-release cytotoxicity assay ..................... 15 3.2. Screening the Prestwick Chemical Library ................................................................................. 20 3.2.1. Overview of the Prestwick Chemical Library drug screening ...................................................... 20 iv 3.2.2. Identification of candidate drugs and overall quality of the screening assay .............................. 23 3.3. Validating candidate drugs identified from the Prestwick Chemical Library screening ........ 26 3.3.1. Repeating the drug screening’s experimental conditions with candidate drugs .......................... 26 3.3.2. Determining the optimal concentration and E:T ratio for candidate drugs’ activity ................... 26 3.3.3. Treating NK92 cells seeded at a low E:T ratio with colistin ........................................................ 33 3.3.4. Testing if colistin increases NK92 cell cytotoxicity towards other target cell lines ..................... 33 3.3.5. Pre-treatment of NK92 cells for 24-hours with colistin ................................................................ 38 3.3.6. Pre-treatment of NK92 and K562-NL cells for 1-hour with colistin............................................. 38 3.3.7. Treating primary human NK cells with colistin ............................................................................ 46 4. Discussion............................................................................................................................................... 49 5. Conclusion ............................................................................................................................................. 56 6. References .............................................................................................................................................. 57 7. Contribution from collaborators ......................................................................................................... 68 8. Appendix ................................................................................................................................................ 69 Supplemental Figures ........................................................................................................................... 69 Supplemental
Recommended publications
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • Review Article Role of Antidiarrhoeal Drugs As Adjunctive Therapies for Acute Diarrhoea in Children
    Hindawi Publishing Corporation International Journal of Pediatrics Volume 2013, Article ID 612403, 14 pages http://dx.doi.org/10.1155/2013/612403 Review Article Role of Antidiarrhoeal Drugs as Adjunctive Therapies for Acute Diarrhoea in Children Christophe Faure Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada H3T 1C5 Correspondence should be addressed to Christophe Faure; [email protected] Received 25 October 2012; Revised 2 January 2013; Accepted 2 January 2013 Academic Editor: Catherine Bollard Copyright © 2013 Christophe Faure. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute diarrhoea is a leading cause of child mortality in developing countries. Principal pathogens include Escherichia coli, rotaviruses, and noroviruses. 90% of diarrhoeal deaths are attributable to inadequate sanitation. Acute diarrhoea is the second leading cause of overall childhood mortality and accounts for 18% of deaths among children under five. In 2004 an estimated 1.5 million children died from diarrhoea, with 80% of deaths occurring before the age of two. Treatment goals are to prevent dehydration and nutritional damage and to reduce duration and severity of diarrhoeal episodes. The recommended therapeutic regimen is to provide oral rehydration solutions (ORS) and to continue feeding. Although ORS effectively mitigates dehydration, it has no effect on the duration, severity, or frequency of diarrhoeal episodes. Adjuvant therapy with micronutrients, probiotics, or antidiarrhoeal agents may thus be useful. The WHO recommends the use of zinc tablets in association with ORS.The ESPGHAN/ESPID treatment guidelines consider the use of racecadotril, diosmectite, or probiotics as possible adjunctive therapy to ORS.
    [Show full text]
  • A 0.70% E 0.80% Is 0.90%
    US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon.
    [Show full text]
  • Piperazine (MDBZP)
    1-(3-4- methylendioxybenzyl)piperazine (MDBZP) Pre-Review Report Expert Committee on Drug Dependence Thirty-fifth Meeting Hammamet, Tunisia, 4-8 June 2012 35th ECDD (2012) Agenda item 5.3e 1-(3-4-methylendioxybenzyl)piperazine (MDBZP) - 2 - 35th ECDD (2012) Agenda item 5.3e 1-(3-4-methylendioxybenzyl)piperazine (MDBZP) Acknowledgements This report has been drafted under the responsibility of the WHO Secretariat, Essential Medicines and Health Products, Medicines Access and Rational Use Unit. The WHO Secretariat would like to thank the following people for their contribution in producing this pre-review report: Dr Simon Elliott, United Kingdom (literature review and drafting), Dr Caroline Bodenschatz (editing) and Mr Kamber Celebi, France (questionnaire report). - 3 - 35th ECDD (2012) Agenda item 5.3e 1-(3-4-methylendioxybenzyl)piperazine (MDBZP) - 4 - 35th ECDD (2012) Agenda item 5.3e 1-(3-4-methylendioxybenzyl)piperazine (MDBZP) Contents SUMMARY ............................................................................................................................... 7 1. Substance identification .................................................................................................... 8 A. International Nonproprietary Name (INN) ................................................................ 8 B. Chemical Abstract Service (CAS) Registry Number ................................................. 8 C. Other Names ..............................................................................................................
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Citation Classics and Trends in the Field of Opioids: a Bibliometric Analysis
    Open Access Original Article DOI: 10.7759/cureus.5055 Citation Classics and Trends in the Field of Opioids: A Bibliometric Analysis Hira F. Akbar 1 , Khadijah Siddiq 2 , Salman Nusrat 3 1. Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, PAK 2. Internal Medicine, Civil Hospital Karachi, Dow University of Health Sciences, Karachi, PAK 3. Gasteroenterology, University of Oklahoma Health Sciences Center, Oklahoma City, USA Corresponding author: Hira F. Akbar, [email protected] Abstract Introduction Bibliometric analysis is one of the emerging and latest statistical study type used to examine and keep a systemic record of the research done on a particular topic of a certain field. A number of such bibliometric studies are conducted on various topics of the medical science but none existed on the vast topic of pharmacology - opioids. Hence, we present a bibliometric analysis of the ‘Citation Classics’ of opioids. Method The primary database chosen to extract the citation classics of opioids was Scopus. Top 100 citation classics were arranged according to the citation count and then analyzed. Results The top 100 citation classics were published between 1957 and 2013, among which seventy-two were published from 1977 to 1997. Among all nineteen countries that contributed to these citation classics, United States of America alone produced sixty-three classics. The top three journals of the list were multidisciplinary and contained 36 citation classics. Endogenous opioids were the most studied (n=35) class of opioids among the citation classes and the most studied subject was of the neurosciences. Conclusion The subject areas of neurology and analgesic aspects of opioids are well established and endogenous and synthetic opioids were the most studied classes of opioids.
    [Show full text]
  • Effects of Racecadotril on Weight Loss and Diarrhea Due to Human Rotavirus in Neonatal Gnotobiotic Pigs (Sus Scrofa Domesticus)
    Comparative Medicine Vol 67, No 2 Copyright 2017 April 2017 by the American Association for Laboratory Animal Science Pages 157–164 Original Research Effects of Racecadotril on Weight Loss and Diarrhea Due to Human Rotavirus in Neonatal Gnotobiotic Pigs (Sus scrofa domesticus) Tammy Bui,1 Guohua Li,1 Inyoung Kim,2 Ke Wen,1 Erica L Twitchell,1 Shaohua Lei,1 Ashwin K Ramesh,1 Mariah D Weiss,1 Xingdong Yang,1 Sherrie G Clark‑Deener,3 Robert KM Choy,4 and Lijuan Yuan1,* Diarrheal disease is the second leading cause of death in children younger than 5 y, and the most common cause of acute watery diarrhea in young children worldwide is rotaviral infection. Medicines to specifically reduce diarrhea would be a desirable adjunc‑ tive treatment to supportive fluid therapy to decrease the mortality rate of diarrheal diseases. In this study, we evaluated the efficacy of an antisecretory drug, racecadotril, in treating human rotavirus (HRV)‑induced diarrhea in a neonatal gnotobiotic pig model. In total, 27 gnotobiotic pigs were randomly assigned (n = 9 per group) to receive either racecadotril, chlorpromazine (positive‑control drug), or PBS (mock treatment) after inoculation with HRV. Pigs were weighed daily and rectal swabs were collected to determine fecal consistency scores and virus shedding. Rotaviral infection was confirmed by ELISA and cell culture immunofluorescence. Overall, the racecadotril‑treated pigs had less severe illness than either the chlorpromazine‑ or mock‑treated groups; this conclusion was supported by the lower fecal‑consistency scores, shorter duration of diarrhea, and significant gain in body weight during the course of the study of the racecadotril‑treated pigs.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • All Designer Drugs, Old and New
    ALL DESIGNER DRUGS, OLD AND NEW written by Marcus Weiblen editing help/additional info by roionsteroids of reddit.com/r/Drugs Updates continue as of may 7th, 2014. if anyone has any other citable / reliable sources about any of these compounds or any other new drugs please let me know at marcus [dot] weiblen (at) gmail {dot} com and i'll try to keep this document updated throughout my hectic life. the document will to continue update here (if possible): https://www.dropbox.com/s/rzx3wpxfwuv2kww/designerdrugs.pdf (return to contents) CONTENTS: Foreword A Short Glossary / How to Read This Paper I: Stimulants / Empathogens (Dopamine/Noradrenaline Reuptake Inhibitors, 5-HT Releasers/Receptor Agonists) A. Substituted Cathinones B. Pyrrolidines/Pyrrolidinophenones C. Benzofurans D. Phenylpropylamines/piperidines E. Substituted Amphetamines F. Indanes/indoles G. Tropanes/*caines H. Piperazines I. Miscellaneous stimulants II: Psychedelic Hallucinogens (Serotonin 5-HT Receptor 2x Agonists) A. Phenethylamines 1. 2C-x series 2. Psychedelic Amphetamines 3. N-benzylated phenethylamines 4. Mescaline analogues 5. Conformationally-restricted derivatives B. Tryptamines 1. N-alkylated 2. 4-position substitutions 3. 5-position substitutions 4. LSD derivatives 5. alpha-position substitutions 6. 2-position substitutions 2 (return to contents) III: Sedatives (GABA Agonists / Modulators) IV: Analgesics (µ-Opioid Receptor Agonists) V: Synthetic Cannabinoids (CB /CB Agonists) 1 2 A. JWH series B. AM series C. Miscellaneous cannabinoids D. THJ series E. Endocannabinoid
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • Replacement of Current Opioid Drugs Focusing on MOR-Related Strategies
    JPT-107519; No of Pages 17 Pharmacology & Therapeutics xxx (2020) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Replacement of current opioid drugs focusing on MOR-related strategies Jérôme Busserolles a,b, Stéphane Lolignier a,b, Nicolas Kerckhove a,b,c, Célian Bertin a,b,c, Nicolas Authier a,b,c, Alain Eschalier a,b,⁎ a Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France b Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France c Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France article info abstract Available online xxxx The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in Keywords: an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are sub- Analgesia ject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the begin- Mu opioid receptors (MORs) ning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce Opioid adverse side effects potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number Opioid abuse and misuse of deaths by opioid overdose, is a tragic illustration of this.
    [Show full text]