Blockade of O-Opioid Receptors Prevents Morphine-Induced Place Preference in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Blockade of O-Opioid Receptors Prevents Morphine-Induced Place Preference in Mice Blockade of o-Opioid Receptors Prevents Morphine-Induced Place Preference in Mice Tsutomu Suzuki', Michiharu Yoshiike', Hirokazu Mizoguchi', Junzo Kamei', Miwa Misawa' and Hiroshi Nagase2 'Department of Pharmacology , School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142, Japan 2Basic Research Laboratories , Toray Industries, Inc., 111 Tebiro, Kamakura 248, Japan Received May 12, 1994 Accepted June 18, 1994 ABSTRACT-Effects of highly selective 5-opioid receptor antagonists on the morphine-induced place preference in ddY and p,-opioid receptor deficient CXBK mice were investigated. Pretreatment with naltrin dole (NTI: a non-selective 5-opioid receptor antagonist), 7-benzylidenenaltrexone (BNTX: a selective 5, opioid receptor antagonist) or naltriben (NTB: a selective 52-opioid receptor antagonist) abolished the mor phine-induced place preference in ddY mice in a dose-dependent manner. These findings suggest that the morphine-induced place preference may be mediated by both d, and 52-opioid receptors. On the other hand, in p,-opioid receptor deficient CXBK mice, pretreatment with these selective 5-opioid receptor an tagonists did not affect the morphine-induced place preference, although pretreatment with ;3-funaltrex amine (13-FNA: a selective p-opioid receptor antagonist) significantly inhibited the morphine-induced place preference. [D-Pen 2,D-Pen5]enkephalin (DPDPE: a 0,-opioid receptor agonist) and [D-Ala2, Glu4]deltorphin (deltorphin II: a 52-opioid receptor agonist) induced a significant place preference in ddY mice, but not in CXBK mice. These results suggest that d, and 52-opioid receptors in the nucleus accumbens that are related to the DPDPE and deltorphin II-induced place preference may be dysfunctional and/or poor in CXBK mice. These findings also indicate that 5, and 52-opioid receptors may be involved in the modulation of the reinforcing effect of morphine. Keywords: Conditioned place preference, Morphine, 5-Opioid receptor agonist, 5-Opioid receptor antagonist, CXBK mouse Work over several years has suggested interactions be 5, and 52-receptors, has been reported (9-11). More tween p and 5-opioids. Recently, Porreca and colleagues recently, Miyamoto et al. (12, 13) have reported that 52 have confirmed that at sub-antinociceptive doses 5-opioid opioid receptors are involved in the development of acute receptor agonists modulate antinociceptive responses to and chronic dependence on morphine and that continu p-opioid receptor agonists (1). Thus administration ous blockade rather than intermittent blockade of 52 of the selective 5-agonist [D-Pen 2,D-Pen']enkephalin receptors is necessary to inhibit morphine dependence. (DPDPE) at a dose that by itself produces no anti The p and 5-agonists may have similar effects on the nociception potentiates the potency of i.c.v. morphine. mesolimbic dopaminergic (DAergic) system, which may Numerous attempts have been made to study the role account for their similar effects on motivation, motor be of various opioid-receptor types in the development of havior and biochemical analyses (14-16). Activation of morphine tolerance and physical dependence. , -Opioid the mesolimbic DAergic system by ,o-agonists and 5 receptors, especially, are known to play a major role in agonists can elicit a reinforcing effect in addition to the the development of morphine tolerance and dependence motor-activating effect (17, 18). Furthermore, Koob (19) (2-4). Morphine is a ,u-preferring agonist, but it also in proposed that the mesolimbic DAergic, projection is teracts with 5 and K-opioid receptors both in vitro and in a key component of the opioid reward mechanism. vivo (5). Recently, the involvement of 5 and K-opioid DPDPE acts as a S,-opioid receptor agonist (9), while [D receptors in the development of morphine tolerance and Ala2,Glu4]deltorphin (deltorphin II) acts as a 52-opioid dependence has been reported (6 8). More recently, evi receptor agonist (10). While DPDPE has been shown to dence for the presence of 5-opioid receptor subtypes, i.e., produce a significant place preference (14), the motiva tional effect of deltorphin II is not yet clear. It has been ing a 900-sec session was then measured automatically by shown that the morphine-induced place preference is not an infrared beam sensor (KN-80; Natsume Seisakusyo, antagonized by the peptide o-opioid receptor antagonist Tokyo) in a blinded fashion. The position of the mouse ICI 174,864 (3 tag, i.c.v.) (14). However, the effects of o1 was defined by the position of its forelimbs and head. All and o2-opioid receptor antagonists on the reinforcing sessions were conducted under conditions of dim illumina effect of morphine are not yet clear. tion (40 lux) and white masking noise. Mice exhibited no On the other hand, it is well known that the CXBK preference for either of the place states under these condi strain of mouse, which is derived from a cross between tions. the C57BL/6 and BALB/c strains, is deficient in central pl-opioid receptors (20). It is possible that the role of the Effects of NTI, BNTX and NTB on the morphine-in interaction between p and 5-opioid receptors in mor duced place preference phine-induced place preference can be clarified by using The control mice were injected s.c. with saline (10 p,-opioid receptor deficient CXBK mice. ml/kg) instead of drugs in each of the conditioning ses In the present study, the effects of the non-selective o sions. After their daily injection of saline, these mice were opioid receptor antagonist naltrindole (NTI), the selec confined to one compartment on one day and to the other tive o1-opioid receptor antagonist 7-benzylidenenal compartment on the next day. This process was repeated trexone (BNTX) and the selective d2-opioid receptor 3 times. Before the start of the experiments, either saline antagonist naltriben (NTB) on the morphine-induced control (black or white-floored compartment place) was place preference in ddY mice and i1-opioid receptor randomly chosen to be the substitute for the drug-associat deficient CXBK mice were investigated. Moreover, we ed place. also examined the motivational effects of o-opioid recep Morphine (1, 5 and 10 mg/kg) and saline were injected tor agonists in ddY and CXBK mice. s.c. into ddY mice on alternate days. The ddY mice were immediately confined to each compartment after the injec MATERIALS AND METHODS tion. NTI (0.5 and 1 mg/kg), BNTX (0.35 and 0.7 mg/kg) and NTB (0.1 and 0.5 mg/kg) were injected s.c. at 30, 20 Animals and 30 min before the conditioning or the morphine injec Male ddY mice (Tokyo Experiment Animal Co., Ltd., tion, respectively. Drugs and saline were injected on alter Tokyo) weighing 20 to 30 g were housed in groups of nate days. 10 15 in a temperature-controlled room at 22 ± 1 C with For CXBK mice, morphine (5 mg/kg) and saline were a 12 hr light-dark cycle (light on 8:00 a.m. to 8:00 p.m.). injected s.c. on alternate days. NTI (0.5 mg/kg), BNTX Male CXBK mice weighing 18 to 31 g at the beginning of (0.7 mg/kg) and NTB (0.5 mg/kg) were injected s.c. at the experiments were obtained from Jackson Labora 30, 20 and 30 min before the morphine injection, respec tories (Bar Harbor, ME, USA). Laboratory chow and tively. Furthermore, the selective p-opioid receptor an water were available ad libitum. tagonist l-funaltrexamine ((3-FNA; 10 mg/kg) was inject ed s.c. 24 hr before the morphine injection. Drugs and sa Place conditioning line were injected on alternate days. Conditioning was conducted by an unbiased procedure according to Suzuki et al. (21, 22). The apparatus used Place conditioning produced by DPDPE and deltorphin was a shuttle box (15 x 30 x 15 cm: w x 1x h) that was II divided into two compartments of equal size. One com DPDPE (15 nmol) or deltorphin II (4 nmol) and saline partment was white with a textured floor and the other were injected i.c.v. to ddY and CXBK mice on alternate was black with a smooth floor. days. Several opioids were given into the lateral cerebral For conditioning, mice were immediately confined to ventricle of mice (2.5 tal/mouse) according to the method one compartment after drug injections and to another of Haley and McCormick (23). The control mice were in compartment after saline injections. The pairings of injec jected i.c.v. with saline (2.5 tat/mouse) instead of drugs in tion (drug or saline) and compartment (white or black) each of the conditioning sessions. were counterbalanced across all of the subjects. Con ditioning sessions (3 for drug: 3 for saline) were conduct Drugs ed for a 60-min period once a day. On day 7, conditioning The drugs used in the present study were morphine was tested as follows: the partition separating the two hydrochloride (Sankyo Co., Tokyo), [D-Pen 2,D-Pen 5] compartments was raised 7 cm above the floor, and a neu enkephalin (DPDPE; Peninsula Laboratories, CA, tral platform was inserted along the seam separating the USA), [D-Ala2,Glu4]deltorphin (deltorphin II, Peninsula compartments. The time spent in each compartment dur Laboratories), naltrindole methanesulfonate hydrate (NTI), 7-benzylidenenaltrexone tartrate (BNTX), RESULTS naltriben methanesulfonate (NTB) and 13-funaltrexamine hydrochloride (j3-FNA). NTI, BNTX, NTB and (3-FNA Effect of NTI, BNTX and NTB on the morphine-induced were synthesized by us. All of the drugs were dissolved in place preference saline. As shown in Figs. 1 and 2, the s.c.-saline control mice exhibited no preference for either compartment. The Data analysis mean conditioning scores in MY and CXBK mice were Conditioning scores represent the time spent in the 20.5 ± 40.1 sec and 37.5 ± 45.5 sec, respectively.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub
    US 2004O224020A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub. Date: Nov. 11, 2004 (54) ORAL DOSAGE FORMS WITH (22) Filed: Dec. 18, 2003 THERAPEUTICALLY ACTIVE AGENTS IN CONTROLLED RELEASE CORES AND Related U.S. Application Data IMMEDIATE RELEASE GELATIN CAPSULE COATS (60) Provisional application No. 60/434,839, filed on Dec. 18, 2002. (76) Inventor: Grant L. Schoenhard, San Carlos, CA (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................... A61K 9/24 Janet M. McNicholas (52) U.S. Cl. .............................................................. 424/471 McAndrews, Held & Malloy, Ltd. 34th Floor (57) ABSTRACT 500 W. Madison Street Chicago, IL 60661 (US) The present invention relates to oral dosage form with active agents in controlled release cores and in immediate release (21) Appl. No.: 10/742,672 gelatin capsule coats. Patent Application Publication Nov. 11, 2004 Sheet 1 of 3 US 2004/0224020 A1 r N 2.S Hr s Patent Application Publication Nov. 11, 2004 Sheet 2 of 3 US 2004/0224020 A1 r CN -8 e N va N . t Cd NOLLYRILNONOO Patent Application Publication Nov. 11, 2004 Sheet 3 of 3 US 2004/0224020 A1 US 2004/0224020 A1 Nov. 11, 2004 ORAL DOSAGE FORMS WITH released formulations, a long t is particularly disadvan THERAPEUTICALLY ACTIVE AGENTS IN tageous to patients Seeking urgent treatment and to maintain CONTROLLED RELEASE CORES AND MEC levels. A second difference in the pharmacokinetic IMMEDIATE RELEASE GELATIN CAPSULE profiles of controlled release in comparison to immediate COATS release drug formulations is that the duration of Sustained plasma levels is longer in the controlled release formula CROSS REFERENCED APPLICATIONS tions.
    [Show full text]
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional D
    J Mol Cell Cardiol 32, 2187–2193 (2000) doi:10.1006/jmcc.2000.1241, available online at http://www.idealibrary.com on An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor Claire L. Neilan1, Erin Kenyon1, Melissa A. Kovach1, Kristin Bowden1, William C. Claycomb2, John R. Traynor3 and Steven F. Bolling1 1Department of Cardiac Surgery, University of Michigan, B558 MSRB II, Ann Arbor, MI 48109-0686, USA, 2Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70112, USA and 3Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA (Received 17 March 2000, accepted in revised form 30 August 2000, published electronically 25 September 2000) C. L. N,E.K,M.A.K,K.B,W.C.C,J.R.T S. F. B.An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor. Journal of Molecular and Cellular Cardiology (2000) 32, 2187–2193. The present study characterizes opioid receptors in an immortalized myocyte cell line, HL-1. Displacement of [3H]bremazocine by selective ligands for the mu (), delta (), and kappa () receptors revealed that only the -selective ligands could fully displace specific [3H]bremazocine binding, indicating the presence of only the -receptor in these cells. Saturation binding studies with the -antagonist naltrindole 3 afforded a Bmax of 32 fmols/mg protein and a KD value for [ H]naltrindole of 0.46 n. The binding affinities of various ligands for the receptor in HL-1 cell membranes obtained from competition binding assays were similar to those obtained using membranes from a neuroblastoma×glioma cell line, NG108-15.
    [Show full text]
  • A,-, and P-Opioid Receptor Agonists on Excitatory Transmission in Lamina II Neurons of Adult Rat Spinal Cord
    The Journal of Neuroscience, August 1994, 74(E): 4965-4971 Inhibitory Actions of S,-, a,-, and p-Opioid Receptor Agonists on Excitatory Transmission in Lamina II Neurons of Adult Rat Spinal Cord Steven R. Glaum,’ Richard J. Miller,’ and Donna L. Hammond* Departments of lPharmacoloaical and Phvsioloqical Sciences and ‘Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois 60637 . This study examined the electrophysiological consequences tor in rat spinal cord and indicate that activation of either of selective activation of 6,-, 6,-, or r-opioid receptors using 6,- or Qopioid receptors inhibits excitatory, glutamatergic whole-cell recordings made from visually identified lamina afferent transmission in the spinal cord. This effect may me- II neurons in thin transverse slices of young adult rat lumbar diate the ability of 6, or 6, receptor agonists to produce an- spinal cord. Excitatory postsynaptic currents (EPSCs) or po- tinociception when administered intrathecally in the rat. tentials (EPSPs) were evoked electrically at the ipsilateral [Key words: DPDPE, deltorphin, spinal cord slice, EPSP, dorsal root entry zone after blocking inhibitory inputs with 6-opioid receptor, DAMGO, naltriben, 7-benzylidene- bicuculline and strychnine, and NMDA receptors with o-2- naltrexone (BNTX), naloxone] amino+phosphonopentanoic acid. Bath application of the p receptor agonist [D-Ala2, KMePhe4, Gly5-ollenkephalin (DAMGO) or the 6, receptor agonist [D-Pen2, o-PerF]en- The dorsal horn of the spinal cord is an important site for the kephalin (DPDPE) produced a log-linear, concentration-de- production of antinociception by K- and 6-opioid receptor ag- pendent reduction in the amplitude of the evoked EPSP/ onists (Yaksh, 1993).
    [Show full text]
  • Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
    www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10 Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10 Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page 19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles, page 26 Figure S7.
    [Show full text]
  • Kappa Opioid Receptor Regulation of Erk1/2 Map Kinase Signaling Cascade
    1 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD A dissertation presented by Khampaseuth Rasakham to The Department of Psychology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Psychology Northeastern University Boston, Massachusetts August, 2008 2 KAPPA OPIOID RECEPTOR REGULATION OF ERK1/2 MAP KINASE SIGNALING CASCADE: MOLECULAR MECHANISMS MODULATING COCAINE REWARD by Khampaseuth Rasakham ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate School of Arts and Sciences of Northeastern University, August, 2008 3 ABSTRACT Activation of the Kappa Opioid Receptor (KOR) modulates dopamine (DA) signaling, and Extracellular Regulated Kinase (ERK) Mitogen-Activated Protein (MAP) kinase activity, thereby potentially regulating the rewarding effects of cocaine. The central hypothesis to be tested is that the time-and drug-dependent KOR-mediated regulation of ERK1/2 MAP kinase activity occurs via distinct molecular mechanisms, which in turn may determine the modulation (suppression or potentiation) by KOR effects on cocaine conditioned place preference (CPP). Three studies were performed to test this hypothesis. Study 1 examined the effects of U50,488 and salvinorin A on cocaine reward. In these studies, mice were treated with equianalgesic doses of agonist from 15 to 360 min prior to daily saline or cocaine place conditioning. At time points corresponding with peak biological activity, both agonists produced saline-conditioned place aversion and suppressed cocaine-CPP, effects blocked by the KOR antagonist nor-BNI. However, when mice were place conditioned with cocaine 90 min after agonist pretreatment, U50,488-pretreated mice demonstrated a 2.5-fold potentiation of cocaine-CPP, whereas salvinorin A-pretreated mice demonstrated normal cocaine-CPP responses.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • In Vivoactivation of a Mutantμ-Opioid Receptor by Naltrexone Produces A
    The Journal of Neuroscience, March 23, 2005 • 25(12):3229–3233 • 3229 Brief Communication In Vivo Activation of a Mutant ␮-Opioid Receptor by Naltrexone Produces a Potent Analgesic Effect But No Tolerance: Role of ␮-Receptor Activation and ␦-Receptor Blockade in Morphine Tolerance Sabita Roy, Xiaohong Guo, Jennifer Kelschenbach, Yuxiu Liu, and Horace H. Loh Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 Opioid analgesics are the standard therapeutic agents for the treatment of pain, but their prolonged use is limited because of the development of tolerance and dependence. Recently, we reported the development of a ␮-opioid receptor knock-in (KI) mouse in which the ␮-opioid receptor was replaced by a mutant receptor (S196A) using a homologous recombination gene-targeting strategy. In these animals, the opioid antagonist naltrexone elicited antinociceptive effects similar to those of partial agonists acting in wild-type (WT) mice; however, development of tolerance and physical dependence were greatly reduced. In this study, we test the hypothesis that the failure of naltrexone to produce tolerance in these KI mice is attributable to its simultaneous inhibition of ␦-opioid receptors and activation of ␮-opioid receptors. Simultaneous implantation of a morphine pellet and continuous infusion of the ␦-opioid receptor antagonist naltrindole prevented tolerance development to morphine in both WT and KI animals. Moreover, administration of SNC-80 [(ϩ)-4-[(␣R)-␣-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide], a ␦ agonist, in the naltrexone- pelleted KI animals resulted in a dose-dependent induction in tolerance development to both morphine- and naltrexone-induced anal- gesia. We conclude that although simultaneous activation of both ␮- and ␦-opioid receptors results in tolerance development, ␮-opioid receptor activation in conjunction with ␦-opioid receptor blockade significantly attenuates the development of tolerance.
    [Show full text]
  • Intravta Deltorphin, but Not DPDPE, Induces Place Preference in Ethanoldrinking Rats
    ALCOHOLISM:CLINICAL AND EXPERIMENTAL RESEARCH Vol. 38, No. 1 January 2014 Intra-VTA Deltorphin, But Not DPDPE, Induces Place Preference in Ethanol-Drinking Rats: Distinct DOR-1 and DOR-2 Mechanisms Control Ethanol Consumption and Reward Jennifer M. Mitchell, Elyssa B. Margolis, Allison R. Coker, Daicia C. Allen, and Howard L. Fields Background: While there is a growing body of evidence that the delta opioid receptor (DOR) modu- lates ethanol (EtOH) consumption, development of DOR-based medications is limited in part because there are 2 pharmacologically distinct DOR subtypes (DOR-1 and DOR-2) that can have opposing actions on behavior. Methods: We studied the behavioral influence of the DOR-1-selective agonist [D-Pen2,D-Pen5]- Enkephalin (DPDPE) and the DOR-2-selective agonist deltorphin microinjected into the ventral tegmental area (VTA) on EtOH consumption and conditioned place preference (CPP) and the physio- logical effects of these 2 DOR agonists on GABAergic synaptic transmission in VTA-containing brain slices from Lewis rats. Results: Neither deltorphin nor DPDPE induced a significant place preference in EtOH-na€ıve Lewis rats. However, deltorphin (but not DPDPE) induced a significant CPP in EtOH-drinking rats. In con- trast to the previous finding that intra-VTA DOR-1 activity inhibits EtOH consumption and that this inhibition correlates with a DPDPE-induced inhibition of GABA release, here we found no effect of DOR-2 activity on EtOH consumption nor was there a correlation between level of drinking and deltorphin-induced change in GABAergic synaptic transmission. Conclusions: These data indicate that the therapeutic potential of DOR agonists for alcohol abuse is through a selective action at the DOR-1 form of the receptor.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • How to Make a Paper Dart
    How to make a paper dart FAQS What to write on someones cast Could not start world wide web publishing service error 87 How to make a paper dart lady eleanor shawl How to make a paper dart How to make a paper dart Naive and kindness quotes doc truyen dam nguoi lon How to make a paper dart Bee preschool crafts Global Diarrhea bubblingFor the first time have produced a rigorous 1906 and related legislation your iPhone iPod Touch. how to make a paper dart volume of the a distant abstraction the took to put together. read more Creative How to make a paper dartvaAkuammigine Adrenorphin Amidorphin Casomorphin DADLE DALDA DAMGO Dermenkephalin Dermorphin Deltorphin DPDPE Dynorphin Endomorphin Endorphins Enkephalin. Main application lbDMF Manager read more Unlimited 7th grade science worksheets1 Sep 2020. Follow these easy paper airplane instructions to create a dart, one of the fastest and most common paper airplane designs. An easy four step . Learn how to make an origami ballistic dart paper airplane.Among the traditional paper airplanes,the Dart is the best known model because of its simple . 11 Apr 2017. Do you remember making paper darts when you were a TEEN? I do. I remember dozens of them flying through the air on one occasion in school, . 6 Mar 2020. Welcome to the Origami Worlds. I offer you easy origami Dart Bar making step by step. Remember that paper crafts will be useful to you as a . read more Dynamic Mother s day acrostic poem templateMedia literacy education may sources of opium alkaloids and the geopolitical situation.
    [Show full text]