Annular Hurricanes

Total Page:16

File Type:pdf, Size:1020Kb

Annular Hurricanes 204 WEATHER AND FORECASTING VOLUME 18 Annular Hurricanes JOHN A. KNAFF AND JAMES P. K OSSIN Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado MARK DEMARIA NOAA/NESDIS, Fort Collins, Colorado (Manuscript received 15 January 2002, in ®nal form 15 October 2002) ABSTRACT This study introduces and examines a symmetric category of tropical cyclone, which the authors call annular hurricanes. The structural characteristics and formation of this type of hurricane are examined and documented using satellite and aircraft reconnaissance data. The formation is shown to be systematic, resulting from what appears to be asymmetric mixing of eye and eyewall components of the storms involving either one or two possible mesovortices. Flight-level thermodynamic data support this contention, displaying uniform values of equivalent potential temperature in the eye, while the ¯ight-level wind observations within annular hurricanes show evidence that mixing inside the radius of maximum wind likely continues. Intensity tendencies of annular hurricanes indicate that these storms maintain their intensities longer than the average hurricane, resulting in larger-than-average intensity forecast errors and thus a signi®cant intensity forecasting challenge. In addition, these storms are found to exist in a speci®c set of environmental conditions, which are only found 3% and 0.8% of the time in the east Paci®c and Atlantic tropical cyclone basins during 1989±99, respectively. With forecasting issues in mind, two methods of objectively identifying these storms are also developed and discussed. 1. Introduction parison of the intensity evolution of annular hurricanes in the context of intensity forecasting will be examined The satellite appearance of tropical cyclones can vary in this paper. widely from case to case and from day to day. This The rather persistent structural appearance displayed study introduces a category of tropical cyclone, termed annular hurricanes. When compared with the greater in annular hurricanes suggests that there are special cir- population of tropical cyclones in an archive of infrared cumstances related to their formation and persistence. (IR) tropical cyclone imagery, these storms are distinct- Based on modeling and theoretical studies (Jones 1995; ly more axisymmetric with circular eyes surrounded by Bender 1997; Frank and Ritchie 1999, 2001) environ- a nearly uniform ring of deep convection and a curious mental wind shear should be intimately related to the lack of deep convective features outside this ring. Be- symmetry of these systems. Using environmental data, cause of this symmetry, these storms have also been this paper will document the vertical shear and other referred to as truck tires and doughnuts. This appearance environmental conditions that are associated with an- in satellite imagery can persist for days. Accompanying nular hurricane occurrences and how they differ from this structure is a nearly constant intensity1 with an av- a large sample of tropical cyclones. erage of 107.6 kt (1 kt 5 0.514 m s21). This charac- The lack of in situ wind and radar observations is an teristic represents a potential source for large intensity unfortunate reality that is common when studying trop- forecasting errors, which may be reduced by better iden- ical cyclones; however, animated IR satellite imagery ti®cation of annular hurricanes. For this reason, a com- combined with aircraft reconnaissance, when available, can be used to infer the dynamics and thermodynamics associated with annular hurricanes and their formation. 1 Because the maximum winds for tropical cyclones are forecast This methodology will be pursued in the context of a and archived (Davis et al. 1984; Jarvinen et al. 1984) in knots, knots are the units used for intensity throughout this paper. number of recent studies (Schubert et al. 1999; Kossin et al. 2000; Montgomery et al. 2000; Kossin and Schu- bert 2001) that have considered the role that barotropic Corresponding author address: John A. Knaff, NOAA Cooperative instability and asymmetric potential vorticity (PV) mix- Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. ing processes might play in the region of the hurricane E-mail: [email protected] inner core. Using aircraft ¯ight-level data from hurri- q 2003 American Meteorological Society APRIL 2003 KNAFF ET AL. 205 canes, Kossin and Eastin (2001) showed that radial pro- lution after being remapped to a Mercator projection. ®les of vorticity and equivalent potential temperature This IR dataset includes all storms for the period 1995± (ue) often undergo rapid and dramatic changes from a 2001 in the Atlantic, and 1997±2001 in the eastern Pa- barotropically unstable regime (i.e., ]2y/]r2 . 0 and ci®c, for this reason in this study we concentrate on ]ue/]r . 0), which they refer to as regime 1, to a bar- annular hurricanes that occurred after 1995. The dataset 2 2 otropically stable regime (i.e., ] y/]r # 0 and ]ue/]r is part of a tropical cyclone IR image archive maintained ù 0), or regime 2, and they hypothesized that these at the National Oceanic and Atmospheric Administra- changes may result from horizontal mixing processes. tion's (NOAA) Cooperative Institute for Research in the The current study concentrates upon six annular hur- Atmosphere (Zehr 2000). ricanes that have been observed in the Atlantic (1995± The track and intensity of each storm come from dig- 99) and eastern North Paci®c (1997±99) tropical cyclone ital databases of best-track information discussed in Da- basins. A factor in determining the number and location vis et al. (1984) and Jarvinen et al. (1984), which are of storms investigated in this study is the availability maintained at the National Hurricane Center (NHC). of a tropical cyclone IR satellite dataset, which exists The Atlantic best-track dataset starts in 1870 and the for 1995±2001 in the Atlantic and 1997±2001 in the east Paci®c best-track dataset starts in 1945. Another eastern Paci®c. Additionally, uniform measurements of dataset referred to as the extended Atlantic best-track environmental conditions calculated for the purpose of dataset exists for the years 1988±2001 and contains ad- intensity forecasting are available from 1989 to 1999. ditional storm-scale information including radii of sig- We know that annular hurricane have occurred in other ni®cant (maximum, and 34, 50, and 64 kt) winds, and tropical cyclone basins; however, neither of these da- eye size. The extended Atlantic best-track data (De- tasets is readably available in other tropical cyclone ba- Maria et al. 2001) are used to discuss structural differ- sins. It is the desire to perform quantitative analysis ences between annular hurricanes and the Atlantic mean, involving both the environmental conditions and the IR since reliable estimates of these structural quantities, brightness temperatures that excludes annular hurri- namely wind radii and eye size, often do not exist for canes in other basins and earlier times from this study. other basins, where routine reconnaissance is unavail- In addition to the IR imagery and the environmental able. For these comparison purposes, eye sizes of an- conditions, a variety of other datasets is also used to nular hurricanes were estimated using the IR imagery. investigate these axisymmetric storms. To compare the life cycle of tropical cyclones with The structural and intensity characteristics of annular intensities greater than 64 kt with the life cycle of an- hurricanes suggest methods to objectively identify them nular hurricanes, we rely upon the past work of Emanuel may be both possible and useful. The identi®cation of (2000) who showed that the life cycles of Atlantic hur- annular hurricanes, especially in a real-time forecast set- ricanes and west Paci®c typhoons are remarkably sim- ting, may possibly be utilized to improve intensity es- ilar. Unfortunately, Emanuel (2000) did not examine timations and forecasts. For this reason objective iden- east Paci®c hurricanes explicitly; however, the remark- ti®cation techniques, which use structural and environ- able similarity between the intensity evolutions in these mental characteristics found during the course of this two quite different basins suggest, that the intensity evo- study, will also be explored. lution in the eastern Paci®c is likely similar. To begin the examination of annular hurricanes, sec- The rate at which tropical cyclones weaken is also of tion 2 offers descriptions of the various datasets that are interest. To determine standard weakening rates, two used in this study. Following this brief discussion of methods are used: one from empirics and another from datasets, the features of annular hurricanes, including theory. The weakening of tropical cyclones is a fun- their axisymmetry, intensity characteristics and forecast damental aspect of the Dvorak method for tropical cy- errors, formation, and associated environmental con- clone intensity analysis (Dvorak 1984). The rate of ditions, will be shown in section 3. Using the evolu- weakening is given in terms of T numbers, which are tionary, structural, and environmental characteristics of related to current intensities. The rules associated with these storms detailed in section 3, section 4 discusses this method limit the number of T numbers that is al- the development of objective techniques to better iden- lowed to change in a 24-h period, which is a maximum tify these hurricanes in a real-time forecasting setting. ®lling rate. These same rules give guidelines for average The ®nal section will present a summary of this study and slower than average weakening rates. These em- along with a few concluding remarks and relevant ob- pirically derived rates are compared to those created servations. using the theory of Eliassen and Lystad (1977), which has been applied to tropical cyclones in Montgomery et al. (2001). In this theory vortex spindown is con- 2. Datasets trolled by the toroidal circulations (u, w) forced by the Several datasets are used to study annular hurricanes.
Recommended publications
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Quantifying the Impact of Synoptic Weather Types and Patterns On
    1 Quantifying the impact of synoptic weather types and patterns 2 on energy fluxes of a marginal snowpack 3 Andrew Schwartz1, Hamish McGowan1, Alison Theobald2, Nik Callow3 4 1Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia 5 2Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia 6 3School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia 7 8 Correspondence to: Andrew J. Schwartz ([email protected]) 9 10 Abstract. 11 Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack 12 in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified 13 common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. 14 The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the 15 passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the 16 front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual 17 synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be 18 highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and 19 reflection/emission of longwave fluxes. As single-site energy balance measurements of the snowpack were used 20 for this study, caution should be exercised before applying the results to the broader Australian Alps region. 21 However, this research is an important step towards understanding changes in surface energy flux as a result of 22 shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter 23 snowpacks.
    [Show full text]
  • Chapter 2.1.3, Has Both Unique and Common Features That Relate to TC Internal Structure, Motion, Forecast Difficulty, Frequency, Intensity, Energy, Intensity, Etc
    Chapter Two Charles J. Neumann USNR (Retired) U, S. National Hurricane Center Science Applications International Corporation 2. A Global Tropical Cyclone Climatology 2.1 Introduction and purpose Globally, seven tropical cyclone (TC) basins, four in the Northern Hemisphere (NH) and three in the Southern Hemisphere (SH) can be identified (see Table 1.1). Collectively, these basins annually observe approximately eighty to ninety TCs with maximum winds 63 km h-1 (34 kts). On the average, over half of these TCs (56%) reach or surpass the hurricane/ typhoon/ cyclone surface wind threshold of 118 km h-1 (64 kts). Basin TC activity shows wide variation, the most active being the western North Pacific, with about 30% of the global total, while the North Indian is the least active with about 6%. (These data are based on 1-minute wind averaging. For comparable figures based on 10-minute averaging, see Table 2.6.) Table 2.1. Recommended intensity terminology for WMO groups. Some Panel Countries use somewhat different terminology (WMO 2008b). Western N. Pacific terminology used by the Joint Typhoon Warning Center (JTWC) is also shown. Over the years, many countries subject to these TC events have nurtured the development of government, military, religious and other private groups to study TC structure, to predict future motion/intensity and to mitigate TC effects. As would be expected, these mostly independent efforts have evolved into many different TC related global practices. These would include different observational and forecast procedures, TC terminology, documentation, wind measurement, formats, units of measurement, dissemination, wind/ pressure relationships, etc. Coupled with data uncertainties, these differences confound the task of preparing a global climatology.
    [Show full text]
  • Richmond, VA Hurricanes
    Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage.
    [Show full text]
  • Economic Losses from Tropical Cyclones in the USA – an Assessment of the Impact of Climate Change and Socio-Economic Effects
    Economic losses from tropical cyclones in the USA – An assessment of the impact of climate change and socio-economic effects vorgelegt von Silvio Schmidt Von der Fakultät VII – Wirtschaft und Management der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Wirtschaftswissenschaft (Dr. rer. oec.) genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Christian von Hirschhausen Berichter: Prof. Dr. Claudia Kemfert Prof. Dr. Georg Meran Tag der wissenschaftlichen Aussprache: 19. Mai 2010 Berlin 2010 D83 Acknowledgements Many people deserve thanks and appreciation for this thesis, without their support and help, this work would not have been possible. Thanks to Laurens Bouwer, Oliver Büsse, Joel Gratz, Marlen Kube, Clau- dia Laube, Petra Löw, Peter Miesen, Brigitte Miksch, Roger Pielke Jr., Frank Oberholzner, Robert Sattler, Boris Siliverstovs, Michael Sonnenholzner and Angelika Wirtz for their useful comments and sugges- tions, engaging discussions and for providing me with the necessary data and with support for the data processing. Special thanks to Prof. Claudia Kemfert for her guidance during my studies, for her supporting feedback on various drafts of this paper and for her advice and motivation. Also, special thanks to Prof. Peter Höppe who was always available as a motivating discussion partner, for his advice and for arranging a funding for research activities. He also made it possible for me to have access to Munich Re’s NatCatSERVICE® database. I am also very grateful to Eberhard Faust who shared his profound knowledge on extreme weather events and the related insurance requirements with me. His support and advice contributed immensely to the completion of this thesis.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • The Interactions Between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred During the Summer Season
    502 MONTHLY WEATHER REVIEW VOLUME 126 NOTES AND CORRESPONDENCE The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season ANTHONY R. LUPO AND PHILLIP J. SMITH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 20 September 1996 and 2 May 1997 ABSTRACT Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analyses and the Zwack±Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data ®elds into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point.
    [Show full text]
  • Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland
    182 WEATHER AND FORECASTING VOLUME 30 Mesoscale Convective Systems and Their Synoptic-Scale Environment in Finland ARI-JUHANI PUNKKA Finnish Meteorological Institute, Helsinki, Finland MARJA BISTER Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Helsinki, Finland (Manuscript received 9 December 2013, in final form 14 October 2014) ABSTRACT The environments within which high-latitude intense and nonintense mesoscale convective systems (iMCSs and niMCSs) and smaller thunderstorm clusters (sub-MCSs) develop were studied using proximity soundings. MCS statistics covering 8 years were created by analyzing composite radar imagery. One-third of all systems were intense in Finland and the frequency of MCSs was highest in July. On average, MCSs had a duration of 10.8 h and traveled toward the northeast. Many of the linear MCSs had a southwest–northeast line orienta- tion. Interestingly, a few MCSs were observed to travel toward the west, which is a geographically specific feature of the MCS characteristics. The midlevel lapse rate failed to distinguish the environments of the different event types from each other. However, in MCSs, CAPE and the low-level mixing ratio were higher, the deep-layer-mean wind was stronger, and the lifting condensation level (LCL) was lower than in sub- MCSs. CAPE, low-level mixing ratio, and LCL height were the best discriminators between iMCSs and niMCSs. The mean wind over deep layers distinguished the severe wind–producing events from the nonsevere events better than did the vertical equivalent potential temperature difference or the wind shear in shallow layers. No evidence was found to support the hypothesis that dry air at low- and midlevels would increase the likelihood of severe convective winds.
    [Show full text]
  • The Extremely Active 1995 Atlantic Hurricane Season: Environmental Conditions and Veri®Cation of Seasonal Forecasts
    1174 MONTHLY WEATHER REVIEW VOLUME 126 The Extremely Active 1995 Atlantic Hurricane Season: Environmental Conditions and Veri®cation of Seasonal Forecasts CHRISTOPHER W. L ANDSEA NOAA Climate and Global Change Fellowship, NOAA/AOML/Hurricane Research Division, Miami, Florida GERALD D. BELL NOAA/NWS/NCEP/Climate Prediction Center, Washington, D.C. WILLIAM M. GRAY Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado STANLEY B. GOLDENBERG NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 3 September 1996, in ®nal form 18 March 1997) ABSTRACT The 1995 Atlantic hurricane season was a year of near-record hurricane activity with a total of 19 named storms (average is 9.3 for the base period 1950±90) and 11 hurricanes (average is 5.8), which persisted for a total of 121 named storm days (average is 46.6) and 60 hurricane days (average is 23.9), respectively. There were ®ve intense (or major) Saf®r±Simpson category 3, 4, or 5 hurricanes (average is 2.3 intense hurricanes) with 11.75 intense hurricane days (average is 4.7). The net tropical cyclone activity, based upon the combined values of named storms, hurricanes, intense hurricanes, and their days present, was 229% of the average. Additionally, 1995 saw the return of hurricane activity to the deep tropical latitudes: seven hurricanes developed south of 258N (excluding all of the Gulf of Mexico) compared with just one during all of 1991±94. Interestingly, all seven storms that formed south of 208N in August and September recurved to the northeast without making landfall in the United States.
    [Show full text]
  • Part 2 Severe Weather
    34 INTRODUCTION to SEVERE WEATHER (from http://www.srh.noaa.gov/jetstream//) 34 35 Chapter 1. Tropical Cyclone (from http://www.srh.noaa.gov/srh/jetstream/tropics/tropics_intro.htm) 1. Introduction A tropical cyclone is a warm-core, low pressure system without any "front" attached, that develops over the tropical or subtropical waters, and has an organized circulation. Depending upon location, tropical cyclones have different names around the world. In the: • Atlantic/Eastern Pacific Oceans - hurricanes • Western Pacific - typhoons • Indian Ocean - cyclones Regardless of what they are called, there are several favorable environmental conditions that must be in place before a tropical cyclone can form. They are: • Warm ocean waters (at least 80°F / 27°C) throughou t a depth of about 150 ft. (46 m). • An atmosphere which cools fast enough with height such that it is potentially unstable to moist convection. • Relatively moist air near the mid-level of the troposphere (16,000 ft. / 4,900 m). • Generally a minimum distance of at least 300 miles (480 km) from the equator. • A pre-existing near-surface disturbance. • Low values (less than about 23 mph / 37 kph) of vertical wind shear between the surface and the upper troposphere. Vertical wind shear is the change in wind speed with height. 35 36 Tropical Cyclone Formation Basin Given that sea surface temperatures need to be at least 80°F (27°C) for tropical cyclones form, it is natural that they form near the equator. However, with only the rarest of occasions, these storms do not form within 5° latitude of the equator.
    [Show full text]
  • Eastern Caribbean Hurricane Lenny
    EASTERN CARIBBEAN: 19 November 1999 HURRICANE LENNY Information Bulletin N° 02 The Situation After reaching almost category 5 strength on Wednesday, Hurricane Lenny has now weakened to category 2. However, its width (yesterday 180 km with hurricane force & 295 km with tropical storm force, and today 90 km & 230 km respectively) and the fact it has remained almost stationary the last three days means it may have caused extensive damage and that it is still a severe threat to the Eastern Caribbean, particularly the Leeward Islands. At 5 a.m.( A.S.T.) today, the centre of the hurricane was located near latitude 18.1 north, longitude 62.8 west, or just north of the island of St Barthélemy and just east of the island of St Martin. A hurricane warning remains in effect for St Kitts & Nevis, Antigua & Barbuda, Monserrat, St Martin, St Barthélemy and Anguila for much of today. A tropical storm warning remains for other neighbouring islands. The hurricane winds have now decreased to 185 kph with higher gusts over unprotected south and west facing terrain. Tropical storm force winds extend outward up to 280 km from the centre and stronger wind fluctuations could occur. The islands of St. Martin (particularly the southern, Dutch side), Anguila, Saba, St. Eustatius and St. Barthélémy, are experiencing hurricane force winds as they are located in the centre of the advancing hurricane. The phenomenon is expected to continue to move slowly north eastward today, hopefully out of the Caribbean. Red Cross/Red Crescent Action St. Kitts and Nevis Red Cross reported on Thursday 18 that the major impact of the hurricane was flooding , both fresh water and salt water.
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]