Preparing for Future Products of Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24605 SHARE Preparing for Future Products of Biotechnology DETAILS 230 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-45205-2 | DOI 10.17226/24605 CONTRIBUTORS GET THIS BOOK Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System; Board on Life Sciences; Board on Agriculture and Natural Resources; Board on Chemical Sciences and FIND RELATED TITLES Technology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Preparing for Future Products of Biotechnology Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System Board on Life Sciences Board on Agriculture and Natural Resources Board on Chemical Sciences and Technology Division on Earth and Life Studies A Report of Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No. EP-C-14-005 with the U.S. Environmental Protection Agency. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project. International Standard Book Number-13: 978-0-309-45205-2 International Standard Book Number-10: 0-309-45205-8 Digital Object Identifier: https://doi.org/10.17226/24605 Library of Congress Control Number: 2017940892 Additional copies of this publication are available for sale from the National Academies Press, 500 Fifth Street NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. Copyright 2017 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Suggested citation: National Academies of Sciences, Engineering, and Medicine. 2017. Preparing for Future Products of Biotechnology. Washington, DC: The National Academies Press. doi: https://doi.org/ 10.17226/24605. Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology The National Academy of Sciences was established in 1863 by an Act of Con- gress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the char- ter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineer ing, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Reports document the evidence-based consensus of an authoring committee of experts. Reports typically include findings, conclusions, and recommendations based on information gathered by the committee and committee deliberations. Reports are peer reviewed and are approved by the National Academies of Sciences, Engineering, and Medicine. Proceedings chronicle the presentations and discussions at a workshop, sym- posium, or other convening event. The statements and opinions contained in proceedings are those of the participants and have not been endorsed by other participants, the planning committee, or the National Academies of Sciences, Engineering, and Medicine. For information about other products and activities of the National Academies, please visit nationalacademies.org/whatwedo. Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology COMMITTEE ON FUTURE BIOTECHNOLOGY PRODUCTS AND OPPORTUNITIES TO ENHANCE CAPABILITIES OF THE BIOTECHNOLOGY REGULATORY SYSTEM Chair RICHARD M. MUrrAY, NAE1, California Institute of Technology, Pasadena Members RICHARD M. AMASINO, NAS2, University of Wisconsin–Madison STEVEN P. BRADBURY, Iowa State University, Ames BArbARA J. EVANS, University of Houston Law Center, Houston, TX STEVEN L. EVANS, Dow AgroSciences, Indianapolis, IN FArrEN ISAACS, Yale University, New Haven, CT RICHARD A. JOHNSON, NAS2, Global Helix LLC, Washington, DC (resigned August 2016) MARTHA A. KREBS, The Pennsylvania State University, Philadelphia JENNIFER KUZMA, North Carolina State University, Raleigh MARY E. MAXON, Lawrence Berkeley National Laboratory, Emeryville, CA RAUL F. MEDINA, Texas A&M University, College Station DAVID REJESKI, Environmental Law Institute, Washington, DC JEffrEY WOLT, Iowa State University, Ames Staff KARA N. LANEY, Study Director (from July 2016) DOUGLAS FRIEDMAN, Study Director (through July 2016) MARILEE K. SHELTON-DAVENPORT, Senior Program Officer ANDREA HODGSON, Postdoctoral Fellow JENNA BRISCOE, Senior Program Assistant AANIKA SENN, Senior Program Assistant FRANCES E. SHArplES, Director, Board on Life Sciences ROBIN A. SCHOEN, Director, Board on Agriculture and Natural Resources TERESA FRYBERGER, Director, Board on Chemical Sciences and Technology 1National Academy of Engineering. 2National Academy of Sciences. v Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology BOARD ON LIFE SCIENCES Chair JAMES P. COllINS, Arizona State University, Tempe Members ENRIQUETA C. BOND, NAM1, Burroughs Wellcome Fund, Marshall, VA ROGER D. CONE, NAS2, University of Michigan, Ann Arbor NANCY D. CONNEll, Rutgers New Jersey Medical School, Newark JOSEPH R. ECKER, NAS2, Salk Institute for Biological Studies, La Jolla, CA SARAH C. R. ELGIN, Washington University, St. Louis, MO LINDA G. GRIffITH, NAE3, Massachusetts Institute of Technology, Cambridge ELIZABETH HEITMAN, University of Texas Southwestern Medical Center, Dallas RICHARD A. JOHNSON, Global Helix LLC, Washington, DC JUDITH KImblE, NAS2, University of Wisconsin–Madison MARY E. MAXON, Lawrence Berkeley National Laboratory, Emeryville, CA JIll P. MESIROV, University of California, San Diego KAREN E. NELSON, J. Craig Venter Institute, Rockville, MD CLAIRE POMEROY, NAM1, The Albert and Mary Lasker Foundation, New York, NY MARY E. POWER, NAS2, University of California, Berkeley MARGARET RILEY, University of Massachusetts, Amherst LANA SKIrbOll, Sanofi, Washington, DC JANIS C. WEEKS, University of Oregon, Eugene Staff FRANCES E. SHArplES, Director JO L. HUSBANDS, Scholar/Senior Project Director JAY B. LABOV, Senior Scientist/Program Director for Biology Education KATHERINE W. BOwmAN, Senior Program Officer KEEGAN SAWYER, Senior Program Officer AUDREY THEVENON, Program Officer ANDREA HODGSON, Postdoctoral Fellow BETHELHEM M. MEKASHA, Financial Associate JENNA OGILVIE, Research Associate ANGELA KOLESNIKOVA, Senior Program Assistant AANIKA SENN, Senior Program Assistant 1National Academy of Medicine. 2National Academy of Sciences. 3National Academy of Engineering. vi Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology BOARD ON AGRICULTURE AND NATURAL RESOURCES Chair CHArlES W. RICE, Kansas State University, Manhattan Members PEGGY F. BArlETT, Emory University, Atlanta, GA SUSAN CAPAlbO, Oregon State University, Corvallis GAIL CZARNECKI-MAULDEN, Nestlé Purina PetCare, St. Louis, MO GEBISA EJETA, Purdue University, West Lafayette, IN ROBERT B. GOLDBERG, NAS1, University of California, Los Angeles FRED GOULD, NAS1, North Carolina State University, Raleigh MOllY M. JAHN, University of Wisconsin–Madison RObbIN S. JOHNSON, Cargill Foundation, Wayzata, MN A. G. KAWAMURA, Solutions from the Land, Washington, DC STEPHEN S. KEllEY, North Carolina State University, Raleigh JULIA L. KORNEGAY, North Carolina State University, Raleigh JIM E. RIVIERE, NAM2, Kansas State University, Manhattan Staff ROBIN A. SCHOEN, Director CAMIllA YANDOC AblES, Program Officer JENNA BRISCOE,
Recommended publications
  • Anaerobic Reductive Bioleaching of Manganese Ores
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 Anaerobic Reductive Bioleaching of Manganese Ores Neha Sharma Michigan Technological University, [email protected] Copyright 2021 Neha Sharma Recommended Citation Sharma, Neha, "Anaerobic Reductive Bioleaching of Manganese Ores", Open Access Master's Thesis, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1200 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Chemical Engineering Commons, and the Metallurgy Commons ANAEROBIC REDUCTIVE BIOLEACHING OF MANGANESE ORES By Neha Sharma A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Chemical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Neha Sharma This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Chemical Engineering. Department of Chemical Engineering Thesis Advisor: Timothy C. Eisele Committee Member: Rebecca G. Ong Committee Member: Lei Pan Department Chair: Pradeep K. Agrawal Table of Contents List of Figure...................................................................................................................... iv List of Tables .......................................................................................................................v Acknowledgements ...........................................................................................................
    [Show full text]
  • “Accelerating Innovation and Market Uptake of Biobased Products” Biobased for Growth a PUBLIC-PRIVATE PARTNERSHIP on BIOBASED INDUSTRIES Table of Content
    “Accelerating innovation and market uptake of biobased products” Biobased for Growth A PUBLIC-PRIVATE PARTNERSHIP ON BIOBASED INDUSTRIES Table of content 1 Introduction 6 1.1 PPP initiative backed by a committed consortium 6 1.2 Strategic objectives 7 2 Answering Europe’s biobased challenges 9 3 Strong added value of acting at EU level 10 4 Economic analysis – current state of play and analysis of economic impact 11 5 Broader socio-economic impact analysis 13 6 Priority research & innovation areas 15 6.1 Fostering a sustainable biomass supply 16 6.2 Biorefi neries: Optimising effi cient processing 18 6.3 Developing markets, products and policies 21 7 An organisation is built that fi ts the challenges 23 7.1 Introduction 23 7.2 The biobased PPP Institute 24 7.3 Position in the fi eld 27 Annex 1 An Overview of founding partners companies 29 Annex 2 Research and technological challenges 31 Annex 3 Biomass supply – overview of today’s practice 36 Annex 4 Lead Market Initiative - priority recommendations 39 Annex 5 Policy Feedback mechanism 41 DRAFT Executive summary Our vision is that of a competitive, innovative and sustainable Europe: leading the transi- tion towards a post-petroleum society while decoupling economic growth from resource depletion and environmental impact. We envisage a biobased economy founded on locally sourced and produced plant and waste-derived materials, chemicals, fuels, food and feed. At the heart of this vision are biorefi neries which will gradually replace oil refi neries by using renewable resources in place of fossil fuels. In doing so, biorefi neries will play an important part in spurring growth and drive the effort to reindustrialise Europe.
    [Show full text]
  • Research for a Biobased Economy Success Stories and Challenges Facing the German Bioeconomy
    Research for a biobased economy Success stories and challenges facing the German bioeconomy 1 Contents Preface 2 Bioeconomy – Foundation for a sustainable economy 4 How can the economy and ecology be reconciled? ...................................................................................................... 4 The bioeconomy as a driver of innovation ...................................................................................................................... 5 The policy and research context of the bioeconomy 8 Clear visions for a cross-departmental strategy ............................................................................................................ 8 Further development of the research agenda in the bioeconomy ...........................................................................10 Innovations for a biobased economy 12 Field of action: Securing global nutrition ......................................................................................................................15 Field of action: Ensuring sustainable agricultural production ..................................................................................18 Field of action: Producing healthy and safe foods ......................................................................................................21 Field of action: Using renewable resources for industry ............................................................................................23 Field of action: Developing biomass-based energy carriers ......................................................................................27
    [Show full text]
  • Bioleaching of Chalcopyrite
    Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy.
    [Show full text]
  • Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources
    minerals Review Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources Katrin Pollmann 1,*, Sabine Kutschke 1, Sabine Matys 1, Sophias Kostudis 1, Stefanie Hopfe 1 and Johannes Raff 1,2 1 Helmholtz Insitute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; [email protected] (S.K.); [email protected] (S.M.); [email protected] (S.K.); [email protected] (S.H.); [email protected] (J.R.) 2 Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany * Correspondence: [email protected]; Tel.: +49-351-260-2946 Academic Editor: W. Scott Dunbar Received: 7 April 2016; Accepted: 7 June 2016; Published: 13 June 2016 Abstract: Microorganisms have developed various mechanisms to deal with metals, thus providing numerous tools that can be used in biohydrometallurgical processes. “Biomining” processes—including bioleaching and biooxidation processes—facilitate the degradation of minerals, accompanied by a release of metals. These processes are especially attractive for low-grade ores and are used on an industrial scale mainly for sulfidic ores. In biosorption processes, biomass or certain biomolecules are used to bind and concentrate selected ions or other molecules from aqueous solutions. Biosorptive materials can be an environmentally friendly and efficient alternative to conventional materials, such as ion exchange resins. Other interesting mechanisms are bioaccumulation, bioflotation, bioprecipitation, and biomineralisation. Although these processes are well-known and have been studied in detail during the last decades, the recent strong progress of biotechnologies (e.g., genetic engineering and molecule design), as well as their combination with novel developments in material sciences (e.g., nanotechnologies) facilitate new strategies for the application of biotechnologies in mineral processing.
    [Show full text]
  • Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria
    minerals Article Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria San Yee Khaing 1, Yuichi Sugai 2,*, Kyuro Sasaki 2 and Myo Min Tun 3 1 Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 2 Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 3 Department of Geology, Yadanabon University, Mandalay 05063, Myanmar; [email protected] * Correspondence: [email protected] Received: 11 April 2019; Accepted: 30 April 2019; Published: 2 May 2019 Abstract: Iodide-oxidizing bacteria (IOB) oxidize iodide into iodine and triiodide which can be utilized for gold dissolution. IOB can be therefore useful for gold leaching. This study examined the impact of incubation conditions such as concentration of the nutrient and iodide, initial bacterial cell number, incubation temperature, and shaking condition on the performance of the gold dissolution through the experiments incubating IOB in the culture medium containing the marine broth, potassium iodide and gold ore. The minimum necessary concentration of marine broth and potassium iodide for the complete gold dissolution were determined to be 18.7 g/L and 10.9 g/L respectively. The initial bacterial cell number had no effect on gold dissolution when it was 1 104 cells/mL or higher. Gold × leaching with IOB should be operated under a temperature range of 30–35 ◦C, which was the optimal temperature range for IOB. The bacterial growth rate under shaking conditions was three times faster than that under static conditions.
    [Show full text]
  • Experiences and Future Challenges of Bioleaching Research in South Korea
    minerals Review Experiences and Future Challenges of Bioleaching Research in South Korea Danilo Borja 1, Kim Anh Nguyen 1, Rene A. Silva 2, Jay Hyun Park 3, Vishal Gupta 4, Yosep Han 1, Youngsoo Lee 1,* and Hyunjung Kim 1,* 1 Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea; [email protected] (D.B.); [email protected] (K.A.N.); [email protected] (Y.H.) 2 Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Geotechnics and Recycling Technology Division, Institute of Mine Reclamation Corporation, 2, Segye-ro, Wonju-si, Gangwon-do 26464, Korea; [email protected] 4 Research & Development, EP Minerals, 9785 Gateway Dr., Suite 1000, Reno, NV 89521, USA; [email protected] * Correspondence: [email protected] (Y.L.); [email protected] (H.K.); Tel.: +82-63-270-2392 (Y.L.); +82-63-270-2370 (H.K.); Fax: +82-63-270-2366 (Y.L. & H.K.) Academic Editor: Anna H. Kaksonen Received: 1 October 2016; Accepted: 28 November 2016; Published: 2 December 2016 Abstract: This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials.
    [Show full text]
  • Why Biobased?
    WHY BIOBASED? Opportunities in the Emerging Bioeconomy Jay S. Golden and Robert B. Handfield July 25, 2014 Submitted to: U. S. Department of Agriculture, Office of Procurement and Property Management BioPreferred Program® 361 Reporter’s Building 300 7th St. SW Washington, DC 20024 EXECUTIVE SUMMARY This report explores the opportunities associated with the biobased economy (excluding fuel, food and feed). Much of the work relies upon prior literature. Some of the key findings include: Government policies and industry Business While there is wealth of data and to Business sustainability programs are information regarding the economic driving the biobased economy. impact of the bioeconomy in Europe and various nations, there is a lack of Across the globe, nations are investing in understanding and quantification of the Public/Private Partnerships to expand economic benefits of the bioeconomy and their biobased economy for domestic and specifically the non-fuel bioeconomy in the international consumers. U.S. In the U.S., the United States Department There are challenges facing the continued of Agriculture (USDA) BioPreferred expansion of the bioeconomy. These program and Federally-supported research include reliable availability of raw materials continue to drive investment in research with increased climate and severe weather and development (R&D) and make impacts, water availability, and stability of available broader sets of biobased the markets. consumer products. The biobased economy is, in fact, growing, and it offers great potential for increased job creation in numerous sectors across the U.S. Continued investments are needed to An economic impact model is required to establish a biobased infrastructure while study the potential impacts of the ensuring that the economics of biobased bioeconomy and policies that can feedstocks are competitive with existing, encourage investment.
    [Show full text]
  • Steven H. Strauss 21 December 2018
    CV STEVEN H. STRAUSS 21 DECEMBER 2018 Distinguished Professor of Forest Biotechnology Phone: 541/737-6578 Department of Forest Ecosystems and Society Fax: 541/737-1393 Oregon State University Email: [email protected] Corvallis, Oregon, USA 97331-5752 Born: November 28, 1955 Home page / TBGRC Coop / Posters-Presentations PROFESSIONAL EXPERIENCE 7/09-present Distinguished Professor, Oregon State University 1/18-present Graduate Faculty, Environmental Sciences 1/18-present Graduate Faculty, Environmental Sciences 3/14 Visiting Scientist, Scion (Forest Biotechnology), New Zealand 11/04-12/13 Director, Outreach in Biotechnology, Oregon State University 2003-2012 Editor, New Phytologist 7/95-present Professor, Forest Ecosystems and Society; Molecular & Cellular Biology 1/01-4/01 Visiting Senior Fellow, Linacre College, Oxford University, UK 1/01-4/01 Visiting Scientist, Department of Plant Science, Oxford Forestry Institute , UK 7/90-6/95 Associate Professor, Department of Forest Science, OSU 7/94-present Director, Tree Genomics and Biosafety Research Cooperative, OSU 7/99-6/04 Director, National Science Foundation Center for Tree Genetics (Industry/University Cooperative Research Centers Program) 6/93-8/93 Visiting Scientist, INRA, Versailles & Orleans, France 9/91-6/92 Visiting Professor, Australian National University, Canberra, Australia 9/91-6/92 Visiting Scientist, CSIRO Division of Plant Industry, Canberra, Australia 6/90-7/90 Visiting Scientist, Department of Botany, Tromsø University, Norway 7/85-6/90 Assistant Professor, Department of Forest Science and Genetics Program, OSU 7/85-9/85 Visiting Scientist, US Forest Service, Berkeley, California (Sederoff laboratory) EDUCATION Ph.D. 1985 University of California at Berkeley, Forest Resources (Genetics) M.F.S.
    [Show full text]
  • Synthetic Biology 2020€“2030: Six Commercially-Available Products
    COMMENT https://doi.org/10.1038/s41467-020-20122-2 OPEN Synthetic biology 2020–2030: six commercially-available products that are changing our world ✉ Christopher A. Voigt 1 Synthetic biology will transform how we grow food, what we eat, and where we source materials and medicines. Here I have selected six products that are now 1234567890():,; on the market, highlighting the underlying technologies and projecting forward to the future that can be expected over the next ten years. “The time has come for synthetic biologists to develop more real-world applications […] the field has had its hype phase, now it needs to deliver.” So concluded an infamous article in 20101. Early research struggled to design cells and physically build DNA with pre-2010 projects often failing due to uncertainty and variability. Since then, rapid technological advances occurred that are well-reviewed in this series of commentaries2. Products from synthetic biology are rapidly permeating society and by 2030, it is highly likely that you will have eaten, worn, used or been treated with one. While there are many biotechnology, pharmaceutical and agriculture companies, I selected those products that best highlight the application of synthetic biology tools developed 2000–2020 and are available now or by early 20212–4. The first three represent chemicals produced by engineered cells or enzymes (leghemoglobin, sitgaliptin, diamines) that are isolated and purified (Fig. 1). For the second three, the products are the engineered cells themselves (engineered bacteria, CAR-Ts, genome edited soy). The development of these was enabled by advances in metabolic engineering, directed evolution (awarded the 2018 Nobel Prize), automated strain engineering, metagenomic discovery, gene circuit design, and genome editing (awarded the 2020 Nobel Prize)5,6.
    [Show full text]
  • Artificial Intelligence As a Dual-Use Technology Éva AMBRUS1
    AARMS Vol. 19, No. 2 (2020) 19–28. 10.32565/aarms.2020.2.2 Artificial Intelligence as a Dual-use Technology Éva AMBRUS1 The aim of this article is to give an overview of the state of artificial intelligence regarding malware attacks, its uses in the military and views regarding if it should be classified as a dual-use technology. As an emerging technology, with a wide variety of use and capabilities, more could be done to overview its uses, and some form of control over it. While the classical exports control might be counterproductive, a more closed approach towards critical information dissemination might be advisable until the full range of capabilities of artificial intelligence will be known. Keywords: artificial intelligence, dual-use technology, military use, malware Introduction The security paradigm is changing. Until a new definition comes forward, policy-makers, academia and users will debate its nature and possible effects. Asymmetrical warfare, hybrid warfare, ‘grey area’ warfare, (dis)information warfare, unpeace are just a few names used trying to pinpoint the development of (IT) technology on security. Warfare and security includes more and more cyberspace, including cyber weapons, cyber espionage and cybersecurity. One driver of this change is the advances made in the last decade regarding artificial intelligence (AI). In this article I will present the idea that AI should be classified as a dual-use technology, meaning that it can be used for both civilian and military applications. I will start with presenting where AI weapons are today, followed by the nature of the relationship between state and technology.
    [Show full text]
  • Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region
    metals Article Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region Dryelle Nazaré Oliveira do Nascimento 1,†, Adriano Reis Lucheta 1,† , Maurício César Palmieri 2, Andre Luiz Vilaça do Carmo 1, Patricia Magalhães Pereira Silva 1, Rafael Vicente de Pádua Ferreira 2, Eduardo Junca 3 , Felipe Fardin Grillo 3 and Joner Oliveira Alves 1,* 1 SENAI Innovation Institute for Mineral Technologies, National Service for Industrial Training (SENAI), Belém, PA 66035-405, Brazil; [email protected] (D.N.O.d.N.); [email protected] (A.R.L.); [email protected] (A.L.V.d.C.); [email protected] (P.M.P.S.) 2 Itatijuca Biotech, São Paulo, SP 05508-000, Brazil; [email protected] (M.C.P.); [email protected] (R.V.d.P.F.) 3 Graduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC 88806-000, Brazil; [email protected] (E.J.); [email protected] (F.F.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 December 2018; Accepted: 8 January 2019; Published: 14 January 2019 Abstract: The use of biotechnology to explore low-grade ore deposits and mining tailings is one of the most promising alternatives to reduce environmental impacts and costs of copper extraction. However, such technology still depends on improvements to be fully applied in Brazil under industrial scale. In this way, the bioleaching, by Acidithiobacillus ferrooxidans, in columns and stirred reactors were evaluated regarding to copper extraction of a mineral sulfide and a weathered ore from the Brazilian Amazon region.
    [Show full text]