Uranium Extraction Technology

Total Page:16

File Type:pdf, Size:1020Kb

Uranium Extraction Technology TECHNICAL REPORTS SERIES No. 359 Uranium Extraction Technology %ffij INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1993 The cover picture shows the in situ uranium central processing facility, Hobson Uranium Project, Everest Mineral Corporation, Karnes County, Texas, United States of America. By courtesy of Lanmon Aerial Photography Inc., Corpus Christi, Texas. URANIUM EXTRACTION TECHNOLOGY The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PANAMA ALBANIA HAITI PARAGUAY ALGERIA HOLY SEE PERU ARGENTINA HUNGARY PHILIPPINES ARMENIA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA QATAR BANGLADESH IRAN, ISLAMIC REPUBLIC OF ROMANIA BELARUS IRAQ RUSSIAN FEDERATION BELGIUM IRELAND SAUDI ARABIA BOLIVIA ISRAEL SENEGAL BRAZIL ITALY SIERRA LEONE BULGARIA JAMAICA SINGAPORE CAMBODIA JAPAN SLOVAK REPUBLIC CAMEROON JORDAN SLOVENIA CANADA KENYA SOUTH AFRICA CHILE KOREA, REPUBLIC OF SPAIN CHINA KUWAIT SRI LANKA COLOMBIA LEBANON SUDAN COSTA RICA LIBERIA SWEDEN COTE D'lVOIRE LIBYAN ARAB JAMAHIRIYA SWITZERLAND CROATIA LIECHTENSTEIN SYRIAN ARAB REPUBLIC CUBA LUXEMBOURG THAILAND CYPRUS MADAGASCAR TUNISIA CZECH REPUBLIC MALAYSIA TURKEY DEMOCRATIC PEOPLE'S MALI UGANDA REPUBLIC OF KOREA MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF GREAT ECUADOR MONGOLIA BRITAIN AND NORTHERN EGYPT MOROCCO IRELAND EL SALVADOR MYANMAR UNITED REPUBLIC OF TANZANIA ESTONIA NAMIBIA UNITED STATES OF AMERICA ETHIOPIA NETHERLANDS URUGUAY FINLAND NEW ZEALAND VENEZUELA FRANCE NICARAGUA VIET NAM GABON NIGER YUGOSLAVIA GERMANY NIGERIA ZAIRE GHANA NORWAY ZAMBIA GREECE PAKISTAN ZIMBABWE The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Head­ quarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1993 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria December 1993 STI/DOC/10/359 TECHNICAL REPORTS SERIES No. 359 URANIUM EXTRACTION TECHNOLOGY INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1993 VIC Library Cataloguing in Publication Data Uranium extraction technology. — Vienna : International Atomic Energy Agency, 1993. p. ; 24 cm. — (Technical reports series, ISSN 0074-1914 ; 359) STI/DOC/10/359 ISBN 92-0-103593-4 Includes bibliographical references. 1. In situ processing (Mining). 2. Leaching. 3. Solution mining. 4. Uranium mines and mining. I. International Atomic Energy Agency. II. Series: Technical reports series (International Atomic Energy Agency) ; 359. VICL 92-00074 FOREWORD In 1983 the Nuclear Energy Agency of the Organisation for Economic Co­ operation and Development (OECD/NEA) and the IAEA jointly published a book on Uranium Extraction Technology. A primary objective of this report was to docu­ ment the significant technological developments that took place during the 1970s. The purpose of this present publication is to update and expand the original book. It includes background information about the principles of the unit operations used in uranium ore processing and summarizes the current state of the art. The publication also seeks to preserve the technology and the operating 'know-how' developed over the past ten years. Relatively little of this experience has been documented in recent years because technical personnel have moved to other industries as mines and mills have closed down throughout the world. Extensive references provide sources for specific technological details. This publication is one of a series of Technical Reports on uranium ore processing that have been prepared by the Division of Nuclear Fuel Cycle and Waste Management at the IAEA. A complete list of these reports is included as an addendum. The IAEA wishes to thank the consultants and their associates who took part in the preparation of this publication. It is primarily the work of a consultants group consisting of the following members: G.M. Ritcey (Gordon M. Ritcey and Associ­ ates, Canada), R.J. Ring (Australian Nuclear Science and Technology Organisation, Australia), M. Roche (Compagnie gen6rale des matieres nucl6aires, France) and S. Ajuria (Instituto Nacional de Investigaciones Nucleares, Mexico). Components of several chapters were provided by other contributors. The IAEA is also grateful to the Member States and individual organizations for their generous support in provid­ ing experts to assist in this work. The IAEA officer responsible for this work was D.C. Seidel of the Division of Nuclear Fuel Cycle and Waste Management. Mr. Seidel also participated as a technical expert and contributing author. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judge­ ment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS INTRODUCTION 1 PART I. URANIUM RESOURCES AND MINING TECHNOLOGY .... 5 CHAPTER 1. URANIUM RESOURCES 7 1.1. Introduction 7 1.2. Geological types of uranium deposits 7 1.3. Uranium resource classification system 13 1.4. Uranium resources in WOCA 15 References 18 CHAPTER 2. MINING TECHNOLOGY 19 2.1. Types of mining and mining practice 19 2.1.1. Uranium ore bodies 19 2.1.2. Mining recovery 19 2.2. Radiological and environmental aspects 22 2.2.1. Identification of radiological risks 22 2.2.2. Regulatory aspects 23 2.2.3. Dosimetric survey of workers 24 2.2.4. Radiological impact of ore mining and ore treatment on the environment 24 2.3. Grade control 26 2.3.1. General theory 26 2.3.2. Grade control during exploration 27 2.3.3. Grade control during mining 28 2.3.4. Grade control during ore haulage delivery to die mill 28 2.4. Co-ordination with mill 29 2.4.1. Metallurgical balance 30 References 30 PART II. PROCESSING TECHNOLOGY 33 CHAPTER 3. PROCESSING CONCEPTS 35 References 37 CHAPTER 4. ORE PREPARATION 39 4.1. Introduction 39 4.2. Crushing and grinding 39 4.2.1. Introduction 39 4.2.2. Comminution theory 40 4.2.3. Grindability 41 4.2.4. Circuits and equipment 42 4.3. Beneficiation 44 4.3.1. Introduction 44 4.3.2. Preconcentration processes 44 4.3.3. Radiometric sorting 45 4.3.4. Photometric and conductimetric sorting 60 4.3.5. Separation on the basis of size and shape 60 4.3.6. Separation on the basis of gravity 61 4.3.7. Separation on the basis of magnetic susceptibility 64 4.3.8. Flotation 65 4.4. Roasting 66 4.4.1. Introduction 66 4.4.2. Roasting chemistry 67 4.4.3. Roasting processes 67 4.4.4. Roasting equipment 69 References 69 CHAPTER 5. LEACHING 75 5.1. Introduction 75 5.2. Leaching chemistry 78 5.3. Leaching conditions and mineralogy 80 5.3.1. Uranium 81 5.3.2. Gangue minerals 85 5.4. Sulphuric acid leaching systems 89 5.4.1. Atmospheric agitation 89 5.4.2. Pressure leaching 97 5.5. Carbonate leaching systems 100 5.5.1. Atmospheric leaching 100 5.5.2. Pressure leaching 101 5.6. Strong acid pugging and curing 104 5.6.1. Somair and Cominak mills 104 5.7. Alternative leaching systems 109 5.7.1. Removal of radium and thorium 109 5.8. In situ and in place leaching Ill 5.8.1. Introduction Ill 5.8.2. In situ leaching 113 5.8.3. In place leaching 119 5.9. Heap and vat leaching 121 5.9.1. Introduction 121 5.9.2. Heap leaching 121 5.9.3. Vat leaching 127 References 127 CHAPTER 6. SOLID-LIQUID SEPARATION 137 6.1. Introduction 137 6.2. Concepts 137 6.2.1. Thickening 138 6.2.2. Filtration 141 6.2.3. Flocculation , 143 6.3. Applications in uranium milling 145 6.3.1. General circuit descriptions 145 6.3.2. Solid-liquid separation equipment 149 References 154 CHAPTER 7. SOLUTION PURIFICATION 157 7.1. Introduction 157 7.2. Resin ion exchange 158 7.2.1. Introduction 158 7.2.2. Ion exchange chemistry and resin characteristics 158 7.2.3. Ion exchange systems 161 7.3. Purification by solvent extraction 183 7.3.1. Introduction 183 7.3.2. Extractants 186 7.3.3. Modifiers 191 7.3.4. Diluents 192 7.3.5. Stripping 195 7.3.6. Dispersion and coalescence 195 7.3.7. Contacting equipment 196 7.3.8. Solvent-in-pulp extraction 206 7.3.9. Solvent losses 210 7.3.10. Process development 210 7.3.11. Materials of construction 214 7.3.12. Economics 215 7.3.13. Environmental aspects 215 7.4. Recovery of uranium from phosphoric acid 216 7.4.1. Introduction 216 7.4.2. Processes for uranium recovery from phosphoric acid 216 References 226 CHAPTER 8. PRODUCT RECOVERY 235 8.1. Introduction 235 8.2. Product specifications 235 8.3. Solution characterization 236 8.4. Precipitation 237 8.4.1. Precipitation testing and evaluation 237 8.4.2. Direct precipitation from acidic solutions 238 8.4.3. Direct precipitation from alkaline solutions 239 8.4.4. Precipitation from acid stripping solutions 239 8.4.5. Precipitation from alkaline stripping solutions 242 8.4.6. Ammonium uranyl tricarbonate system 243 8.5. Solid-liquid separation 244 8.6. Drying or calcination 246 8.7. Operating practice for product recovery 246 8.7.1. Rabbit Lake 246 8.7.2. Rio Algom Panel 247 8.7.3.
Recommended publications
  • Remediation of Uranium-Contaminated Ground Water at Fry Canyon, Utah
    Science Highlight – November 2003 Remediation of Uranium-contaminated Ground Water at Fry Canyon, Utah Christopher C. Fuller1, John R. Bargar2, James A. Davis1 1U.S. Geological Survey, Water Resources Division, Menlo Park, CA 2Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, CA Clean up of contaminated aquifers is a difficult and expensive problem because of the inaccessibility of the subsurface and the volume of soil and ground water requiring treat- ment. Established technologies such as pump-and-treat and soil excavation are ineffective in most large contamination scenarios because they treat only a small fraction of the con- tamination or are prohibitively expensive (National Research Council, 1999). Perme- able Reactive Barriers (PRBs) are a relatively new technology that offer promise to overcome these obstacles. PRBs are trenches (figure 1) or fence-like arrays of non-pumping wells emplaced in the subsurface at depths of up to 150 feet to intercept the flow of contaminated ground water (Freethey et al., 2002). Fill materials contained within the PRBs react with dissolved contaminants to degrade or sequester them. Thus, in essence, PRBs act as large in-situ filters to clean ground water. PRB technologies offer lower oper- ating costs, are highly energy efficient, and require no surface facilities or ground water pumping/recharge (Freethey et al., 2002; Morrison and Spangler, 1992; Shoemaker et al., 1995). Two commonly proposed PRB contaminant-removal mechanisms are: (a) precipitation reac- tions in which metal contaminants are sequestered within freshly formed mineral phases, and (b) oxidative degradation of contaminants by particulate iron metal. In order for PRBs to be cost-effective they should be effective for an economically viable period (or be replenishable).
    [Show full text]
  • + 2020 Annual Information Form
    Denison Mines Corp. 2020 Annual Information Form March 26, 2021 ABOUT THIS ANNUAL INFORMATION FORM This annual information form (“AIF”) is dated March 26, Table of Contents 2021. Unless stated otherwise, all of the information in this AIF is stated as at December 31, 2020. About this AIF .................................... 1 About Denison ................................... 6 This AIF has been prepared in accordance with Canadian Developments over the Last Three securities laws and contains information regarding Years ................................................. 8 Denison’s history, business, mineral reserves and The Uranium Industry ........................ 17 resources, the regulatory environment in which Denison Mineral Resources and Reserves 24 does business, the risks that Denison faces and other Mineral Properties ............................. 27 important information for Shareholders. Athabasca Exploration: Sampling, Analysis and Data Verification ........... 102 This AIF incorporates by reference: Denison Operations ........................... 107 Manager of UPC ................................ 111 Denison’s management discussion and analysis (“MD&A”) for the year ended December 31, 2020, Denison Closed Mines Group ........... 112 Environmental, Health, Safety and Denison’s audited consolidated financial Sustainability Matters ........................ 112 statements for the year ended December 31, 2020, Government Regulation .................... 114 Risk Factors ...................................... 120 both of which
    [Show full text]
  • In Situ Leach (ISL) Mining of Uranium
    In Situ Leach (ISL) Mining of Uranium (June 2009) l Most uranium mining in the USA and Kazakhstan is now by in situ leach methods, also known as in situ recovery (ISR). l In USA ISL is seen as the most cost effective and environmentally acceptable method of mining, and Australian experience supports this. l Australia's first ISL uranium mine is Beverley, which started operation late in 2000. The proposal for Honeymoon has government approval and it is expected to be operating in 2008. Conventional mining involves removing mineralised rock (ore) from the ground, breaking it up and treating it to remove the minerals being sought. In situ leaching (ISL), also known as solution mining, or in situ recovery (ISR) in North America, involves leaving the ore where it is in the ground, and recovering the minerals from it by dissolving them and pumping the pregnant solution to the surface where the minerals can be recovered. Consequently there is little surface disturbance and no tailings or waste rock generated. However, the orebody needs to be permeable to the liquids used, and located so that they do not contaminate ground water away from the orebody. Uranium ISL uses the native groundwater in the orebody which is fortified with a complexing agent and in most cases an oxidant. It is then pumped through the underground orebody to recover the minerals in it by leaching. Once the pregnant solution is returned to the surface, the uranium is recovered in much the same way as in any other uranium plant (mill). In Australian ISL mines (Beverley and the soon to be opened Honeymoon Mine) the oxidant used is hydrogen peroxide and the complexing agent sulfuric acid.
    [Show full text]
  • Bioleaching of Chalcopyrite
    Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,364,534 Anselme Et Al
    US005364534A United States Patent 19 11 Patent Number: 5,364,534 Anselme et al. 45 Date of Patent: Nov. 15, 1994 54 PROCESS AND APPARATUS FOR 4,872,991 10/1989 Kartels et al. ...................... 210/651 TREATING WASTE LIQUIDS 5,093,072 8/1991 Hitotsuyanagi et al. ........... 210/650 5,154,830 10/1992 Paul et al. ........................... 210/639 75 Inventors: Christophe Anselme, Le Vesinet; Isabelle Baudin, Nanterre, both of FOREIGN PATENT DOCUMENTS France 2628337 9/1989 France . 73 Assignee: Lyonnaise Des Eaux - Dumez, 4018994 1/1992 Japan ................................ 210/195.2 Nanterre, France Primary Examiner-Frank Spear (21) Appl. No.: 129,387 Assistant Examiner-Ana Fortuna Attorney, Agent, or Firm-Pollock, Vande Sande & 22 Filed: Sep. 30, 1993 Priddy (30) Foreign Application Priority Data 57 ABSTRACT Oct. 2, 1992 FR France ................................ 92 1699 Process for purifying and filtering fluids, especially 51l Int. Cl............................................... BOD 61/00 water, containing suspended contaminants and using 52 U.S. Cl. .................................... 210/650; 210/660; gravity separation means as well as membrane separa 210/800; 210/805; 210/195.1; 210/195.2; tion means, in a finishing stage, comprising the step of 210/257.2 introducing a pulverulent reagent into the fluid stream 58) Field of Search ............... 210/650, 639, 800, 790, to be treated downstream of the gravity separation and 210/195.1, 195.2, 295, 805, 900, 257.2, 660 upstream of the membrane separation, wherein said 56) References Cited pulverulent reagent is recycled from the purge of the U.S. PATENT DOCUMENTS membrane separation means to the upstream of the gravity separation means.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • NPTEL Syllabus
    NPTEL Syllabus Metals Biotechnology - Web course COURSE OUTLINE Introduction to microbiology relevant to metals biotechnology – Biology-Materials interface – Biomaterials processing – Biogenesis of minerals and metals - History, status and developments in biohydrometallurgy – Bioleaching mechanisms – Metal toxicity and tolerance in Acidithiobacillus ferrooxidans – Biohydrometallurgy of copper, zinc and nickel NPTEL – Biohydrometallurgy of uranium – Biotechnology for gold – Biomineralization and http://nptel.iitm.ac.in bioprocessing of ocean manganese nodules – Bioprocessing of industrial wastes – Electrochemical aspects of bioleaching – Electrobioleaching – Biomineral beneficiation of sulfide, oxide and industrial minerals – Biofouling, biocorrosion and biomaterials – Acid Metallurgy mine drainage and bioremediation in mining – Experimental and research techniques in metals biotechnology. and Material Science COURSE DETAIL Module Sl. No. and topic Hours Pre-requisites: Module 1 Microbiology, mechanisms and methods in metals Basic knowledge of biotechnology microbiology, chemistry and Lecture 1: Biology – materials interface and biomaterials metallurgy.Mineralogy processing. and Extractive metallurgy Lecture 2: Biogenesis of metals and minerals. of ferrous and nonferrous Lecture 3: History and methods in biohydrometallurgy. metals. Lecture 4: Microorganisms in biohydrometallurgy. 9 Lecture 5: Reactor bioleaching and developments in bioleaching of concentrates Coordinators: Lecture 6: Bioleaching mechanisms. Prof. K.A. Natarajan Lecture
    [Show full text]
  • Understanding Fluid–Rock Interactions and Lixiviant/Oxidant Behaviour for the In-Situ Recovery of Metals from Deep Ore Bodies
    School of Earth and Planetary Science Department of Applied Geology Understanding Fluid–Rock Interactions and Lixiviant/Oxidant Behaviour for the In-situ Recovery of Metals from Deep Ore Bodies Tania Marcela Hidalgo Rosero This thesis is presented for the degree of Doctor of Philosophy of Curtin University February 2020 1 Declaration __________________________________________________________________________ Declaration To the best of my knowledge and belief, I declare that this work of thesis contains no material published by any other person, except where due acknowledgements have been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Tania Marcela Hidalgo Rosero Date: 28/01/2020 2 Abstract __________________________________________________________________________ Abstract In-situ recovery (ISR) processing has been recognised as a possible alternative to open- pit mining, especially for low-grade resources. In ISR, the fluid–rock interaction between the target ore and the lixiviant results in valuable- (and gangue-) metal dissolution. This interaction is achieved by the injection and recovery of fluid by means of strategically positioned wells. Although the application of ISR has become more common (ISR remains the preferential processing technique for uranium and has been applied in pilot programs for treating oxide zones in copper deposits), its application to hard-rock refractory and low-grade copper-sulfide deposits is still under development. This research is focused on the possible application of ISR to primary copper sulfides usually found as deep ores. Lixiviant/oxidant selection is an important aspect to consider during planning and operation in the ISR of copper-sulfide ores.
    [Show full text]
  • Mining Company of Akouta (COMINAK), Akouta, Agadez II 111 I II III 111 Lllllll Mining Society of Air (SOMAIR), Arlit, Agadez XA0055932 Niger
    IAEA-SM-362/37 WASTE MANAGEMENT IN URANIUM COMPANIES OF NIGER Mining Company of Akouta (COMINAK), Akouta, Agadez II 111 I II III 111 lllllll Mining Society of Air (SOMAIR), Arlit, Agadez XA0055932 Niger Two companies produce uranium (yellow cake) in Niger: the "Societe des Mines de l'Ai'r (SOMAIR)" and the "Compagnie Miniere d'Akouta (COMINAK)". SOMAIR exploits uranium an open pit mining whereas COMINAK exploits an underground mining. The uranium ores with a grade of 0.25%U to 0.5%U [1] are treated by SOMAIR and COMINAK mills since 1971 and 1978 respectively. During the uranium recovery processing the principal following inputs are used: uranium ores, sulphuric acid (75 kg/t to 80 kg/5), nitric acid (10 kg/t recycled), sodium oxidant (2.5 kg/t) and water (150 l/t) [2]. The main chain of mining and milling is the following: Mining • Crushing • Leaching —• Solid-Liquid separation —*• Solvent extraction —• Uranium recovery —• Tailings management. The wastes produced (from mining and milling) can be classified as liquid wastes and solid wastes. The first one (liquid wastes) is of two kinds: wastewater and other liquid effluents. The wastewater is decanted for reuse in mills (COMINAK uses 16 basins with 4m of depth on an area of 44 ha to treat 3.4 millions mVyear [3]). Other liquid effluents are stored in basins of evaporation (COMINAK which has produced a volume of 2.18 millions m3 used 11 basins with 4 m of depth on an area of 65 ha against 10 ha for SOMAIR [3])- The solid wastes are barren overburden, low grade uranium ore and tailings mill.
    [Show full text]
  • Refinery Wastewater Management Using Multiple Angle Oil-Water Separators
    REFINERY WASTEWATER MANAGEMENT USING MULTIPLE ANGLE OIL-WATER SEPARATORS Kirby S. Mohr, P.E. Mohr Separations Research, Inc. 1278 FM 407 Suite 109 Lewisville, TX 75077 Phone: 918-299-9290 Cell: 918-269-8710 John N. Veenstra, Ph.D., P.E., Oklahoma State University Dee Ann Sanders, Ph.D., P.E. Oklahoma State University A paper presented at the International Petroleum Environment Conference in Albuquerque, New Mexico, 1998 ABSTRACT In this work, an overview of oil-water separation, as used in the petroleum refining industries, is presented along with case studies. Discussions include: impact of solids, legal aspects, and differing types of systems currently in use, along with their advantages and disadvantages. Performance information on separators is presented with an emphasis on new multiple angle coalescing plate technology for refinery wastewater management. Several studies are presented including a large (20,000 US GPM flow rate) system recently installed at a major US refinery. The separator was constructed by converting two existing API separators into four separators, and adding multiple angle coalescing plates to increase throughput and efficiency. A year of operating experience with this system indicates good performance and few problems. Other examples provide information on separators installed in the United States and other countries. Keywords: Oil-water separator, multiple angle, coalescence, refinery, wastewater management, petroleum, coalescing plate technology BACKGROUND AND INTRODUCTION Oil has been refined for various uses for at least 1000 years. An Arab handbook written by Al-Razi, in approximately 865 A.D., describes distillation of “naft” (naphtha) for use in lamps and thus the beginning of oil refining (Forbes).
    [Show full text]
  • Mineral Engineering & Fuel Technology
    MINERAL ENGINEERING & FUEL TECHNOLOGY (MME-203) 4th Semester B. Tech Dept. of Metallurgical and Materials Engineering V.S.S.university of Technology , Burla Sambalpur , odisha Person Name Designation Department involved And Email .id Course Gautam Assistant MME coordinator Behera professor [email protected] Course Co- Dinesh Assistant MME coordinator ku professor mishra , [email protected] Course Co- Avala Assistant MME coordinator Lava professor kumar [email protected] Goals of the subject 1-To impart knowledge about Mineral Processing [fundamental knowledge] 2-To teach you to “think” rather than “cook” 3-To encourage you to consider a career path in Mineral Processing Content Introduction to mineral processing(Engineering) Crushing and grinding Size separation methods Concentration methods Agglomeration techniques Fuel technology MODULE -I Introduction to mineral and mineral Engineering Mineral- a substance from which we get metal non metals or any valuables. Mineral Engineering ( branch of mme which deals with study of minerals and its processing )where the minerals is being processed to get a concentrate from which metals are extracted . Flow chat to show the relationship of mineral engineering with mining and extractive metallurgy engineering Subject covers Minerals definition MINERAL : Natural occur inorganic aggregate of metals and non metals . Or Inorganic compound having a definite chemical composition and crystal structure (atomic structure). Or minerals are the forms in which metals are found in the earth crust and as sea bed deposit depend on their reactivity with their environment, particular with oxygen , sulphur, and co2. Anything of economical value which is extracted from the earth. Characteristic of mineral 1-Minerals are homogeneous in physical and chemical composition.
    [Show full text]