Bioleaching of Chalcopyrite

Total Page:16

File Type:pdf, Size:1020Kb

Bioleaching of Chalcopyrite Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy. Following the above, the work then focused on the bioleaching of the chalcopyrite concentrate in a stirred tank bioreactor for the purpose of scaling up, and investigated the effects of agitation speeds. Finally, the bioleaching of low-grade copper ores has been briefly studied. The results show that the rate of copper dissolution has a positive relationship with bacterial growth, particularly with respect to bacterial attachment, which has an important role based on adsorption isotherm and scanning electron microscopy studies. However, it is not only bacteria that play an important role in copper dissolution; also the strength of sulphuric acid can influence copper solubility. For example, copper dissolution can be achieved using a sulphuric acid solution of pH 1.5, giving a concentration of about 1 g/l copper after 25 days. The results obtained from the adsorption isotherm of T. ferrooxidans and the electrophoretic mobility of chalcopyrite particles before and after interaction with each other has proved the fact that the changes in surface chemistry occurred when bacterial interactions on the mineral surface took place. Furthermore, agitation speed have a significant influence on cell growth, metal dissolution and cell adsorption ratio when carried out in shake flasks and a stirred tank bioreactor. The bioleaching results for different shake flask speeds (i.e. 100, 200 and 300 rpm) in shake flasks displayed that shake flask speed above 100 rpm was detrimental to bacterial growth and thus copper dissolution. For the bioreactor experiments, agitation was performed within a rotor speed range of 50, 100, 150 and 200 rpm. A rotor speed of 150 rpm represents the most suitable conditions for bacterial growth and the percent extraction of copper dissolution amongst those considered. In conclusion, the concentration of copper dissolution for all pulp densities reached its maximum at a concentration of 4.8 ± 0.2 g/l after 30 days leaching time. This indicted that copper dissolution has a limited solubility; this may be because the chalcopyrite particle surface was covered by mineral and bacterial deposits over the period of bioleaching time as described in the SEM analysis of the bioleaching surface. Finally, this work attempted to extract copper from a low-grade ore using bioleaching techniques. However, initial bioleaching tests proved that T. ferrooxidans could not leach copper and iron from the low-grade copper ores due to the chemical composition of the gangue minerals (mainly carbonates). This is due to the neutralising action of carbonates, which create an environment in which the pH is too high for the acidophilic bacteria to grow. Acknowledgements I would like to express my thanks to my supervisors, Dr. Neil Rowson and Dr. Caroline McFarlane for their guidance, encouragement, support and invaluable help throughout this project. I would also like to thank H. Jennings, E. Mitchell, D. French and P. Plant for their technical assistance, as well as L. Draper for her clerical assistance. I would also like to thank my colleagues for their comments, cheerfulness and friendship. I would also like to express my thanks to Dimitra, Fosco, Anya, Frank, Eng Seng for their unstinting and enjoyable friendship. Special thanks also go to my parents, T. Jonglertjanya and S. Sapayatosok, for their unconditional love and support. Finally, I would like to thank my sister, Fon, for her understanding, patience and love. Table of Contents LIST OF FIGURES i LIST OF TABLES vi CHAPTER 1 INTRODUCTION 1 1.1 Copper extraction 1 1.2 Bioleaching 3 1.3 Motivation for the research 9 1.3.1 Selecting T. ferrooxidans 9 1.3.2 Bioleaching of chalcopyrite 11 1.3.3 Research on the bioleaching of chalcopyrite 12 1.3.4 Industrial relevance 13 1.4 Aims and objectives 15 1.5 Layout of thesis 15 CHAPTER 2 LITERATURE REVIEW 17 2.1 Microorganisms in bioleaching processes 17 2.1.1 Thiobacillus 19 2.1.2 Leptospirillum 21 2.1.3 Thermophilic bacteria 22 2.1.4 Heterotrophic microorganisms 23 2.2 Thiobacillus ferrooxidans 24 2.2.1 Characteristics and physiology 24 2.2.2 Energy consideration 26 2.3 The general mechanisms of bioleaching 28 2.4 Factors affecting bacterial leaching 37 2.4.1 Type of microorganisms 38 2.4.2 The type of mineral ores 40 2.4.3 Medium 42 2.4.4 Temperature 44 2.4.5 pH 45 2.4.6 Particle size 46 2.4.7 Pulp density 46 2.4.8 Oxygen and carbon dioxide 47 2.4.9 Conclusion 48 CHAPTER 3 FACTORS AFFECTING BACTERIAL LEACHING ON SHAKE FLASK CULTURES OF T. ferrooxidans 49 3.1 Introduction 49 3.2 Materials and methods 50 3.2.1 Chalcopyrite concentrate 50 3.2.2 Microorganism and media 53 3.2.3 Bacterial preparation 53 3.2.4 Analysis of the solution pH, the redox potential and the free cell concentration 54 3.2.5 Analysis of the copper and iron concentration 55 3.2.6 Experimental procedure 55 3.3 Effect of shake flask speed on bioleaching of chalcopyrite 57 3.3.1 Introduction 57 3.3.2 Effect of shake flask speed on bacterial growth 58 3.3.3 Effect of shake flask speed on the solution pH and the redox potential 67 3.3.4 Effect of shake flask speed on metal dissolution 69 3.3.5 Control experiments 70 3.3.6 Conclusion 72 3.4 Effect of particle size on the bioleaching of chalcopyrite 75 3.4.1 Introduction 75 3.4.2 Effect of particle size fractions on bacterial growth 77 3.4.3 Effect of particle size range of chalcopyrite on solution pH 82 3.4.4 Effect of particle size on metal dissolution 83 3.4.5 Conclusion 83 3.5 Effect of initial pH on bioleaching of chalcopyrite 86 3.5.1 Introduction 86 3.5.2 Effect of initial pH on bacterial growth 88 3.5.3 Effect of initial pH on the solution pH and redox potential 93 3.5.4 Effect of initial pH on metal dissolution 94 3.5.5 Conclusion 100 3.6 Effect of pulp density on bioleaching of chalcopyrite 101 3.6.1 Introduction 101 3.6.2 Effect of pulp density on bacterial growth 103 3.6.3 Effect of pulp density on the solution pH 105 3.6.4 Effect of pulp density on metal dissolution 105 3.6.5 Conclusion 109 CHAPTER 4 THE CHARACTERISATION OF T. ferrooxidans ON CHALCOPYRITE CONCENTRATE 110 4.1 Introduction 110 4.2 Adsorption isotherm 111 4.2.1 Introduction 111 4.2.2 Experimental procedure 112 4.2.3 Results and discussion 113 4.3 Electrophoretic mobility 117 4.3.1 Introduction 117 4.3.2 Experimental procedure 117 4.3.2.1 Particle preparation 117 4.3.2.2 Buffer preparation 119 4.3.3 Results and discussion 120 4.4 Conclusion 126 CHAPTER 5 MECHANISM OF COPPER DISSOLUTION IN FLASK CULTURES OF Thiobacillus ferrooxidans 127 5.1 Introduction 127 5.2 Chemical leaching: sulphuric acid and ferric sulphate solutions 128 5.2.1 Introduction 128 5.2.2 Experimental procedure 131 5.2.2.1 Sulphuric acid leaching 131 5.2.2.2 Ferric sulphate leaching 131 5.2.3 Results and discussion 132 5.2.3.1 Sulphuric acid leaching 132 5.2.3.2 Ferric sulphate leaching 137 5.3 Effect of ferric sulphate on bioleaching 141 5.3.1 Introduction 141 5.3.2 Materials and methods 141 5.3.2.1 Inoculum preparation procedure 141 5.3.2.2 Experimental procedure 142 5.3.2 Effect of initial ferric sulphate on bacterial growth, the solution pH and the redox potential 143 5.3.4 Effect of initial ferric ions on metal dissolution 150 5.3.5 Control experiments 151 5.4 Scanning electron microscope (SEM) 153 5.5 Conclusion 157 CHAPTER 6 BIOLEACHING OF THE CHALCOPYRITE CONCENTRATE IN A 4L STIRRED TANK BIOREACTOR 159 6.1 Introduction 159 6.2 Materials and methods 162 6.2.1 Bioreactor 162 6.2.2 Experimental procedure 163 6.2.2.1 Preparation of inoculum 163 6.2.2.2 Calibration of pH probe, dissolved oxygen probe and temperature probe 164 6.2.2.3 Preparation of bioleaching of the chalcopyrite concentrate 165 6.2.2.4 Preparation of T.
Recommended publications
  • Anaerobic Reductive Bioleaching of Manganese Ores
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 Anaerobic Reductive Bioleaching of Manganese Ores Neha Sharma Michigan Technological University, [email protected] Copyright 2021 Neha Sharma Recommended Citation Sharma, Neha, "Anaerobic Reductive Bioleaching of Manganese Ores", Open Access Master's Thesis, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1200 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Chemical Engineering Commons, and the Metallurgy Commons ANAEROBIC REDUCTIVE BIOLEACHING OF MANGANESE ORES By Neha Sharma A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Chemical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Neha Sharma This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Chemical Engineering. Department of Chemical Engineering Thesis Advisor: Timothy C. Eisele Committee Member: Rebecca G. Ong Committee Member: Lei Pan Department Chair: Pradeep K. Agrawal Table of Contents List of Figure...................................................................................................................... iv List of Tables .......................................................................................................................v Acknowledgements ...........................................................................................................
    [Show full text]
  • Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria
    minerals Article Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria San Yee Khaing 1, Yuichi Sugai 2,*, Kyuro Sasaki 2 and Myo Min Tun 3 1 Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 2 Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 3 Department of Geology, Yadanabon University, Mandalay 05063, Myanmar; [email protected] * Correspondence: [email protected] Received: 11 April 2019; Accepted: 30 April 2019; Published: 2 May 2019 Abstract: Iodide-oxidizing bacteria (IOB) oxidize iodide into iodine and triiodide which can be utilized for gold dissolution. IOB can be therefore useful for gold leaching. This study examined the impact of incubation conditions such as concentration of the nutrient and iodide, initial bacterial cell number, incubation temperature, and shaking condition on the performance of the gold dissolution through the experiments incubating IOB in the culture medium containing the marine broth, potassium iodide and gold ore. The minimum necessary concentration of marine broth and potassium iodide for the complete gold dissolution were determined to be 18.7 g/L and 10.9 g/L respectively. The initial bacterial cell number had no effect on gold dissolution when it was 1 104 cells/mL or higher. Gold × leaching with IOB should be operated under a temperature range of 30–35 ◦C, which was the optimal temperature range for IOB. The bacterial growth rate under shaking conditions was three times faster than that under static conditions.
    [Show full text]
  • NPTEL Syllabus
    NPTEL Syllabus Metals Biotechnology - Web course COURSE OUTLINE Introduction to microbiology relevant to metals biotechnology – Biology-Materials interface – Biomaterials processing – Biogenesis of minerals and metals - History, status and developments in biohydrometallurgy – Bioleaching mechanisms – Metal toxicity and tolerance in Acidithiobacillus ferrooxidans – Biohydrometallurgy of copper, zinc and nickel NPTEL – Biohydrometallurgy of uranium – Biotechnology for gold – Biomineralization and http://nptel.iitm.ac.in bioprocessing of ocean manganese nodules – Bioprocessing of industrial wastes – Electrochemical aspects of bioleaching – Electrobioleaching – Biomineral beneficiation of sulfide, oxide and industrial minerals – Biofouling, biocorrosion and biomaterials – Acid Metallurgy mine drainage and bioremediation in mining – Experimental and research techniques in metals biotechnology. and Material Science COURSE DETAIL Module Sl. No. and topic Hours Pre-requisites: Module 1 Microbiology, mechanisms and methods in metals Basic knowledge of biotechnology microbiology, chemistry and Lecture 1: Biology – materials interface and biomaterials metallurgy.Mineralogy processing. and Extractive metallurgy Lecture 2: Biogenesis of metals and minerals. of ferrous and nonferrous Lecture 3: History and methods in biohydrometallurgy. metals. Lecture 4: Microorganisms in biohydrometallurgy. 9 Lecture 5: Reactor bioleaching and developments in bioleaching of concentrates Coordinators: Lecture 6: Bioleaching mechanisms. Prof. K.A. Natarajan Lecture
    [Show full text]
  • Experiences and Future Challenges of Bioleaching Research in South Korea
    minerals Review Experiences and Future Challenges of Bioleaching Research in South Korea Danilo Borja 1, Kim Anh Nguyen 1, Rene A. Silva 2, Jay Hyun Park 3, Vishal Gupta 4, Yosep Han 1, Youngsoo Lee 1,* and Hyunjung Kim 1,* 1 Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea; [email protected] (D.B.); [email protected] (K.A.N.); [email protected] (Y.H.) 2 Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Geotechnics and Recycling Technology Division, Institute of Mine Reclamation Corporation, 2, Segye-ro, Wonju-si, Gangwon-do 26464, Korea; [email protected] 4 Research & Development, EP Minerals, 9785 Gateway Dr., Suite 1000, Reno, NV 89521, USA; [email protected] * Correspondence: [email protected] (Y.L.); [email protected] (H.K.); Tel.: +82-63-270-2392 (Y.L.); +82-63-270-2370 (H.K.); Fax: +82-63-270-2366 (Y.L. & H.K.) Academic Editor: Anna H. Kaksonen Received: 1 October 2016; Accepted: 28 November 2016; Published: 2 December 2016 Abstract: This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials.
    [Show full text]
  • Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control
    Proceedings of the International Seminar on Mineral Processing Technology - 2006, Chennai, India. pp. 68 - 81. Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control K.A. Natarajan Department of Metallurgy, Indian Institute of Science, Bangalore 560012 Email : kan@met. iisc.ernet in Abstract With the rapid depletion of high grade ores and concerns about environmental degradation, the necessity for utilisation of lean grade mineral resources have become all the more urgent. With the advent of bioleaching since the early 1960's, possibilities of metal extraction in an environment-friendly fashion have emerged. As of now three metals namely copper, uranium and gold are commercially produced around the world using biooxidation in the presence of Acidithiobacillus ferrooxidans. Bioleaching of base metal concentrates such as those containing copper, zinc and nickel has also been proved to be commercially viable during this decade. Bioreactor technology using thermophilic bacteria holds the key for the successful and efficient bioleaching of chalcopyrite, sphalerite and pentlandite concentrates. Microorganisms find use in environmental control and mineral beneficiation as well. Microbially-induced mineral flotation and flocculation have been proved to very cost-effective and environment-friendly. In this paper, biotechnology as applied to metal extraction, mineral beneficiation and environmental control is illustrated. INTRODUCTION The microorganism, Acidithiobacillus ferrooxidans which is known to be effective in the leaching of several minerals was first isolated in the laboratory in 1947 from the acid mine drainage of bituminous coal mines. Bioleaching processes are now becoming increasingly significant due to rapid depletion of high grade ore reserves, increasing energy costs and environmental concerns. Large quantities of copper, uranium and gold ores are processed by microbial technology on an industrial scale.
    [Show full text]
  • Subterranean Photobioreactors for Commercial-Industrial Scale Algal Culture
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2016 Subterranean photobioreactors for commercial-industrial scale algal culture Daniel James Vidt Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Vidt, Daniel James, "Subterranean photobioreactors for commercial-industrial scale algal culture" (2016). Doctoral Dissertations. 2493. https://scholarsmine.mst.edu/doctoral_dissertations/2493 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SUBTERRANEAN PHOTOBIOREACTORS FOR COMMERCIAL- INDUSTRIAL SCALE ALGAL CULTURE by DANIEL JAMES VIDT A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MINING ENGINEERING 2016 Approved by: Lana Alagha, Adviser Melanie Mormile Samuel Frimpong Kwame Awuah-Offei Dev Niyogi @ 2016 DANIEL JAMES VIDT ALL RIGHTS RESERVED iii ABSTRACT There are many potential benefits to the mining industry accruing from the application of algal biotechnology. The main benefits are in the production of biodiesel and in the remediation of mining brownfields. The research in this study was centered in the original idea that these brownfields represent a tremendous opportunity for use as a hybrid model for redevelopment into sustainable “mines” of biomass. The ability of these underground spaces serving as bioreactors to control all aspects of the growing environment, from lighting, to temperature, to biosecurity, are key advantages that have been identified in the literature.
    [Show full text]
  • Review on Chromobacterium Violaceum for Gold Bioleaching from E-Waste
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 31 ( 2016 ) 947 – 953 The Tenth International Conference on Waste Management and Technology (ICWMT) Review on chromobacterium violaceum for gold bioleaching from e-waste Renjie Liua, Jingying Lia,*, Zhongying Gea aCollege of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China Abstract Electronic waste, such as printed circuit boards, are an important secondary resource if processed with environment-friendly technologies for obtaining precious metal, such as gold. The gold bioleaching from electronic waste was recently getting paid attractive attention because its available deposit is limited. This review was focused on Chromobacterium violaceum (C. Violaceum), which was a mesophilic, gram-negative, and facultative anaerobe. C. violaceum has the ability of producing CN- which can dissolve gold from the metallic particles of crushed waste printed circuit boards. This article also provided an overview of cyanide-generation mechanism and the optimal conditions for C. violaceum to achieve maximum amount of cyanide generation. The past achievements and recently scenario of recovery studies carried out on the use of some other microorganisms were compared with C. violaceum. And recently some researchers proposed that combined C. violaceum with chemical methods or other mechanism such as iodide, Pseudomonas aeruginosa and Pseudomonas fluorescens which can reinforce the cyanide generation and improve gold-leaching efficiency. The factors affected the microorganisms on cyanide generation were summarized and the proper conditions were also discussed in this article. And present researches of C. violaceum in gold bioleaching had made good progress which the reported leaching efficiency of gold was over 70%.
    [Show full text]
  • Preparing for Future Products of Biotechnology
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24605 SHARE Preparing for Future Products of Biotechnology DETAILS 230 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-45205-2 | DOI 10.17226/24605 CONTRIBUTORS GET THIS BOOK Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System; Board on Life Sciences; Board on Agriculture and Natural Resources; Board on Chemical Sciences and FIND RELATED TITLES Technology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Preparing for Future Products of Biotechnology Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System Board on Life Sciences Board on Agriculture and Natural Resources Board on Chemical Sciences and Technology Division on Earth and Life Studies A Report of Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No.
    [Show full text]
  • Biopromise? Biotechnology, Sustainable Development and Canada’S Future Economy
    BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT TO CBAC (Canadian Biotechnology Advisory Committee) from the BSDE Expert Working Party September 2006 BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT September 2006 This publication is available electronically on the Canadian Biotechnology Advisory Committee (CBAC) website at www.cbac-cccb.ca or on the International Institute for Sustainable Development (IISD) website at www.iisd.org/pdf/2007/biopromise_tech_en.pdf This publication is also available in alternative formats on request from the Chair of the Expert Working Party, Dr. Arthur Hanson, who can be contacted at the address below: Dr. Arthur Hanson Chair, Expert Working Party 2650 Dorset Road Oak Bay, BC V8R 3N1 Email: [email protected] Disclaimer This report was produced by the members of an Expert Working Party established by the Canadian Biotechnology Advisory Committee. The views expressed in this report are those of the Expert Working Party and do not necessarily reflect those of the CBAC, the Biotechnology Ministerial Coordinating Committee or the Government of Canada. Permission to Reproduce Except as otherwise specifically noted, the information in this publication may be reproduced, in part or in whole and by any means, without charge or further permission from CBAC, provided that due diligence is exercised in ensuring that the information is reproduced accurately, that CBAC is identified as the source institution, and that the reproduction is not represented as an official version of the information reproduced, nor as having been made in affiliation with, or with the endorsement of, CBAC. © 2006, Government of Canada (Canadian Biotechnology Advisory Committee).
    [Show full text]
  • 22Nd International Biohydrometallurgy Symposium
    PROGRAMME IBS 24 – 27 September 2017 TU Bergakademie Freiberg/Germany 2017 22nd International Biohydrometallurgy Symposium www.dechema.de/IBS2017 © Erik Schumann - Fotolia IN COOPERATION WITH sponsor / exhibitor / media partners / committee committee sponsor international scientific committee Ricardo Amils, Universidad Autónoma de Madrid/E Antonio Ballester, Universidad Complutense de Madrid/E Newmont Mining Corporation Siti Chaerun, Bandung Institute of Technology/IDN Greenwood Village, CO/USA Cecilia Demergasso, Universidad Católica del Norte, Antofagasta/CHL Edgardo Donati, Research Center CINDEFI (CONICET-UNLP), La Plata/ARG Mark Dopson, Linnaeus University, Kalmar/S David Dreisinger, The University of British Colombia, Vancouver/CDN exhibitor Chris du Plessis, Lhoist - Business Innovation Center, Nivelles/B Mariekie Gericke, Company Mintek, Randburg/ZA G.E.O.S. Ingenieurgesellschaft mbH Nicolas Guiliani, Universidad de Chile, Santiago/CHL Halsbrücke/D Eric Guibal, Ecole des Mines d‘Alès, Alès/F Sue Harrison, University of Cape Town/ZA media partners David Holmes, Centre for Bioinformatics and Genome Biology, Fundación Ciencias para la Vida, Santiago/CHL Carlos Jerez, Universidad de Chile, Santiago de Chile/CHL 22nd IBS is part of the European Biotech Week 2017 D. Barrie Johnson, Bangor University, Bangor/UK Anna Kaksonen, CSIRO, Perth/AUS Päivi Kinnunen, VTT Technical Research Centre of Finland Ltd, Espoo/FIN Versiane Albis Leão, Universidad Federal de Ouro Preto/BR Minerals Engineering International Jianshe Liu, Donghua University,
    [Show full text]
  • Arsenic Tolerance and Bioleaching from Realgar Based on Response Surface Methodology by Acidithiobacillus Ferrooxidans Isolated
    Electronic Journal of Biotechnology 25 (2017) 50–57 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Research article Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China Lei Yan a,⁎,HuixinHua, Shuang Zhang a,PengChenb, Weidong Wang a, Hongyu Li b a College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China b Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China article info abstract Article history: Background: Traditional methods of obtaining arsenic have disadvantages such as high cost and high energy Received 1 September 2016 consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in Accepted 17 November 2016 industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic Available online 25 November 2016 from realgar. Results: An acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in Keywords: northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C 16S rDNA phylogeny and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The Arsenic bioleaching fi Arsenic sulphide minerals inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A signi cant Arsenic-resistance second-order model was established using a Box–Behnken design of response surface methodology China (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the EDS analyses pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 Iron-oxidizing bacterium and 3.68 g/L, respectively.
    [Show full text]
  • Bioleaching of Sphalerite by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans Cultured in 9K Medium Modified with Pyrrhotite
    J. Cent. South Univ. Technol. (2008) 15: 503−507 DOI: 10.1007/s11771−008−0095−7 Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite CHEN Song(陈 松), QIU Guan-zhou(邱冠周), QIN Wen-qing(覃文庆), LAN Zhuo-yue(蓝卓越) (School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China) Abstract: Elective culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in 9K medium modified with pyrrhotite was studied. Bioleaching of flotation concentrate of sphalerite by the selected bacteria was carried out. The results show that the microorganisms cultured by pyrrhotite are a mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, of which the capability to oxidize ferrous to ferric irons is enhanced by the high mass ratio of Fe to S in pyrrhotite. Three pyrrhotite samples were separated into various parts with corresponding S/Fe ratios by magnetic separation and were used to culture the elective bacteria as the substrate. The association of the cultures could provide a more rapid and complete oxidation of sphalerite than that of bacteria cultivated by conventional methods. Key words: bioleaching; pyrrhotite; elective culture; sphalerite the natural environment, the microorganisms with the 1 Introduction capacity to dissolve minerals are a mixed culture of different bacterial strains. Being cultivated with the Bioleaching has been widely used in the conventional methods of domestication, mutation, commercial extraction of uranium, copper and gold from crossbreed, cell syncretizing and gene engineering, some ore, and it is being exploited in the extraction of other capabilities of the microorganism such as the activity, the base metals and rare noble metals, such as zinc, cobalt, tolerance of heavy metal ions and the adaptability to nickel, molybdenum, gallium, germanium etc.
    [Show full text]