Bioleaching of Zn from Sphalerite Using Leptospirillum Ferriphilum Isolate

Total Page:16

File Type:pdf, Size:1020Kb

Bioleaching of Zn from Sphalerite Using Leptospirillum Ferriphilum Isolate Sundramurthy et al. Appl Biol Chem (2020) 63:44 https://doi.org/10.1186/s13765-020-00528-8 ARTICLE Open Access Bioleaching of Zn from sphalerite using Leptospirillum ferriphilum isolate: efect of temperature and kinetic aspects Venkatesa Prabhu Sundramurthy1* , Baskar Rajoo2, Natesan Rajendran Srinivasan1 and Rajan Kavitha3 Abstract Biological methods for leaching of nonferrous and noble metals from its sulfde ores are widely applied at industrial enterprises of diferent countries. This process is based on the use of the oxidative activity of acidophilic microorgan- isms. Since all bio systems are quite sensitive to the temperature, bacterial leaching process also signifcantly efects. In the present study, the impact of temperature on bacterial leaching of Zn from its sulphide ore, sphalerite, was investigated using ore adapted iron oxidizing bacteria. The bacteria were isolated from mine drainage samples and subjected to gene sequencing. The acquired nucleotide sequence revealed that the isolate was Leptospirillum ferriphi- lum. The nucleotide sequence of L. ferriphilum isolate was submitted to National Center for Biotechnology Informa- tion (NCBI) and accession number KF743135 was assigned. Using the isolate, the Zn leaching data were collected in the 298–318 K temperature range. The results showed that leaching of Zn increases with temperature until optimum temperature of 313 K and achieves highest leaching efciency of 96.96% within 20 days. Since bioleaching of minerals have become increasingly applied in diferent mining industries, there is immense important to analyze mechanisti- cally-based kinetics for the design, optimization, operation, and control of biochemical processes. The kinetic study showed that the rate of Zn leaching was maximized at the optimum temperature. Further, the leaching data were analyzed using shrinking core model which revealed that the rate of leaching was inhibited by difusion through product layer. Reaction kinetics is also to be contrasted with thermodynamics. Using Arrhenius law of thermodynam- 1 ics, it was found that activation energy for Zn bioleaching reaction was 39.557 kJ mol− . Such investigations will be necessitated for designing and implanting the ideal bioleaching system for metal bio-mining industries. Keywords: Activation energy, Bioleaching, Sphalerite, Leptospirillum ferriphilum, Rate kinetics shrinking core model, Zn Introduction annually worldwide, and the demand of Zn has expanded Zn is the fourth most broadly used metal in the world altogether since 2005 [1]. Zn is separated from sphaler- after iron, aluminum, and copper. Inferable from its ite (ZnS), which is one of the most signifcant Zn-bearing solid anticorrosive properties and its ability to bond well sulfde mineral resources [2]. Tese days, approximately with other diferent metals, it has a wide range of uses in 90% of the world’s all out Zn is produced by customary applications, such as galvanizing and nonstructural cast- techniques such as roast–leach–electrowinning and pres- ings, and used as a major component of batteries and sure hydrometallurgy from sphalerite [3, 4]. Extracting alloys. More than 11 million tons of Zn is manufactured Zn using traditional methods is difcult and expensive because sphalerite is generally associated with other min- *Correspondence: [email protected] erals, such as pyrite and galena [5, 6]. Bacterial-assisted 1 Department of Chemical Engineering, Addis Ababa Science leaching (bioleaching) has been proven to be ecofriendly and Technology University, Addis Ababa, Ethiopia and the most cost-efective option to the traditional pro- Full list of author information is available at the end of the article cedures without making use of sulfur dioxide that follows © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. Sundramurthy et al. Appl Biol Chem (2020) 63:44 Page 2 of 13 as by-product in traditional methods and causes envi- (3), in which all iron-oxidizing bacteria (IOB), for exam- ronmental issues [7–9]. Bioleaching can be applied for ple, A. ferrooxidans, Acidimicrobium ferrooxidans, A. extracting Zn from sphalerite. Haghshenas et al. [10] albertensis, Alicyclobacillus tolerans, Leptospirillum fer- have studied experimentation on sphalerite bioleaching rooxidans, and Leptospirillum ferriphilum, are used for by A. ferrooxidans. Te highest extraction of Zn from cartelization [13]. IOB are capable of re-oxidizing ferrous sphalerite by bioleaching was obtained at particle size, ions to ferric ions during bioleaching [20, 21]. Regener- pulp density and temperature of 38–150 μm, 4% wt/ ated ferric ions can be reused to oxidize sphalerite [22]. vol and 33 °C, respectively. Ghassa et al. [11] have car- Sphalerite usually occurs in association with pyrite ried out an investigation on high grade Zn–Pb bearing (FeS2). Te pyritic phase present with sphalerite can be ore using mixed moderate thermophilic microorgan- used as the energy source by IOB, as described in Eq. (4), isms. Te results showed that the highest zinc recovery, which enhances Zn leaching and provides a necessary 98.5%, was obtained during 25 days with pulp density 50 acidic environment for bacterial growth [23]. (g/L). A. ferrooxidans, isolated from native province of SOB MS + 2O −→ MSO lead–zinc tailing, was used to leach Zn from sphalerite by 2 4 (1) Lei et al. [12]. During 25 days of leaching, they observed 2+ + IOB 3+ 70% of highest leaching at optimized pH value 2. Tree 2Fe + 2H + 0.5O2−→ 2Fe + H2O (2) diferent types of zinc sulphides, marmatite, sphalerite and ZnS (synthetically prepared), were studied for com- ZnS + 2Fe3+ → Zn2+ + S◦ + 2Fe2+ parative bioleaching of Zn using A. ferrooxidans and a (3) moderately thermoacidophilic iron-oxidizing bacterium IOB 2+ 2− + FeS2 + (7/2)O2 + H2O −→ Fe + 2SO + 2H by Shi et al. [13]. Tey observed that the bioleaching of 4 marmatite concentrate was advantageous over that of the (4) sphalerite and synthetic ZnS which clears that Zn extrac- Several studies reported that A. ferrooxidans is con- tion could be infuenced by mineral properties. A polym- sidered as prime important IOB. Even though it grows etallic (Cu, Zn, Pb, Fe, Ag, and Au) sulphide concentrate well with higher Fe 2+ concentrations, the members of the was subjected to bioleaching studies by Vesna et al. [14]. genus Leptospirillum attain good attention as an alter- Tey have used a mixed culture of A. ferrooxidans, A. native to A. ferrooxidans. Because Leptospirillum mem- thiooxidans, and Leptospirillum ferrooxidans. Te study bers tolerate higher cultivation temperature, lower pH, showed that Zn had a highest leaching efciency of 89% higher redox potential of the medium, and higher toler- which revealed the signifcant afnity of Zn on biologi- ance on of ferric ion concentration compared to A. fer- cal leaching. A Bioleaching study on lead–zinc tailing rooxidans [24, 25]. Tese properties make them potential dam’s sample was carried out by Mehrabani et al. [15] candidates in bio-hydrometallurgical handling of sulfde with respect to examine Zn extraction using a mixed minerals using IOB. Under genus Leptospirillum, two culture of mesophile bacteria and mixed culture of mod- most normal spices correspond to L. ferriphilum and erate thermophile bacteria. Tey observed that the mod- L. ferrooxidans. Low value of pH can be tolerated by L. erate thermophile bacteria showed signifcantly higher ferriphilum; they are more extremophile and can with- leaching efciency than that of the mesophile microbe stand higher cultivation temperature [26]. Henceforth, it which indicated the impact of temperature on the Zn was picked as the biological agent for this study. Tough bioleaching. bioleaching process has been used for several decades, Zinc sulphide ores can be treated by bioleaching there are several issues still continuing [27]. One of the through direct or indirect mechanism [16]. In the direct signifcant issues of the bioleaching process is still lower bioleaching mechanism, Zn is extracted by direct oxi- rate of leaching, which consumes high residence time dation of insoluble zinc sulfde to soluble zinc sulfate, compared to the traditional processes and hinders suc- which is catalyzed by sulfur-oxidizing bacteria (SOB) cess. In addition, diferent key factors, such as, types of such as Acidithiobacillus ferrooxidans and Acidithiobacil- metal concentrates quantity and nature of metal, nutri- lus thiooxidans, as shown in Eq. (1). Indirect bioleaching ents availability during bioleaching, oxygen supply, pH, principally pursues an iron-based mechanism in which temperature, solid-ratio, and shear rate during agita- ferric ions are produced from bio-oxidation of ferrous tion, control microbial growth [28]. Although the bacte- ions, which go about as an oxidizing agent to facilitate Zn rial population, leaching efectiveness, and leaching rate dissolution from its sulfde mineral [17–19]. Accordingly, appear closely related to the bioleaching conditions based bioleaching of sphalerite can be depicted by Eqs. (2) and on the above-mentioned factors, this work is limited to Sundramurthy et al. Appl Biol Chem (2020) 63:44 Page 3 of 13 study the efect of temperature on bioleaching of Zn from mineral composition of raw sample was conducted using sphalerite by L. ferriphilum isolate. Since bioleaching of X-ray difraction (XRD) strategy. Te XRD pattern is minerals have become increasingly applied bio-hydro- shown in Fig.
Recommended publications
  • Anaerobic Reductive Bioleaching of Manganese Ores
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 Anaerobic Reductive Bioleaching of Manganese Ores Neha Sharma Michigan Technological University, [email protected] Copyright 2021 Neha Sharma Recommended Citation Sharma, Neha, "Anaerobic Reductive Bioleaching of Manganese Ores", Open Access Master's Thesis, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1200 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Chemical Engineering Commons, and the Metallurgy Commons ANAEROBIC REDUCTIVE BIOLEACHING OF MANGANESE ORES By Neha Sharma A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Chemical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Neha Sharma This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Chemical Engineering. Department of Chemical Engineering Thesis Advisor: Timothy C. Eisele Committee Member: Rebecca G. Ong Committee Member: Lei Pan Department Chair: Pradeep K. Agrawal Table of Contents List of Figure...................................................................................................................... iv List of Tables .......................................................................................................................v Acknowledgements ...........................................................................................................
    [Show full text]
  • Bioleaching of Chalcopyrite
    Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy.
    [Show full text]
  • Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria
    minerals Article Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria San Yee Khaing 1, Yuichi Sugai 2,*, Kyuro Sasaki 2 and Myo Min Tun 3 1 Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 2 Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 3 Department of Geology, Yadanabon University, Mandalay 05063, Myanmar; [email protected] * Correspondence: [email protected] Received: 11 April 2019; Accepted: 30 April 2019; Published: 2 May 2019 Abstract: Iodide-oxidizing bacteria (IOB) oxidize iodide into iodine and triiodide which can be utilized for gold dissolution. IOB can be therefore useful for gold leaching. This study examined the impact of incubation conditions such as concentration of the nutrient and iodide, initial bacterial cell number, incubation temperature, and shaking condition on the performance of the gold dissolution through the experiments incubating IOB in the culture medium containing the marine broth, potassium iodide and gold ore. The minimum necessary concentration of marine broth and potassium iodide for the complete gold dissolution were determined to be 18.7 g/L and 10.9 g/L respectively. The initial bacterial cell number had no effect on gold dissolution when it was 1 104 cells/mL or higher. Gold × leaching with IOB should be operated under a temperature range of 30–35 ◦C, which was the optimal temperature range for IOB. The bacterial growth rate under shaking conditions was three times faster than that under static conditions.
    [Show full text]
  • Experiences and Future Challenges of Bioleaching Research in South Korea
    minerals Review Experiences and Future Challenges of Bioleaching Research in South Korea Danilo Borja 1, Kim Anh Nguyen 1, Rene A. Silva 2, Jay Hyun Park 3, Vishal Gupta 4, Yosep Han 1, Youngsoo Lee 1,* and Hyunjung Kim 1,* 1 Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea; [email protected] (D.B.); [email protected] (K.A.N.); [email protected] (Y.H.) 2 Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Geotechnics and Recycling Technology Division, Institute of Mine Reclamation Corporation, 2, Segye-ro, Wonju-si, Gangwon-do 26464, Korea; [email protected] 4 Research & Development, EP Minerals, 9785 Gateway Dr., Suite 1000, Reno, NV 89521, USA; [email protected] * Correspondence: [email protected] (Y.L.); [email protected] (H.K.); Tel.: +82-63-270-2392 (Y.L.); +82-63-270-2370 (H.K.); Fax: +82-63-270-2366 (Y.L. & H.K.) Academic Editor: Anna H. Kaksonen Received: 1 October 2016; Accepted: 28 November 2016; Published: 2 December 2016 Abstract: This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials.
    [Show full text]
  • Review on Chromobacterium Violaceum for Gold Bioleaching from E-Waste
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 31 ( 2016 ) 947 – 953 The Tenth International Conference on Waste Management and Technology (ICWMT) Review on chromobacterium violaceum for gold bioleaching from e-waste Renjie Liua, Jingying Lia,*, Zhongying Gea aCollege of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China Abstract Electronic waste, such as printed circuit boards, are an important secondary resource if processed with environment-friendly technologies for obtaining precious metal, such as gold. The gold bioleaching from electronic waste was recently getting paid attractive attention because its available deposit is limited. This review was focused on Chromobacterium violaceum (C. Violaceum), which was a mesophilic, gram-negative, and facultative anaerobe. C. violaceum has the ability of producing CN- which can dissolve gold from the metallic particles of crushed waste printed circuit boards. This article also provided an overview of cyanide-generation mechanism and the optimal conditions for C. violaceum to achieve maximum amount of cyanide generation. The past achievements and recently scenario of recovery studies carried out on the use of some other microorganisms were compared with C. violaceum. And recently some researchers proposed that combined C. violaceum with chemical methods or other mechanism such as iodide, Pseudomonas aeruginosa and Pseudomonas fluorescens which can reinforce the cyanide generation and improve gold-leaching efficiency. The factors affected the microorganisms on cyanide generation were summarized and the proper conditions were also discussed in this article. And present researches of C. violaceum in gold bioleaching had made good progress which the reported leaching efficiency of gold was over 70%.
    [Show full text]
  • Preparing for Future Products of Biotechnology
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24605 SHARE Preparing for Future Products of Biotechnology DETAILS 230 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-45205-2 | DOI 10.17226/24605 CONTRIBUTORS GET THIS BOOK Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System; Board on Life Sciences; Board on Agriculture and Natural Resources; Board on Chemical Sciences and FIND RELATED TITLES Technology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Preparing for Future Products of Biotechnology Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System Board on Life Sciences Board on Agriculture and Natural Resources Board on Chemical Sciences and Technology Division on Earth and Life Studies A Report of Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No.
    [Show full text]
  • Biopromise? Biotechnology, Sustainable Development and Canada’S Future Economy
    BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT TO CBAC (Canadian Biotechnology Advisory Committee) from the BSDE Expert Working Party September 2006 BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT September 2006 This publication is available electronically on the Canadian Biotechnology Advisory Committee (CBAC) website at www.cbac-cccb.ca or on the International Institute for Sustainable Development (IISD) website at www.iisd.org/pdf/2007/biopromise_tech_en.pdf This publication is also available in alternative formats on request from the Chair of the Expert Working Party, Dr. Arthur Hanson, who can be contacted at the address below: Dr. Arthur Hanson Chair, Expert Working Party 2650 Dorset Road Oak Bay, BC V8R 3N1 Email: [email protected] Disclaimer This report was produced by the members of an Expert Working Party established by the Canadian Biotechnology Advisory Committee. The views expressed in this report are those of the Expert Working Party and do not necessarily reflect those of the CBAC, the Biotechnology Ministerial Coordinating Committee or the Government of Canada. Permission to Reproduce Except as otherwise specifically noted, the information in this publication may be reproduced, in part or in whole and by any means, without charge or further permission from CBAC, provided that due diligence is exercised in ensuring that the information is reproduced accurately, that CBAC is identified as the source institution, and that the reproduction is not represented as an official version of the information reproduced, nor as having been made in affiliation with, or with the endorsement of, CBAC. © 2006, Government of Canada (Canadian Biotechnology Advisory Committee).
    [Show full text]
  • Arsenic Tolerance and Bioleaching from Realgar Based on Response Surface Methodology by Acidithiobacillus Ferrooxidans Isolated
    Electronic Journal of Biotechnology 25 (2017) 50–57 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Research article Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China Lei Yan a,⁎,HuixinHua, Shuang Zhang a,PengChenb, Weidong Wang a, Hongyu Li b a College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China b Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China article info abstract Article history: Background: Traditional methods of obtaining arsenic have disadvantages such as high cost and high energy Received 1 September 2016 consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in Accepted 17 November 2016 industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic Available online 25 November 2016 from realgar. Results: An acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in Keywords: northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C 16S rDNA phylogeny and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The Arsenic bioleaching fi Arsenic sulphide minerals inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A signi cant Arsenic-resistance second-order model was established using a Box–Behnken design of response surface methodology China (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the EDS analyses pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 Iron-oxidizing bacterium and 3.68 g/L, respectively.
    [Show full text]
  • Bioleaching of Sphalerite by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans Cultured in 9K Medium Modified with Pyrrhotite
    J. Cent. South Univ. Technol. (2008) 15: 503−507 DOI: 10.1007/s11771−008−0095−7 Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite CHEN Song(陈 松), QIU Guan-zhou(邱冠周), QIN Wen-qing(覃文庆), LAN Zhuo-yue(蓝卓越) (School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China) Abstract: Elective culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in 9K medium modified with pyrrhotite was studied. Bioleaching of flotation concentrate of sphalerite by the selected bacteria was carried out. The results show that the microorganisms cultured by pyrrhotite are a mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, of which the capability to oxidize ferrous to ferric irons is enhanced by the high mass ratio of Fe to S in pyrrhotite. Three pyrrhotite samples were separated into various parts with corresponding S/Fe ratios by magnetic separation and were used to culture the elective bacteria as the substrate. The association of the cultures could provide a more rapid and complete oxidation of sphalerite than that of bacteria cultivated by conventional methods. Key words: bioleaching; pyrrhotite; elective culture; sphalerite the natural environment, the microorganisms with the 1 Introduction capacity to dissolve minerals are a mixed culture of different bacterial strains. Being cultivated with the Bioleaching has been widely used in the conventional methods of domestication, mutation, commercial extraction of uranium, copper and gold from crossbreed, cell syncretizing and gene engineering, some ore, and it is being exploited in the extraction of other capabilities of the microorganism such as the activity, the base metals and rare noble metals, such as zinc, cobalt, tolerance of heavy metal ions and the adaptability to nickel, molybdenum, gallium, germanium etc.
    [Show full text]
  • Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources
    Minerals 2015, 5, 1-60; doi:10.3390/min5010001 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Review Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources Helen R. Watling CSIRO Mineral Resources Flagship, PO Box 7229, Karawara, WA 6152, Australia; E-Mail: [email protected]; Tel.: +61-8-9334-8034; Fax: +61-8-9334-8001 Academic Editor: Karen Hudson-Edwards Received: 30 October 2014 / Accepted: 10 December 2014 / Published: 24 December 2014 Abstract: This review has as its underlying premise the need to become proficient in delivering a suite of element or metal products from polymetallic ores to avoid the predicted exhaustion of key metals in demand in technological societies. Many technologies, proven or still to be developed, will assist in meeting the demands of the next generation for trace and rare metals, potentially including the broader application of biohydrometallurgy for the extraction of multiple metals from low-grade and complex ores. Developed biotechnologies that could be applied are briefly reviewed and some of the difficulties to be overcome highlighted. Examples of the bioleaching of polymetallic mineral resources using different combinations of those technologies are described for polymetallic sulfide concentrates, low-grade sulfide and oxidised ores. Three areas for further research are: (i) the development of sophisticated continuous vat bioreactors with additional controls; (ii) in situ and in stope bioleaching and the need to solve problems associated with microbial activity in that scenario; and (iii) the exploitation of sulfur-oxidising microorganisms that, under specific anaerobic leaching conditions, reduce and solubilise refractory iron(III) or manganese(IV) compounds containing multiple elements.
    [Show full text]
  • Adoption of Genetically Improved Crops Ucts to Date Have Been Developed by the Private Sector
    23042 2000 Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized ons t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~p on nternat, Aricultural Research ililllli r S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3 and US Acad of j yindustry Organization UN Development Programme Foo lture Organization of the UN UN Educational, Scientific and Cultural Organization Global Fo oiAgricultural Research UN Environment Programme Public Disclosure Authorized International Il for Sci'ence UN Industrial Development Organization International F Oricultural Development Union of Concerned Scientists Third World Academy4,ciences Agricultural Biotechnology and the Poor G. J. Persley and M. M. Lan tin, Editors Proceedings of an International Conference Washington, D.C., 21-22 October 1999 Convened by Consultative Grouypon Interllational Agricultural ResearchI U.S. National Acadenmyof Sciences Convened by: Consultative Group on International Agricultural Research (CGIAR) U.S. National Academy of Sciences (NAS) Cosponsors: Biotechnology Industry Organization (BIO) Food & Agriculture Organization of the UN (FAO) Global Forum on Agricultural Research (GFAR) International Council for Science (ICSU) International Fund for Agricultural Development (IFAD) Third World Academy of Sciences (TWAS) UN Development Programme (UNDP) UN Educational, Scientific and Cultural Organization (UNESCO) UN Environment Programme (UNEP) UN Industrial Development Organization (UNIDO) Union of Concerned Scientists (UCS) Dedication To Dr. JohlnJ. Doyle, 1944-1999, one of the pioneering scientists in the CGIAR Systenmwt1ho worked on1the application1 Ofnmolecillar Hiology to livestock diseases at 7LRAD (now?ILRI) in Africafor 20 years. lack zoos,as hiis colleagues at ILRI said, "a miandedlicated to a single idea that science coutld solve humannproblems, anzd hlehad the courage to go after tlhat n2omaltter what." The opinions expressed in this book are those of the authors and do not necessarily reflect a consensus of views within the CGIAR system or the U.S.
    [Show full text]
  • An Investigation Into Bioleaching of Uranium and Rare Earth Elements from Quartz-Pebble Conglomerate Ores from Elliot Lake, Ontario
    AN INVESTIGATION INTO BIOLEACHING OF URANIUM AND RARE EARTH ELEMENTS FROM QUARTZ-PEBBLE CONGLOMERATE ORES FROM ELLIOT LAKE, ONTARIO By Aimee Lynn Williamson A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Material Sciences The School of Graduate Studies Laurentian University Sudbury, Ontario, Canada © Aimee Lynn Williamson, 2014 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne School of Graduate Studies/École des études supérieures Title of Thesis Titre de la thèse AN INVESTIGATION INTO BIOLEACHING OF URANIUM AND RARE EARTH ELEMENTS FROM QUARTZ-PEBBLE CONGLOMERARE ORES FROM AT ELLIOT LAKE, ONTARIO Name of Candidate Nom du candidat Williamson, Aimee Lynn Degree Diplôme Doctor of Philosophy Department/Program Date of Defence Département/Programme Materials Science Date de la soutenance June 3, 2014 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. Graeme Spiers (Supervisor/Directeur de thèse) Dr. François Caron (Committee member/Membre du comité) Dr. Michael Schindler (Committee member/Membre du comité) Mr. Roger Payne (Committee member/Membre du comité) Approved for the School of Graduate Studies Mr. Randy Knapp Approuvé pour l’École des études supérieures (Committee member/Membre du comité) Dr. David Lesbarrères M. David Lesbarrères Dr. Thomas Kotzer Director, School of Graduate Studies (External Examiner/Examinateur externe) Directeur, École des études supérieures Dr. Douglas Boreham (Internal Examiner/Examinateur interne) ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Aimee Lynn Williamson, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership.
    [Show full text]