Analytical Performance of an Immunoassay to Measure Proenkephalin ⁎ Leslie J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antitumor Activity of Actinonin in Vitro and in Vivo
Vol. 4, 171-176, January 1998 Clinical Cancer Research 171 Antitumor Activity of Actinonin in Vitro and in Vivo Yang Xu, Lawrence T. Lai, Janice L. Gabrilove, 8), mye!oid and monocytic cells, and most myeloblastic leuke- and David A. Scheinberg’ mias as well as on cells and tissues outside the hematopoietic system including fibroblasts, intestinal epithelium, renal tubular Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 epithelium, and synaptic membranes of the central nervous system (I ). APN occurs as a homodimer, and the molecule is a 150-kDa, transmembrane glycoprotein with an intracellular ABSTRACT amino terminus (1). F23, an antihuman CD13/APN mAb, is able Actinonin, an antibiotic and CD13/aminopeptidase N to completely block the active site of the enzyme (9). (APN) inhibitor, has been shown to be cytotoxic to tumor Bestatin, a CD 1 3/APN inhibitor, was examined in preclin- cell lines in vitro. We investigated the antiproliferative ef- ical and clinical studies; bestatin could inhibit lymph node fects of actinonin on human and murine leukemia and lym- metastasis of P388 leukemia in mice (10) and was used in phoma cells. Actinonin inhibited growth of NB4 and HL6O clinical trials in malignant skin tumors (1 1), in head and neck human cell lines and AKR mouse leukemia cells in vitro with cancer (12), in esophageal cancer (13), and in gynecologic an IC50 of about 2-S g/ml. The inhibitory effect on CD13- tumors (14). High doses of bestatin resulted in the significant positive cells was not blocked by pretreatment with the inhibition of preexisting experimental and spontaneous metas- anti-CD13/APN monoclonal antibody F23, which binds with tasis in mice (15). -
Screening of 109 Neuropeptides on Asics Reveals No Direct Agonists
www.nature.com/scientificreports OPEN Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and Received: 7 August 2018 Accepted: 14 November 2018 endomorphin-1 as modulators Published: xx xx xxxx Anna Vyvers, Axel Schmidt, Dominik Wiemuth & Stefan Gründer Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on fve homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identifed no new modulator of ASICs. In summary, our screen confrmed some known peptide modulators of ASICs but identifed no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known. Acid-sensing ion channels form a small family of proton-gated ion channels that belongs to the degenerin/epi- thelial Na+ channel (DEG/ENaC) gene family1. -
Regulatory Strategies for Promoting the Safe Use of Prescription Opioids and the Potential Impact of Overregulation
REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Wissenschaftliche Prüfungsarbeit zur Erlangung des Titels „Master of Drug Regulatory Affairs“ der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Dr. Katja Bendrin aus Torgau Bonn 2020 Betreuer und Erster Referent: Dr. Birka Lehmann Zweiter Referent: Dr. Jan Heun REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Acknowledgment │ page II of VII Acknowledgment I want to thank Dr. Birka Lehmann for her willingness to supervise this work and for her support. I further thank Dr. Jan Heun for assuming the role of the second reviewer. A big thank you to the DGRA Team for the organization of the master's course and especially to Dr. Jasmin Fahnenstich for her support to find the thesis topic and supervisors. Furthermore, thank you Harald for your patient support. REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Table of Contents │ page III of VII Table of Contents 1. Scope.................................................................................................................................... 1 2. Introduction ......................................................................................................................... 2 2.1 Classification of Opioid Medicines ................................................................................................. -
Narcotic Analgesics I Blanton SLIDE 1: We Will Be Spending the Next 90 Minutes Discussing Narcotic Analgesics- That Is Morphine, Oxycodone, Heroin, Etc
Narcotic Analgesics I Blanton SLIDE 1: We will be spending the next 90 minutes discussing narcotic analgesics- that is morphine, oxycodone, heroin, etc. These drugs act primarily thru the opiate receptor system. I always like to begin by presenting two factoids that I believe illustrate the power of this system: (1) Ok imagine you are in pain! Now I tell you that I am going to give you an injection of morphine or heroin. Even if I instead give you an injection of just saline- 50% of you will report that your pain is significantly reduced- that is quite a placebo effect. However, if instead of saline I give you an injection of Naloxone, an opiate receptor antagonist- the placebo effect is eliminated. In other words you are activating your opiate receptor system to induce analgesia. (2) acupuncture can be used to reduce pain. However, Naloxone will block this effect- in otherwords the acupuncture is activating your opiate receptor system. SLIDE 1A: The use of narcotic analgesics for effective pain management has certainly had its flip side……. With prescription narcotic analgesics helping to fuel the current heroin epidemic…. Back to SLIDE 1: So narcotic analgesics. The name narcotic is somewhat misleading, because it implies narcosis or somnolence. The name opiate or opioid is more precise because it connotes analgesia, without causing sleep or loss of consciousness. SLIDE 2: The terms opiate or opioid, as you are probably aware, refers to opium, the crude extract of the Poppy plant, Papaver somniferum. Opium comes from the seed pod of the plant after the petals have dropped. -
The Role of Protein Convertases in Bigdynorphin and Dynorphin a Metabolic Pathway
Université de Montréal The Role of Protein Convertases in Bigdynorphin and Dynorphin A Metabolic Pathway par ALBERTO RUIZ ORDUNA Département de biomédecine vétérinaire Faculté de médecine vétérinaire Mémoire présenté à la Faculté de médecine vétérinaire en vue de l’obtention du grade de maître ès sciences (M.Sc.) en sciences vétérinaires option pharmacologie Décembre, 2015 © Alberto Ruiz Orduna, 2015 Résumé Les dynorphines sont des neuropeptides importants avec un rôle central dans la nociception et l’atténuation de la douleur. De nombreux mécanismes régulent les concentrations de dynorphine endogènes, y compris la protéolyse. Les Proprotéines convertases (PC) sont largement exprimées dans le système nerveux central et clivent spécifiquement le C-terminale de couple acides aminés basiques, ou un résidu basique unique. Le contrôle protéolytique des concentrations endogènes de Big Dynorphine (BDyn) et dynorphine A (Dyn A) a un effet important sur la perception de la douleur et le rôle de PC reste à être déterminée. L'objectif de cette étude était de décrypter le rôle de PC1 et PC2 dans le contrôle protéolytique de BDyn et Dyn A avec l'aide de fractions cellulaires de la moelle épinière de type sauvage (WT), PC1 -/+ et PC2 -/+ de souris et par la spectrométrie de masse. Nos résultats démontrent clairement que PC1 et PC2 sont impliquées dans la protéolyse de BDyn et Dyn A avec un rôle plus significatif pour PC1. Le traitement en C-terminal de BDyn génère des fragments peptidiques spécifiques incluant dynorphine 1-19, dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7 et Dyn A génère les fragments dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7. -
Phenidone Blocks the Increases of Proenkephalin and Prodynorphin
Brain Research 782Ž. 1998 337±342 Short communication Phenidone blocks the increases of proenkephalin and prodynorphin gene expression induced by kainic acid in rat hippocampus: involvement of Fos-related antigene protein Hyoung-Chun Kim a,), Jeong-Hye Suh a, Je-Seong Won b, Wang-Kee Jhoo a, Dong-Keun Song b, Yung-Hi Kim b, Myung-Bok Wie b, Hong-Won Suh b a College of Pharmacy, Kangwon National UniÕersity, Chunchon 200-701, Kangwon-Do, South Korea b Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym UniÕersity, Chunchon 200-701, Kangwon-Do, South Korea Accepted 11 November 1997 Abstract To determine the possible role of cyclooxygenaserlipoxygenase pathway in the regulation of proenkephalinŽ. proENK and prodynorphinŽ. proDYN gene expression induced by kainic acid Ž. KA in rat hippocampus, the effects of esculetin, aspirin, or phenidone on the seizure activity, proENK and proDYN mRNA levels, and the level of fos-related antigeneŽ. Fra protein induced by KA in rat hippocampus were studied. EsculetinŽ.Ž 5 mgrkg , aspirin 15 mgrkg . , or phenidone Ž 50 mgrkg . was administered orally five times every 12 h before the injection of KAŽ. 10 mgrkg, i.p. Seizure activity induced by KA was significantly attenuated by phenidone. However, neither esculetin nor aspirin affected KA-induced seizure activity. The proENK and proDYN mRNA levels were markedly increased 4 and 24 h after KA administration. The elevations of both proENK and proDYN mRNA levels induced by KA were inhibited by pre-administration with phenidone, but not with esculetin and aspirin. ProENK-like protein level increased by KA administration was also inhibited by pre-administration with phenidone, but not with esculetin and aspirin. -
Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward. -
Enkephalin After Peptidase Inhibition
J Pharmacol Sci 106, 295 – 300 (2008)2 Journal of Pharmacological Sciences ©2008 The Japanese Pharmacological Society Full Paper Great Increase in Antinociceptive Potency of [Leu5]Enkephalin After Peptidase Inhibition Kazuhito Akahori1, Kenya Kosaka1, Xing Lu Jin1, Yoshiharu Arai1, Masanobu Yoshikawa1, Hiroyuki Kobayashi1, and Tetsuo Oka1,* 1Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1143, Japan Received August 9, 2007; Accepted December 19, 2007 Abstract. Previous in vitro studies have shown that the degradation of [Leu5]enkephalin during incubation with cerebral membrane preparations is almost completely prevented by a mixture of three peptidase inhibitors: amastatin, captopril, and phosphoramidon. The present in vivo study shows that the inhibitory effect of [Leu5]enkephalin administered intra-third-ventricularly on the tail-flick response was increased more than 500-fold by the intra-third-ventricular pretreatment with the three peptidase inhibitors. The antinociceptive effect produced by the [Leu5]enkephalin in rats pretreated with any combination of two peptidase inhibitors was significantly smaller than that in rats pretreated with the three peptidase inhibitors, indicating that any residual single peptidase could inactivate significant amounts of the [Leu5]enkephalin. The present data, together with those obtained from previous studies, clearly demonstrate that amastatin-, captopril-, and phosphoramidon-sensitive enzymes play important roles in the inactivation of short endogenous opioid -
New Trends in the Development of Opioid Peptide Analogues As Advanced Remedies for Pain Relief
Current Topics in Medicinal Chemistry 2004, 4, 19-38 19 New Trends in the Development of Opioid Peptide Analogues as Advanced Remedies for Pain Relief Luca Gentilucci* Dipartimento di Chimica “G. Ciamician”, via Selmi 2, Università degli Studi di Bologna, 40126- Bologna, Italy Abstract: The search for new peptides to be used as analgesics in place of morphine has been mainly directed to develop peptide analogues or peptidomimetics having higher biological stability and receptor selectivity. Indeed, most of the alkaloid opioid counterindications are due to the scarce stability and the contemporary activation of different receptor types. However, the development of several extremely stable and selective peptide ligands for the different opioid receptors, and the recent discovery of the m-receptor selective endomorphins, rendered this search less fundamental. In recent years, other opioid peptide properties have been investigated in the search for new pharmacological tools. The utility of a drug depends on its ability to reach appropriate receptors at the target tissue and to remain metabolically stable in order to produce the desired effect. This review deals with the recent investigations on peptide bioavailability, in particular barrier penetration and resistance against enzymatic degradation; with the development of peptides having activity at different receptors; with chimeric peptides, with propeptides, and with non-conventional peptides, lacking basic pharmacophoric features. Key Words. Opioid peptide analogues; opioid receptors; pain; antinociception; peptide stability; bioavailability. INTRODUCTION. OPIOID PEPTIDES, RECEPTORS, receptor interaction by structure-function studies of AND PAIN recombinant receptors and chimera receptors [7,8]. Experiments performed on mutant mice gave new The endogenous opioid peptides have been studied information about the mode of action of opioids, receptor extensively since their discovery aiming to develop effective heterogeneity and interactions [9]. -
Antinociceptive Effect of a Genomic Herpes Simplex Virus-Based Vector Expressing Human Proenkephalin in Rat Dorsal Root Ganglion
Gene Therapy (2001) 8, 551–556 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion JR Goss1,2, M Mata1,2,3, WF Goins3,HHWu1, JC Glorioso3 and DJ Fink1,2,3 Departments of 1Neurology and 3Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, and 2GRECC, VA Medical Center, Pittsburgh, PA, USA Endogenous opiate peptides acting pre- and post-synap- antinociceptive effect measured by the formalin footpad test, tically in the dorsal horn of spinal cord inhibit transmission that was most prominent in the delayed (‘tonic’) phase 20– of nociceptive stimuli. We transfected neurons of the dorsal 70 min after the administration of formalin. The magnitude root ganglion in vivo by footpad inoculation with 30 l(3× of the antinociceptive effect diminished over 4 weeks after 107 p.f.u.) of a replication-incompetent (ICP4-deleted) her- transduction, but reinoculation of the vector reestablished pes simplex virus (HSV) vector with a cassette containing a the analgesic effect, without evidence for the development portion of the human proenkephalin gene coding for 5 met- of tolerance. The antinociceptive effect was blocked com- and 1 leu-enkephalin molecules under the control of the pletely by intrathecal naltrexone. These results suggest that human cytomegalovirus immediate–early promoter (HCMV gene therapy with an enkephalin-producing herpes-based IEp) inserted in the HSV thymidine kinase (tk) locus. Vector- vector may prove useful in the treatment of pain. -
Structural Basis for Multifunctional Roles of Mammalian Aminopeptidase N
Structural basis for multifunctional roles of mammalian aminopeptidase N Lang Chen, Yi-Lun Lin, Guiqing Peng, and Fang Li1 Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455 Edited by Ralph S. Baric, University of North Carolina, Chapel Hill, NC, and accepted by the Editorial Board September 21, 2012 (received for review June 13, 2012) Mammalian aminopeptidase N (APN) plays multifunctional roles in sensation and mood regulation by catalyzing the metabolism of many physiological processes, including peptide metabolism, cell neuropeptides that process sensory information. One of these motility and adhesion, and coronavirus entry. Here we determined neuropeptides is enkephalin, which binds to opioid receptors and crystal structures of porcine APN at 1.85 Å resolution and its com- has pain-relief and mood-regulating effects (9). APN degrades plexes with a peptide substrate and a variety of inhibitors. APN is and shortens the in vivo life of enkephalin, and hence enhances a cell surface-anchored and seahorse-shaped zinc-aminopeptidase pain sensation and regulates mood. Second, APN is involved in that forms head-to-head dimers. Captured in a catalytically active blood pressure regulation. APN degrades vasoconstrictive peptide state, these structures of APN illustrate a detailed catalytic mech- angiotensin-III, causing vasodilation and lowered blood pressure anism for its aminopeptidase activity. The active site and peptide- (10). An endogenous APN inhibitor, substance P, blocks both binding channel of APN reside in cavities with wide openings, the enkephalin-dependent and angiotensin-dependent pathways allowing easy access to peptides. The cavities can potentially open (11, 12). Third, APN is overexpressed on the cell surfaces of up further to bind the exposed N terminus of proteins. -
Specific Regions of the Rat Brain
Proc. Nad. Acad. Sci. USA Vol. 81, pp. 6886-6889, November 1984 Neurobiology Differential processing of prodynorphin and proenkephalin in specific regions of the rat brain (dynorphins/neo-endorphins/[Leulenkephalin/[Metlenkephalin-Arg6-Gly7_Leu'/rat brain nuclei) NADAV ZAMIR*, ECKARD WEBERt, MIKLOS PALKOVITS*, AND MICHAEL BROWNSTEIN* *Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20205; and tNancy Pritzker Laboratory of Behavioral Neurochemistry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 Communicated by Seymour S. Kety, July 10, 1984 ABSTRACT Prodynorphin-derived peptides [dynorphin technique, from 300-,um thick frozen coronal sections cut in A (Dyn A)-(1-17), Dyn A-(1-8), Dyn B, a-neo-endorphin, and a cryostat at -10°C (21). Tissue samples were placed in Ep- (3-neo-endorphin] and proenkephalin-derived peptides pendorf tubes containing 200 M1 of0.1 M HC1 and transferred {[Leu]enkephalin ([Leu]Enk) and [Metlenkephalin-Arg6-Gly7- to a boiling water bath for 10 min. Samples were chilled in Leu8 ([Met]Enk-Arg-Gly-Leu)} in selected brain areas of the ice and then homogenized by sonication, and 20-,u aliquots rat were measured by specific radioimmunoassays. We report of the homogenates were removed for protein determination here that different regions of rat brain contain strikingly dif- (22). The extracts were centrifuged at 2000 x g for 10 min at ferent proportions of the prodynorphin and proenkephalin-de- 4°C. The supernatants were transferred to 12 x 75 mm poly- rived peptides. There is a molar excess of a-neo-endorphin- propylene or polystyrene tubes (the latter for RIAs of derived peptides over Dyn B and Dyn A-derived peptides in [Leu]Enk and [Met]Enk-Arg-Gly-Leu) and evaporated to many brain areas.