An Investigation Into Bioleaching of Uranium and Rare Earth Elements from Quartz-Pebble Conglomerate Ores from Elliot Lake, Ontario

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation Into Bioleaching of Uranium and Rare Earth Elements from Quartz-Pebble Conglomerate Ores from Elliot Lake, Ontario AN INVESTIGATION INTO BIOLEACHING OF URANIUM AND RARE EARTH ELEMENTS FROM QUARTZ-PEBBLE CONGLOMERATE ORES FROM ELLIOT LAKE, ONTARIO By Aimee Lynn Williamson A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Material Sciences The School of Graduate Studies Laurentian University Sudbury, Ontario, Canada © Aimee Lynn Williamson, 2014 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne School of Graduate Studies/École des études supérieures Title of Thesis Titre de la thèse AN INVESTIGATION INTO BIOLEACHING OF URANIUM AND RARE EARTH ELEMENTS FROM QUARTZ-PEBBLE CONGLOMERARE ORES FROM AT ELLIOT LAKE, ONTARIO Name of Candidate Nom du candidat Williamson, Aimee Lynn Degree Diplôme Doctor of Philosophy Department/Program Date of Defence Département/Programme Materials Science Date de la soutenance June 3, 2014 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. Graeme Spiers (Supervisor/Directeur de thèse) Dr. François Caron (Committee member/Membre du comité) Dr. Michael Schindler (Committee member/Membre du comité) Mr. Roger Payne (Committee member/Membre du comité) Approved for the School of Graduate Studies Mr. Randy Knapp Approuvé pour l’École des études supérieures (Committee member/Membre du comité) Dr. David Lesbarrères M. David Lesbarrères Dr. Thomas Kotzer Director, School of Graduate Studies (External Examiner/Examinateur externe) Directeur, École des études supérieures Dr. Douglas Boreham (Internal Examiner/Examinateur interne) ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Aimee Lynn Williamson, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. Abstract Biogeochemical mineral dissolution, the microbial-assisted dissolution of minerals, is an effective method for economically promoting the release of metals of interest from ores and mine waste materials. As the low-grade ores of the Elliot Lake region may be suitable for development of a sustainable heap-leach method for the extraction of U and REEs from the low-grade host mineralization, this thesis is focused on the geochemical and biological process simulation monitoring of the biogeochemical release of elements to the leaching solutions. The response of the retired heap material to a variety of passive closure strategies is also addressed. A series of biogeochemical mineral dissolution experiments have provided a detailed understanding of the biogeochemical mineral dissolution process, with the investigation of passive approaches to prepare for decommissioning to determine suitability to the ore materials from the study site. The chemical analyses of effluents collected throughout the experimentation, coupled with mineralogical and geochemical analyses of the feed and residual mineral material has enabled an understanding of the chemical controls of the overall biogeochemical mineral dissolution process for Fe, U, and Th, together with the preferential leaching release patterns for REEs, to be obtained. A mechanism describing U retention in secondary coatings has been proposed, with a passive approach to closure using inhibition and encapsulation methods being demonstrated, along with a determination of the potential for ongoing radionuclide release from a simulated heap upon decommissioning. The laboratory research in this study has shown that biogeochemical mineral dissolution, followed by waste material encapsulation, can be successfully applied to heap-leach pads potentially, enabling the economic recovery of U, Th, and selected REEs to solution for subsequent metallurgical collection. The studies strongly support the concept of sustainable development for heap-leach operations in the Elliot Lake region. Keywords: Acid mine drainage, Acidithiobacillus ferrooxidans, biogeochemical mineral dissolution, bioleaching, passive approaches to prepare for decommissioning, Elliot Lake, encapsulation, extraction iii flasks, ferrous-sulphide minerals, geochemical dynamics, inhibition, leaching columns, mineralogical dynamics, radionuclide, radium, rare earth elements, uranium, thorium iv Co-Authorship Statement Recently published in the Journal of Environmental Radiochemistry, Chapter 9 is co-authored by Aimee Lynn Williamson, Francois Caron, and Graeme Spiers. Spiers contributed to the conception of the overall study, with Caron providing suggestions for leachate extraction and preparation for gamma measurements, calculating detector efficiency, and providing guidance on interpretation of gamma spectroscopic data. Williamson solely conducted all experiments and analysis, and conceived the interpretations and conclusions. The manuscript was prepared by Williamson, with editorial comment from Caron and Spiers. v Acknowledgments Completing this thesis has been the most challenging task I have attempted in my journeys and it would not be achievable without the assistance and support of countless individuals throughout the last four years, eight months, and twenty-four days. First and foremost, I would like to thank my thesis supervisor, Dr. Graeme Spiers, who has encouraged me every step of the way. He has taught me to trust my scientific judgment and to never give up when times get difficult or science gets tough. His lessons have allowed me to grow into a confident scientist, albeit stubborn at times as I continued to practice patience, which Dr. Spiers exemplifies so well. I would also like to thank my thesis committee members: Dr. Francois Caron, Dr. Michael Schindler, Mr. Roger Payne, and Mr. Randy Knapp. I am grateful that such a diverse group of professionals have guided me through this process. I have learned something unique from each of you. I have been grateful to have been supported by the folks at Pele Mountain Resources Inc. who entrusted me to find a solution for the company’s research questions. Communications with PMR president, Mr. Alan Shefsky, have always been positive and encouraging and his excitement for the project has provided never-ending motivation. Roger Payne, PMR Executive Vice President, has always brought positivity to the project and was truly one of the best resources that I had during my studies, although there has never been enough time to take full advantage of everything that Roger could teach me from all of his extraordinary experiences. Also, thank you to Fergus Kerr, who provided great insight and experience to the early phase of the project. The opportunity to work directly with a company on this project has allowed me to witness the true meaning of my work and its consequences. The body of experimental work could not have been completed without the assistance provide by the Geoscience Laboratories, the Elliot Lake Research Field Station, the Department of Chemistry at Laurentian University, and MIRARCO. Sample preparation and preliminary mineralogical studies were conducted at the Geoscience Laboratories, with special thanks to Sandra Clark and John Hechler for their continued guidance in this area. The great people at ELRFS have been available every step of the way, in vi particular Troy Maki, who has supported the development of analytical methods and carried out some sample analysis. A special thank you goes out to former-ELRFS staff member and fellow graduate student Kendra Driscoll for her support in the laboratory and for always being available for a coffee break to discuss our research results and life in general. I would also like to acknowledge the Chemistry Department at Laurentian University for providing countless supplies and small instruments required to complete special analysis and to Dr. Joy Gray-Munro for the use of her laboratory for an IR study. MIRARCO and the EMR research group have provided administrative support to the project as well as a personal workspace and facilities that any grad student could appreciate. I am very thankful for the friendships I developed working with the old CEM group at MIRARCO, established during fieldwork excursions and strengthened during conference outings and holiday parties. Special thanks to Dr. Jennifer Hargreaves for her ‘groovy’ guidance and to John Waddell, Michael Folcher, and Widjdan Malik for their assistance in the construction of my experimental set up. The support that I have received from friends and family has been so strong. Andrea and Josée, grad school would have been nowhere near as exciting
Recommended publications
  • Anaerobic Reductive Bioleaching of Manganese Ores
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 Anaerobic Reductive Bioleaching of Manganese Ores Neha Sharma Michigan Technological University, [email protected] Copyright 2021 Neha Sharma Recommended Citation Sharma, Neha, "Anaerobic Reductive Bioleaching of Manganese Ores", Open Access Master's Thesis, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1200 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Chemical Engineering Commons, and the Metallurgy Commons ANAEROBIC REDUCTIVE BIOLEACHING OF MANGANESE ORES By Neha Sharma A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Chemical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Neha Sharma This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Chemical Engineering. Department of Chemical Engineering Thesis Advisor: Timothy C. Eisele Committee Member: Rebecca G. Ong Committee Member: Lei Pan Department Chair: Pradeep K. Agrawal Table of Contents List of Figure...................................................................................................................... iv List of Tables .......................................................................................................................v Acknowledgements ...........................................................................................................
    [Show full text]
  • Bioleaching of Chalcopyrite
    Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy.
    [Show full text]
  • Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria
    minerals Article Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria San Yee Khaing 1, Yuichi Sugai 2,*, Kyuro Sasaki 2 and Myo Min Tun 3 1 Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 2 Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 8190395, Japan; [email protected] 3 Department of Geology, Yadanabon University, Mandalay 05063, Myanmar; [email protected] * Correspondence: [email protected] Received: 11 April 2019; Accepted: 30 April 2019; Published: 2 May 2019 Abstract: Iodide-oxidizing bacteria (IOB) oxidize iodide into iodine and triiodide which can be utilized for gold dissolution. IOB can be therefore useful for gold leaching. This study examined the impact of incubation conditions such as concentration of the nutrient and iodide, initial bacterial cell number, incubation temperature, and shaking condition on the performance of the gold dissolution through the experiments incubating IOB in the culture medium containing the marine broth, potassium iodide and gold ore. The minimum necessary concentration of marine broth and potassium iodide for the complete gold dissolution were determined to be 18.7 g/L and 10.9 g/L respectively. The initial bacterial cell number had no effect on gold dissolution when it was 1 104 cells/mL or higher. Gold × leaching with IOB should be operated under a temperature range of 30–35 ◦C, which was the optimal temperature range for IOB. The bacterial growth rate under shaking conditions was three times faster than that under static conditions.
    [Show full text]
  • NPTEL Syllabus
    NPTEL Syllabus Metals Biotechnology - Web course COURSE OUTLINE Introduction to microbiology relevant to metals biotechnology – Biology-Materials interface – Biomaterials processing – Biogenesis of minerals and metals - History, status and developments in biohydrometallurgy – Bioleaching mechanisms – Metal toxicity and tolerance in Acidithiobacillus ferrooxidans – Biohydrometallurgy of copper, zinc and nickel NPTEL – Biohydrometallurgy of uranium – Biotechnology for gold – Biomineralization and http://nptel.iitm.ac.in bioprocessing of ocean manganese nodules – Bioprocessing of industrial wastes – Electrochemical aspects of bioleaching – Electrobioleaching – Biomineral beneficiation of sulfide, oxide and industrial minerals – Biofouling, biocorrosion and biomaterials – Acid Metallurgy mine drainage and bioremediation in mining – Experimental and research techniques in metals biotechnology. and Material Science COURSE DETAIL Module Sl. No. and topic Hours Pre-requisites: Module 1 Microbiology, mechanisms and methods in metals Basic knowledge of biotechnology microbiology, chemistry and Lecture 1: Biology – materials interface and biomaterials metallurgy.Mineralogy processing. and Extractive metallurgy Lecture 2: Biogenesis of metals and minerals. of ferrous and nonferrous Lecture 3: History and methods in biohydrometallurgy. metals. Lecture 4: Microorganisms in biohydrometallurgy. 9 Lecture 5: Reactor bioleaching and developments in bioleaching of concentrates Coordinators: Lecture 6: Bioleaching mechanisms. Prof. K.A. Natarajan Lecture
    [Show full text]
  • Experiences and Future Challenges of Bioleaching Research in South Korea
    minerals Review Experiences and Future Challenges of Bioleaching Research in South Korea Danilo Borja 1, Kim Anh Nguyen 1, Rene A. Silva 2, Jay Hyun Park 3, Vishal Gupta 4, Yosep Han 1, Youngsoo Lee 1,* and Hyunjung Kim 1,* 1 Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea; [email protected] (D.B.); [email protected] (K.A.N.); [email protected] (Y.H.) 2 Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Geotechnics and Recycling Technology Division, Institute of Mine Reclamation Corporation, 2, Segye-ro, Wonju-si, Gangwon-do 26464, Korea; [email protected] 4 Research & Development, EP Minerals, 9785 Gateway Dr., Suite 1000, Reno, NV 89521, USA; [email protected] * Correspondence: [email protected] (Y.L.); [email protected] (H.K.); Tel.: +82-63-270-2392 (Y.L.); +82-63-270-2370 (H.K.); Fax: +82-63-270-2366 (Y.L. & H.K.) Academic Editor: Anna H. Kaksonen Received: 1 October 2016; Accepted: 28 November 2016; Published: 2 December 2016 Abstract: This article addresses the state of the art of bioleaching research published in South Korean Journals. Our research team reviewed the available articles registered in the Korean Citation Index (KCI, Korean Journal Database) addressing the relevant aspects of bioleaching. We systematically categorized the target metal sources as follows: mine tailings, electronic waste, mineral ores and metal concentrates, spent catalysts, contaminated soil, and other materials.
    [Show full text]
  • Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control
    Proceedings of the International Seminar on Mineral Processing Technology - 2006, Chennai, India. pp. 68 - 81. Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control K.A. Natarajan Department of Metallurgy, Indian Institute of Science, Bangalore 560012 Email : kan@met. iisc.ernet in Abstract With the rapid depletion of high grade ores and concerns about environmental degradation, the necessity for utilisation of lean grade mineral resources have become all the more urgent. With the advent of bioleaching since the early 1960's, possibilities of metal extraction in an environment-friendly fashion have emerged. As of now three metals namely copper, uranium and gold are commercially produced around the world using biooxidation in the presence of Acidithiobacillus ferrooxidans. Bioleaching of base metal concentrates such as those containing copper, zinc and nickel has also been proved to be commercially viable during this decade. Bioreactor technology using thermophilic bacteria holds the key for the successful and efficient bioleaching of chalcopyrite, sphalerite and pentlandite concentrates. Microorganisms find use in environmental control and mineral beneficiation as well. Microbially-induced mineral flotation and flocculation have been proved to very cost-effective and environment-friendly. In this paper, biotechnology as applied to metal extraction, mineral beneficiation and environmental control is illustrated. INTRODUCTION The microorganism, Acidithiobacillus ferrooxidans which is known to be effective in the leaching of several minerals was first isolated in the laboratory in 1947 from the acid mine drainage of bituminous coal mines. Bioleaching processes are now becoming increasingly significant due to rapid depletion of high grade ore reserves, increasing energy costs and environmental concerns. Large quantities of copper, uranium and gold ores are processed by microbial technology on an industrial scale.
    [Show full text]
  • Subterranean Photobioreactors for Commercial-Industrial Scale Algal Culture
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2016 Subterranean photobioreactors for commercial-industrial scale algal culture Daniel James Vidt Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Vidt, Daniel James, "Subterranean photobioreactors for commercial-industrial scale algal culture" (2016). Doctoral Dissertations. 2493. https://scholarsmine.mst.edu/doctoral_dissertations/2493 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SUBTERRANEAN PHOTOBIOREACTORS FOR COMMERCIAL- INDUSTRIAL SCALE ALGAL CULTURE by DANIEL JAMES VIDT A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MINING ENGINEERING 2016 Approved by: Lana Alagha, Adviser Melanie Mormile Samuel Frimpong Kwame Awuah-Offei Dev Niyogi @ 2016 DANIEL JAMES VIDT ALL RIGHTS RESERVED iii ABSTRACT There are many potential benefits to the mining industry accruing from the application of algal biotechnology. The main benefits are in the production of biodiesel and in the remediation of mining brownfields. The research in this study was centered in the original idea that these brownfields represent a tremendous opportunity for use as a hybrid model for redevelopment into sustainable “mines” of biomass. The ability of these underground spaces serving as bioreactors to control all aspects of the growing environment, from lighting, to temperature, to biosecurity, are key advantages that have been identified in the literature.
    [Show full text]
  • Review on Chromobacterium Violaceum for Gold Bioleaching from E-Waste
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 31 ( 2016 ) 947 – 953 The Tenth International Conference on Waste Management and Technology (ICWMT) Review on chromobacterium violaceum for gold bioleaching from e-waste Renjie Liua, Jingying Lia,*, Zhongying Gea aCollege of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China Abstract Electronic waste, such as printed circuit boards, are an important secondary resource if processed with environment-friendly technologies for obtaining precious metal, such as gold. The gold bioleaching from electronic waste was recently getting paid attractive attention because its available deposit is limited. This review was focused on Chromobacterium violaceum (C. Violaceum), which was a mesophilic, gram-negative, and facultative anaerobe. C. violaceum has the ability of producing CN- which can dissolve gold from the metallic particles of crushed waste printed circuit boards. This article also provided an overview of cyanide-generation mechanism and the optimal conditions for C. violaceum to achieve maximum amount of cyanide generation. The past achievements and recently scenario of recovery studies carried out on the use of some other microorganisms were compared with C. violaceum. And recently some researchers proposed that combined C. violaceum with chemical methods or other mechanism such as iodide, Pseudomonas aeruginosa and Pseudomonas fluorescens which can reinforce the cyanide generation and improve gold-leaching efficiency. The factors affected the microorganisms on cyanide generation were summarized and the proper conditions were also discussed in this article. And present researches of C. violaceum in gold bioleaching had made good progress which the reported leaching efficiency of gold was over 70%.
    [Show full text]
  • Preparing for Future Products of Biotechnology
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24605 SHARE Preparing for Future Products of Biotechnology DETAILS 230 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-45205-2 | DOI 10.17226/24605 CONTRIBUTORS GET THIS BOOK Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System; Board on Life Sciences; Board on Agriculture and Natural Resources; Board on Chemical Sciences and FIND RELATED TITLES Technology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology Preparing for Future Products of Biotechnology Committee on Future Biotechnology Products and Opportunities to Enhance Capabilities of the Biotechnology Regulatory System Board on Life Sciences Board on Agriculture and Natural Resources Board on Chemical Sciences and Technology Division on Earth and Life Studies A Report of Copyright National Academy of Sciences. All rights reserved. Preparing for Future Products of Biotechnology THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by Contract No.
    [Show full text]
  • Biopromise? Biotechnology, Sustainable Development and Canada’S Future Economy
    BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT TO CBAC (Canadian Biotechnology Advisory Committee) from the BSDE Expert Working Party September 2006 BioPromise? Biotechnology, Sustainable Development and Canada’s Future Economy TECHNICAL REPORT September 2006 This publication is available electronically on the Canadian Biotechnology Advisory Committee (CBAC) website at www.cbac-cccb.ca or on the International Institute for Sustainable Development (IISD) website at www.iisd.org/pdf/2007/biopromise_tech_en.pdf This publication is also available in alternative formats on request from the Chair of the Expert Working Party, Dr. Arthur Hanson, who can be contacted at the address below: Dr. Arthur Hanson Chair, Expert Working Party 2650 Dorset Road Oak Bay, BC V8R 3N1 Email: [email protected] Disclaimer This report was produced by the members of an Expert Working Party established by the Canadian Biotechnology Advisory Committee. The views expressed in this report are those of the Expert Working Party and do not necessarily reflect those of the CBAC, the Biotechnology Ministerial Coordinating Committee or the Government of Canada. Permission to Reproduce Except as otherwise specifically noted, the information in this publication may be reproduced, in part or in whole and by any means, without charge or further permission from CBAC, provided that due diligence is exercised in ensuring that the information is reproduced accurately, that CBAC is identified as the source institution, and that the reproduction is not represented as an official version of the information reproduced, nor as having been made in affiliation with, or with the endorsement of, CBAC. © 2006, Government of Canada (Canadian Biotechnology Advisory Committee).
    [Show full text]
  • 22Nd International Biohydrometallurgy Symposium
    PROGRAMME IBS 24 – 27 September 2017 TU Bergakademie Freiberg/Germany 2017 22nd International Biohydrometallurgy Symposium www.dechema.de/IBS2017 © Erik Schumann - Fotolia IN COOPERATION WITH sponsor / exhibitor / media partners / committee committee sponsor international scientific committee Ricardo Amils, Universidad Autónoma de Madrid/E Antonio Ballester, Universidad Complutense de Madrid/E Newmont Mining Corporation Siti Chaerun, Bandung Institute of Technology/IDN Greenwood Village, CO/USA Cecilia Demergasso, Universidad Católica del Norte, Antofagasta/CHL Edgardo Donati, Research Center CINDEFI (CONICET-UNLP), La Plata/ARG Mark Dopson, Linnaeus University, Kalmar/S David Dreisinger, The University of British Colombia, Vancouver/CDN exhibitor Chris du Plessis, Lhoist - Business Innovation Center, Nivelles/B Mariekie Gericke, Company Mintek, Randburg/ZA G.E.O.S. Ingenieurgesellschaft mbH Nicolas Guiliani, Universidad de Chile, Santiago/CHL Halsbrücke/D Eric Guibal, Ecole des Mines d‘Alès, Alès/F Sue Harrison, University of Cape Town/ZA media partners David Holmes, Centre for Bioinformatics and Genome Biology, Fundación Ciencias para la Vida, Santiago/CHL Carlos Jerez, Universidad de Chile, Santiago de Chile/CHL 22nd IBS is part of the European Biotech Week 2017 D. Barrie Johnson, Bangor University, Bangor/UK Anna Kaksonen, CSIRO, Perth/AUS Päivi Kinnunen, VTT Technical Research Centre of Finland Ltd, Espoo/FIN Versiane Albis Leão, Universidad Federal de Ouro Preto/BR Minerals Engineering International Jianshe Liu, Donghua University,
    [Show full text]
  • Arsenic Tolerance and Bioleaching from Realgar Based on Response Surface Methodology by Acidithiobacillus Ferrooxidans Isolated
    Electronic Journal of Biotechnology 25 (2017) 50–57 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Research article Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China Lei Yan a,⁎,HuixinHua, Shuang Zhang a,PengChenb, Weidong Wang a, Hongyu Li b a College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China b Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China article info abstract Article history: Background: Traditional methods of obtaining arsenic have disadvantages such as high cost and high energy Received 1 September 2016 consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in Accepted 17 November 2016 industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic Available online 25 November 2016 from realgar. Results: An acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in Keywords: northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C 16S rDNA phylogeny and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The Arsenic bioleaching fi Arsenic sulphide minerals inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A signi cant Arsenic-resistance second-order model was established using a Box–Behnken design of response surface methodology China (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the EDS analyses pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 Iron-oxidizing bacterium and 3.68 g/L, respectively.
    [Show full text]