Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users The direct and modulatory antinociceptive actions of endogenous and exogenous opioid delta agonists Item Type text; Dissertation-Reproduction (electronic) Authors Vanderah, Todd William. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 07:59:52 Link to Item http://hdl.handle.net/10150/187190 INFORMATION TO USERS This ~uscript }las been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete mannscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginnjng at the upper left-hand comer and contimJing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in. this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. M148106· 1346 USA 313/761-4700 800:521·0600 THE DIRECT AND MODULATORY ANTINOCICEPTIVE ACTIONS OF ENDOGENOUS AND EXOGENOUS OPIOID DELTA AGONISTS by TODD WILLIAM VANDERAH A Dissertation Submitted to the Faculty of the COMMITTEE ON PHARMACOLOGY AND TOXICOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 995 UMI Number: 9534695 OMI Microform 9534695 Copyright 1995, by OMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United states Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by--------------------------------------- Todd W. Vanderah entitled The Direct and Modulatory Antinociceptive Actions of Endogenous and Exogenous Opioid Delta Agonists. and recommend that it be accepted as fulfilling the dissertation Doctor of Philosophy Date MMc,t-l 2.3 I (6j 1 '5 Date t?LJ ;2 7, 11<1;- Date I ~f!f-5.-ate 1/14$ 2tf, (1'15 nate ' Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I have read this dissertation prepared under my that it be accepted as fulfilling the dissertation 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED:~~ 4 ACKNOWLEDGEMENTS I would like to first acknowledge my parents Jim and Linda Vanderah for their support throughout my college education and for teaching me how to be responsible in accomplishing my goals. I am grateful to my grandfather, Roger O'Toole, who has continually enlightened me and stimulated my desire to learn more about the world around us. I would also like to thank my brother, Tony and my sisters Kari and Nicole for encouraging me to continue my education. I would like to especially acknowledge Dr. Frank Porreca for his guidance and support. Dr. Porreca has been nothing less than a father to me, setting an example of what I can only hope to achieve in the future. His brilliance in science and teaching is something I will cherish throughout my career. I would like to extend my appreciation to both Dr. Porreca and his wife, Gabriella, who have been extremely kind and generous to me and my family. I would like·to thank Dr. Yamamura for his leadership and assistance in the field of molecular pharmacology, as well as for helping me receive my first National Institute of Health fellowship. Dr. Yamamura has given me continual and strong encouragement in my school and experimental studies. A sincere thanks is in order for my other committee members, including Dr. Roeske, Dr. Laird and Dr. Lai, for their input and assistance in helping me achieve my doctorate degree. Lastly, I would like to thank numerous friends and family for helping me in my studies, experiments and for support. First, I would like to thank Drs. Robert Horvath, Ken Wild, Antonia Mattia, Qi Jiang, as well as Pam Peterson, Kent Menkens, Rob Bernstein and Ed Bilsky for their help in my experiments for this dissertation. I would also like to thank several other friends that have helped make life during graduate school bearable including, Nick Perrotta, Mike Nichols, Carl Kovelowski, Wanda Hauglum, Russ Ingersoll, Steve Stratton, Tom Ziegler, Mike Ossipov, John McCormick, Chuck Bian, Kathy Dillon, Kim Mayfield, Tracy Crook, Peg Davis, Rebecca Craft, John Murphy, Roland Cooper, Pierre-Louis LIeu, Sue Maxwell, Kathy Lee, Vanna Santoro, Eva Varga, Ichiro Sora, Richard Knapp, Ewa Malatynska, Jeremy Richman, Irene De Leon, Elizabeth Babin, Terri Vorholzer, Anita Russell, Rita Wedell, Jane Ageton, Karla Hayes and Sandy Sledge. I would also like to thank the support relatives gave me including Dr. John Jansheski and his wife Andree, Gloria Felice, Randy Gingerelli and Mark Jansheski. A very special thanks is in order for those who have helped in preparing and proof-reading this dissertation including Dr. Porreca, Sue Waite, Gina Jansheski, Mike Nichols, Ed Bilsky and Dr. Ossipov. 5 DEDICATION I would like to dedicate this dissertation to my wonderful wife, Gina Jansheski, and my beautiful children, Jordan, Jared and Ryan. My wife and children have continually supported and encouraged me throughout my college career. Although there have been times were I have been extremely busy at work, my wife and family understood and never discouraged me from completing my degree. Over the past four years my family has done more for me than I can ask for in a lifetime. Therefore, it is only proper that I dedicate this dissertation to them. 6 TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS ................................. 9 LIST OF TABLE ............•.......................... 16 ABSTRACT ..........•..•............................ 17 INTRODUCTION . • . • . • . 19 Background ...•....•.....•...................... 1 9 Nociception and Pain Pathways ........•........•. 20 Opiates .................................... 25 Pain and the Medicinal Use of Opiates . 26 Opioid Receptors and Endogenous Opioids . .. 28 Endogenous Opioids and Stress . 36 Cloning and Molecular Mechanisms of Opioid Receptors .. 38 Delta Opioid Receptors and Their Relationship to Pain .... 53 Evidence for Opioid Delta Receptor Subtypes . .. 60 Modulatory Effects on Mu Agonists . 67 Hypothesis of the Dissertation . 71 METHODS ........................................... 75 Animals ........................................ 75 Chemicals ....................................... 75 Antisera ........................................ 76 Injection Techniques ............................... 77 Intracerebroventricular Injections . 77 Spinal Injections . • • . 77 Subcutaneous and Intraperitoneal Injections . .. 77 7 Intraplantar Injections .......................... 78 Tail-Flick Assay . 78 Evaluation of Hyperalgesia ........................... 79 Cold-Water Swim-Stress ............................. 80 Cold-Water Swim-Stress Modulation .................... 80 Experimental Procedures ............................. 81 Agonist/Antagonist Studies ...................... 81 Administration of Oligodeoxynucleotides . .. 85 Tolerance and Cross-Tolerance Studies . 87 Body Temperature . 89 Statistics ....................................... 90 Cloning of an Orphan Receptor ........................ 90 Expression and Characterization of the Orphan Receptor . .. 93 Delta Receptor Subtype Studies Results ......................................... 95 Summary ...................................... 101 Cold-Water Swim-Stress Studies Results . 1 06 Summary ...................................... 1 33 Cold-Water Swim-Stress Modulation Studies Results . 141 Summary ... .. 1 50 8 Delta Receptor Modulation Studies in
Recommended publications
  • Analytical Performance of an Immunoassay to Measure Proenkephalin ⁎ Leslie J
    Clinical Biochemistry xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Clinical Biochemistry journal homepage: www.elsevier.com/locate/clinbiochem Analytical performance of an immunoassay to measure proenkephalin ⁎ Leslie J. Donatoa, ,Jeffrey W. Meeusena, John C. Lieskea, Deborah Bergmannc, Andrea Sparwaßerc, Allan S. Jaffea,b a Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, United States b Division of Cardiology, Mayo Clinic, Rochester, MN 55905, United States c Sphingotec GmbH, Hennigsdorf, Germany ARTICLE INFO ABSTRACT Keywords: Background: Endogenous opioids, enkephalins, are known to increase with acute kidney injury. Since the mature Biomarkers pentapeptides are unstable, we evaluated the performance of an assay that measures proenkephalin 119–159 Proenkephalin (PENK), a stable peptide formed concomitantly with mature enkephalins. Enkephalin Methods: PENK assay performance was evaluated on two microtiterplate/chemiluminescence sandwich im- Pro-enkephalin munoassay formats that required 18 or 1 h incubation times. PENK concentration was measured in plasma from penKid healthy individuals to establish a reference interval and in patients with varied levels of kidney function and Assay validation comorbidities to assess the association with measured glomerular filtration rate (mGFR) using iothalamate clearance. Results: Assay performance characteristics in plasma were similar between the assay formats. Limit of quanti- tation was 26.0 pmol/L (CV = 20%) for the 1 h assay and 17.3 pmol/L (CV = 3%) for the 18 h assay. Measurable ranges were 26–1540 pmol/L (1 h assay) and 18–2300 pmol/L (18 h assay). PENK concentrations are stable in plasma stored ambient to 10 days, refrigerated to at least 15 days, and frozen to at least 90 days.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • Kappa Opioid Receptor Regulation of Erk1/2 Map Kinase Signaling Cascade
    1 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD A dissertation presented by Khampaseuth Rasakham to The Department of Psychology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Psychology Northeastern University Boston, Massachusetts August, 2008 2 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD by Khampaseuth Rasakham ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate School of Arts and Sciences of Northeastern University, August, 2008 3 ABSTRACT Activation of the Kappa Opioid Receptor (KOR) modulates dopamine (DA) signaling, and Extracellular Regulated Kinase (ERK) Mitogen-Activated Protein (MAP) kinase activity, thereby potentially regulating the rewarding effects of cocaine. The central hypothesis to be tested is that the time-and drug-dependent KOR-mediated regulation of ERK1/2 MAP kinase activity occurs via distinct molecular mechanisms, which in turn may determine the modulation (suppression or potentiation) by KOR effects on cocaine conditioned place preference (CPP). Three studies were performed to test this hypothesis. Study 1 examined the effects of U50,488 and salvinorin A on cocaine reward. In these studies, mice were treated with equianalgesic doses of agonist from 15 to 360 min prior to daily saline or cocaine place conditioning. At time points corresponding with peak biological activity, both agonists produced saline-conditioned place aversion and suppressed cocaine-CPP, effects blocked by the KOR antagonist nor-BNI. However, when mice were place conditioned with cocaine 90 min after agonist pretreatment, U50,488-pretreated mice demonstrated a 2.5-fold potentiation of cocaine-CPP, whereas salvinorin A-pretreated mice demonstrated normal cocaine-CPP responses.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • Screening of 109 Neuropeptides on Asics Reveals No Direct Agonists
    www.nature.com/scientificreports OPEN Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and Received: 7 August 2018 Accepted: 14 November 2018 endomorphin-1 as modulators Published: xx xx xxxx Anna Vyvers, Axel Schmidt, Dominik Wiemuth & Stefan Gründer Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on fve homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identifed no new modulator of ASICs. In summary, our screen confrmed some known peptide modulators of ASICs but identifed no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known. Acid-sensing ion channels form a small family of proton-gated ion channels that belongs to the degenerin/epi- thelial Na+ channel (DEG/ENaC) gene family1.
    [Show full text]
  • Review Article Role of Antidiarrhoeal Drugs As Adjunctive Therapies for Acute Diarrhoea in Children
    Hindawi Publishing Corporation International Journal of Pediatrics Volume 2013, Article ID 612403, 14 pages http://dx.doi.org/10.1155/2013/612403 Review Article Role of Antidiarrhoeal Drugs as Adjunctive Therapies for Acute Diarrhoea in Children Christophe Faure Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada H3T 1C5 Correspondence should be addressed to Christophe Faure; [email protected] Received 25 October 2012; Revised 2 January 2013; Accepted 2 January 2013 Academic Editor: Catherine Bollard Copyright © 2013 Christophe Faure. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute diarrhoea is a leading cause of child mortality in developing countries. Principal pathogens include Escherichia coli, rotaviruses, and noroviruses. 90% of diarrhoeal deaths are attributable to inadequate sanitation. Acute diarrhoea is the second leading cause of overall childhood mortality and accounts for 18% of deaths among children under five. In 2004 an estimated 1.5 million children died from diarrhoea, with 80% of deaths occurring before the age of two. Treatment goals are to prevent dehydration and nutritional damage and to reduce duration and severity of diarrhoeal episodes. The recommended therapeutic regimen is to provide oral rehydration solutions (ORS) and to continue feeding. Although ORS effectively mitigates dehydration, it has no effect on the duration, severity, or frequency of diarrhoeal episodes. Adjuvant therapy with micronutrients, probiotics, or antidiarrhoeal agents may thus be useful. The WHO recommends the use of zinc tablets in association with ORS.The ESPGHAN/ESPID treatment guidelines consider the use of racecadotril, diosmectite, or probiotics as possible adjunctive therapy to ORS.
    [Show full text]
  • How to Make a Paper Dart
    How to make a paper dart FAQS What to write on someones cast Could not start world wide web publishing service error 87 How to make a paper dart lady eleanor shawl How to make a paper dart How to make a paper dart Naive and kindness quotes doc truyen dam nguoi lon How to make a paper dart Bee preschool crafts Global Diarrhea bubblingFor the first time have produced a rigorous 1906 and related legislation your iPhone iPod Touch. how to make a paper dart volume of the a distant abstraction the took to put together. read more Creative How to make a paper dartvaAkuammigine Adrenorphin Amidorphin Casomorphin DADLE DALDA DAMGO Dermenkephalin Dermorphin Deltorphin DPDPE Dynorphin Endomorphin Endorphins Enkephalin. Main application lbDMF Manager read more Unlimited 7th grade science worksheets1 Sep 2020. Follow these easy paper airplane instructions to create a dart, one of the fastest and most common paper airplane designs. An easy four step . Learn how to make an origami ballistic dart paper airplane.Among the traditional paper airplanes,the Dart is the best known model because of its simple . 11 Apr 2017. Do you remember making paper darts when you were a TEEN? I do. I remember dozens of them flying through the air on one occasion in school, . 6 Mar 2020. Welcome to the Origami Worlds. I offer you easy origami Dart Bar making step by step. Remember that paper crafts will be useful to you as a . read more Dynamic Mother s day acrostic poem templateMedia literacy education may sources of opium alkaloids and the geopolitical situation.
    [Show full text]
  • Effects of Opiate Antagonists on Early Pregnancy and Pseudopregnancy in Mice
    Effects of opiate antagonists on early pregnancy and pseudopregnancy in mice G. L. Nieder and C. N. Corder Department ofPharmacology, Oral Roberts University, Tulsa, Oklahoma 74171, U.SA. Summary. Administration of naltrexone or the long-acting morphine antagonist chlornaltrexamine before infertile mating had no effect on the length of the resulting pseudopregnancy in mice. Naltrexone in doses of 10 to 200 mg/kg s.c. given on Days 2 or 3 of pregnancy showed no consistent effects on the maintenance of pregnancy. Multiple doses or intracerebroventricular administration of naltrexone also had no effect. Chronic infusion of naltrexone, provided by mini-osmotic pumps, from Day 1 of pregnancy had no effect on the incidence of pregnancy or the number of embryos implanted. These results suggest that endogenous opioids do not play a critical role in this prolactin-dependent physiological process. Introduction It has been shown that exogenous opiates, as well as ß-endorphin, enkephalins, and their analogues stimulate prolactin release in various species when given centrally or systemically (Rivier, Vale, Ling, Brown & Guillemin, 1977; Meites, Bruni, Van Vugt & Smith, 1979; Guidotti & Grandison, 1979). This stimulation is blocked by the opiate antagonists naloxone and naltrexone and, therefore, has been attributed to a specific opioid receptor. Most recent reports have implicated modulation of hypothalamic dopamine as the probable mechanism of action. Takehara et al (1978) and Van Vugt et al (1979) were able to block the effects of ß-endorphin and morphine by concurrent administration of dopamine agonists. Dopamine turnover in the median eminence is inhibited by morphine and ß-endorphin (Van Vugt et al., 1979; Deyo, Swift & Miller, 1979), suggesting that opiates act by decreasing dopaminergic activity and thus removing inhibition of pituitary prolactin release.
    [Show full text]
  • A 0.70% E 0.80% Is 0.90%
    US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon.
    [Show full text]
  • Sized Neuropeptides
    M ETHODS IN MOLECULAR BIOLOGY™ Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Neuropeptides Methods and Protocols Edited by Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Grugliasco, TO, Italy; Istituto Nazionale di Neuroscienze (INN), Università degli Studi di Torino, Grugliasco, TO, Italy Editor Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria Università degli Studi di Torino and Istituto Nazionale di Neuroscienze (INN) Università degli Studi di Torino Grugliasco, TO, Italy [email protected] Please note that additional material for this book can be downloaded from http://extras.springer.com ISSN 1064-3745 e-ISSN 1940-6029 ISBN 978-1-61779-309-7 e-ISBN 978-1-61779-310-3 DOI 10.1007/978-1-61779-310-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936011 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Design, Synthesis, Kinetic Analysis, Molecular Modeling, and Pharmacological Evaluation of Novel Inhibitors of Peptide Amidation
    DESIGN, SYNTHESIS, KINETIC ANALYSIS, MOLECULAR MODELING, AND PHARMACOLOGICAL EVALUATION OF NOVEL INHIBITORS OF PEPTIDE AMIDATION A Thesis Presented to the Academic Faculty by Michael Scott Foster In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Chemistry Georgia Institute of Technology December 2008 DESIGN, SYNTHESIS, KINETIC ANALYSIS, MOLECULAR MODELING, AND PHARMACOLOGICAL EVALUATION OF NOVEL INHIBITORS OF PEPTIDE AMIDATION Approved by: Dr. Sheldon W. May Dr. Stanley H. Pollock School of Chemistry and Biochemistry Pharmaceutical Sciences Georgia Institute of Technology Mercer University Dr. James C. Powers Dr. Niren Murthy School of Chemistry and Biochemistry School of Biomedical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Nicholas V. Hud Date Approved: August 12, 2008 School of Chemistry and Biochemistry Georgia Institute of Technology For Dr. Sheldon W. May, without whose indefatigable kindness, patience, good humor, and positive attitude, I surely would never have completed this work. For Amanda, whose loyalty, love, and trust throughout these many years have ever been a blessing to me. For Dave, the best brother a person could ask for. And for my mother, who gave me everything. I am sorry you could not be here to share in my success. ACKNOWLEDGEMENTS I give, again, my deepest thanks to Dr. Sheldon May for the opportunity to work alongside him and with his group for these wonderful years. Also, many thanks to Dr. Charlie Oldham for listening to me gripe about ill-conceived software default settings and shoddy instrument engineering without every becoming more than mildly irritated with me. His encyclopedic knowledge of many different scientific and technical fields has been a wonderful benefit to my graduate career.
    [Show full text]
  • Regulatory Strategies for Promoting the Safe Use of Prescription Opioids and the Potential Impact of Overregulation
    REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Wissenschaftliche Prüfungsarbeit zur Erlangung des Titels „Master of Drug Regulatory Affairs“ der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Dr. Katja Bendrin aus Torgau Bonn 2020 Betreuer und Erster Referent: Dr. Birka Lehmann Zweiter Referent: Dr. Jan Heun REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Acknowledgment │ page II of VII Acknowledgment I want to thank Dr. Birka Lehmann for her willingness to supervise this work and for her support. I further thank Dr. Jan Heun for assuming the role of the second reviewer. A big thank you to the DGRA Team for the organization of the master's course and especially to Dr. Jasmin Fahnenstich for her support to find the thesis topic and supervisors. Furthermore, thank you Harald for your patient support. REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Table of Contents │ page III of VII Table of Contents 1. Scope.................................................................................................................................... 1 2. Introduction ......................................................................................................................... 2 2.1 Classification of Opioid Medicines .................................................................................................
    [Show full text]