Discovering the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Discovering the Solar System Discovering the Solar System Second Edition Discovering the Solar System Second Edition Barrie W. Jones The Open University, Milton Keynes, UK Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone +44 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Anniversary Logo Design: Richard J. Pacifico Library of Congress Cataloging in Publication Data Jones, Barrie William. Discovering the solar system / Barrie W. Jones. — 2nd ed. p. cm. ISBN 978-0-470-01830-9 1. Solar system. I. Title. QB501.J65 2007 523.2—dc22 2007008860 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 978-0-470-01830-9 (HB) ISBN 978-0-470-01831-6 (PB) Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. To my wife Anne, the rest of my family, and to my friend and colleague Nick Sleep Contents List of Tables xiii Preface and Study Guide to the First Edition xiv Preface to the Second Edition xvi 1 The Sun and its Family 1 1.1 The Sun 1 1.1.1 The Solar Photosphere 1 1.1.2 The Solar Atmosphere 3 1.1.3 The Solar Interior 5 1.1.4 The Solar Neutrino Problem 8 1.2 The Sun’s Family – A Brief Introduction 9 1.2.1 The Terrestrial Planets and the Asteroids 11 1.2.2 The Giant Planets 11 1.2.3 Pluto and Beyond 13 1.3 Chemical Elements in the Solar System 14 1.4 Orbits of Solar System Bodies 15 1.4.1 Kepler’s Laws of Planetary Motion 15 1.4.2 Orbital Elements 18 1.4.3 Asteroids and the Titius–Bode Rule 20 1.4.4 A Theory of Orbits 20 1.4.5 Orbital Complications 24 1.4.6 Orbital Resonances 27 1.4.7 The Orbit of Mercury 29 1.5 Planetary Rotation 30 1.5.1 Precession of the Rotation Axis 33 1.6 The View from the Earth 35 1.6.1 The Other Planets 35 1.6.2 Solar and Lunar Eclipses 36 1.7 Summary of Chapter 1 40 2 The Origin of the Solar System 48 2.1 The Observational Basis 48 2.1.1 The Solar System 48 2.1.2 Exoplanetary Systems 49 2.1.3 Star Formation 53 2.1.4 Circumstellar Discs 55 2.2 Solar Nebular Theories 56 2.2.1 Angular Momentum in the Solar System 57 2.2.2 The Evaporation and Condensation of Dust in the Solar Nebula 60 2.2.3 From Dust to Planetesimals 64 viii CONTENTS 2.2.4 From Planetesimals to Planets in the Inner Solar System 65 2.2.5 From Planetesimals to Planets in the Outer Solar System 69 2.2.6 The Origin of the Oort Cloud, the E–K Belt, and Pluto 73 2.3 Formation of the Satellites and Rings of the Giant Planets 75 2.3.1 Formation of the Satellites of the Giant Planets 75 2.3.2 Formation and Evolution of the Rings of the Giant Planets 76 2.4 Successes and Shortcomings of Solar Nebular Theories 80 2.5 Summary of Chapter 2 81 3 Small Bodies in the Solar System 83 3.1 Asteroids 83 3.1.1 Asteroid Orbits in the Asteroid Belt 84 3.1.2 Asteroid Orbits Outside the Asteroid Belt 86 3.1.3 Asteroid Sizes 89 3.1.4 Asteroid Shapes and Surface Features 91 3.1.5 Asteroid Masses, Densities, and Overall Composition 93 3.1.6 Asteroid Classes and Surface Composition 94 3.2 Comets and Their Sources 98 3.2.1 The Orbits of Comets 99 3.2.2 The Coma, Hydrogen Cloud, and Tails of a Comet 101 3.2.3 The Cometary Nucleus 103 3.2.4 The Death of Comets 106 3.2.5 The Sources of Comets 107 3.2.6 The Oort Cloud 108 3.2.7 The E–K Belt 109 3.3 Meteorites 111 3.3.1 Meteors, Meteorites, and Micrometeorites 112 3.3.2 The Structure and Composition of Meteorites 113 3.3.3 Dating Meteorites 116 3.3.4 The Sources of Meteorites 118 3.3.5 The Sources of Micrometeorites 121 3.4 Summary of Chapter 3 123 4 Interiors of Planets and Satellites: The Observational and Theoretical Basis 126 4.1 Gravitational Field Data 126 4.1.1 Mean Density 126 4.1.2 Radial Variations of Density: Gravitational Coefficients 131 4.1.3 Radial Variations of Density: The Polar Moment of Inertia 134 4.1.4 Love Numbers 135 4.1.5 Local Mass Distribution, and Isostasy 135 4.2 Magnetic Field Data 136 4.3 Seismic Wave Data 139 4.3.1 Seismic Waves 139 4.3.2 Planetary Seismic Wave Data 142 4.4 Composition and Properties of Accessible Materials 143 4.4.1 Surface Materials 143 4.4.2 Elements, Compounds, Affinities 144 CONTENTS ix 4.4.3 Equations of State, and Phase Diagrams 145 4.5 Energy Sources, Energy Losses, and Interior Temperatures 149 4.5.1 Energy Sources 150 4.5.2 Energy Losses and Transfers 154 4.5.3 Observational Indicators of Interior Temperatures 159 4.5.4 Interior Temperatures 159 4.6 Summary of Chapter 4 161 5 Interiors of Planets and Satellites: Models of Individual Bodies 163 5.1 The Terrestrial Planets 163 5.1.1 The Earth 166 5.1.2 Venus 169 5.1.3 Mercury 170 5.1.4 Mars 171 5.2 Planetary Satellites, Pluto, EKOs 173 5.2.1 The Moon 173 5.2.2 Large Icy–Rocky Bodies: Titan, Triton, Pluto, and EKOs 176 5.2.3 The Galilean Satellites of Jupiter 179 5.2.4 Small Satellites 183 5.3 The Giant Planets 183 5.3.1 Jupiter and Saturn 185 5.3.2 Uranus and Neptune 189 5.4 Magnetospheres 190 5.4.1 An Idealised Magnetosphere 191 5.4.2 Real Magnetospheres 192 5.5 Summary of Chapter 5 194 6 Surfaces of Planets and Satellites: Methods and Processes 197 6.1 Some Methods of Investigating Surfaces 197 6.1.1 Surface Mapping in Two and Three Dimensions 197 6.1.2 Analysis of Electromagnetic Radiation Reflected or Emitted by a Surface 200 6.1.3 Sample Analysis 201 6.2 Processes that Produce the Surfaces of Planetary Bodies 201 6.2.1 Differentiation, Melting, Fractional Crystallisation, and Partial Melting 202 6.2.2 Volcanism and Magmatic Processes 204 6.2.3 Tectonic Processes 206 6.2.4 Impact Cratering 207 6.2.5 Craters as Chronometers 212 6.2.6 Gradation 216 6.2.7 Formation of Sedimentary Rocks 219 6.2.8 Formation of Metamorphic Rocks 220 6.3 Summary of Chapter 6 220 7 Surfaces of Planets and Satellites: Weakly Active Surfaces 223 7.1 The Moon 223 7.1.1 Impact Basins and Maria 224 7.1.2 The Nature of the Mare Infill 225 x CONTENTS 7.1.3 Two Contrasting Hemispheres 226 7.1.4 Tectonic Features; Gradation and Weathering 227 7.1.5 Localised Water Ice? 227 7.1.6 Crustal and Mantle Materials 227 7.1.7 Radiometric Dating of Lunar Events 230 7.1.8 Lunar Evolution 231 7.2 Mercury 232 7.2.1 Mercurian Craters 233 7.2.2 The Highlands and Plains of Mercury 233 7.2.3 Surface Composition 236 7.2.4 Other Surface Features on Mercury 236 7.2.5 The Evolution of Mercury 236 7.3 Mars 238 7.3.1 Albedo Features 238 7.3.2 The Global View 239 7.3.3 The Northerly Hemisphere 241 7.3.4 The Southerly Hemisphere 243 7.3.5 The Polar Regions 245 7.3.6 Water-related Features 247 7.3.7 Observations at the Martian Surface 253 7.3.8 Martian Meteorites 256 7.3.9 The Evolution of Mars 257 7.4 Icy Surfaces 258 7.4.1 Pluto and Charon 258 7.4.2 Ganymede and Callisto 260 7.5 Summary of Chapter 7 262 8 Surfaces of Planets and Satellites: Active Surfaces 264 8.1 The Earth 264 8.1.1 The Earth’s Lithosphere 264 8.1.2 Plate Tectonics 266 8.1.3 The Success of Plate Tectonics 270 8.1.4 The Causes of Plate Motion 271 8.1.5 The Evolution of the Earth 272 8.2 Venus 273 8.2.1 Topological Overview 273 8.2.2 Radar Reflectivity 275 8.2.3 Impact Craters and Possible Global Resurfacing 275 8.2.4 Volcanic Features 277 8.2.5 Surface Analyses and Surface Images 278 8.2.6 Tectonic Features 278 8.2.7 Tectonic and Volcanic Processes 279 8.2.8 Internal Energy Loss 282 8.2.9 The Evolution
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • Curiosity's Candidate Field Site in Gale Crater, Mars
    Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell
    [Show full text]
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • OMC | Data Export
    Hanna Paulouskaya, "Entry on: Phaeton, the Son of Sun [Фаэтон – сын Солнца] by Vasily Livanov", peer-reviewed by Elżbieta Olechowska and Elizabeth Hale. Our Mythical Childhood Survey (Warsaw: University of Warsaw, 2019). Link: http://omc.obta.al.uw.edu.pl/myth-survey/item/798. Entry version as of September 30, 2021. Vasily Livanov Phaeton, the Son of Sun [Фаэтон – сын Солнца] Union of Soviet Socialist Republics (1972) TAGS: Greek mythology Helios Jupiter Phaeton Zeus We are still trying to obtain permission for posting the original cover. General information Title of the work Phaeton, the Son of Sun [Фаэтон – сын Солнца] Studio/Production Company Soyuzmultfilm Country of the First Edition Union of Soviet Socialist Republics (USSR) Country/countries of popularity Union of Soviet Socialist Republics Original Language Russian First Edition Date 1972 Фаэтон – сын Солнца [Phaeton, the Son of Sun]. Directed by First Edition Details Vasily Livanov. Script by V. Ankor and Vasily Livanov. Composer Gennady Gladkov. Moscow: Soyuzmultfilm, 1972, 17 min. 36 sec. Running time 17 min. 36 sec. Animated films, Hand-drawn animation (traditional animation)*, Genre Instructional and educational work, Short films Target Audience Crossover (Youth 6+) Author of the Entry Hanna Paulouskaya, University of Warsaw, [email protected] Elżbieta Olechowska, University of Warsaw, Peer-reviewer of the Entry [email protected] Elizabeth Hale, University of New England, [email protected] 1 This Project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 681202, Our Mythical Childhood... The Reception of Classical Antiquity in Children’s and Young Adults’ Culture in Response to Regional and Global Challenges, ERC Consolidator Grant (2016–2021), led by Prof.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • Campus Distinctions by Highest Number Met
    TEXAS EDUCATION AGENCY 1 PERFORMANCE REPORTING DIVISION FINAL 2018 ACCOUNTABILITY RATINGS CAMPUS DISTINCTIONS BY HIGHEST NUMBER MET 2018 Domains* Distinctions Campus Accountability Student School Closing Read/ Social Academic Post Num Met of Campus Name Number District Name Rating Note Achievement Progress the Gaps ELA Math Science Studies Growth Gap Secondary Num Eval ACADEMY FOR TECHNOLOGY 221901010 ABILENE ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 ENG ALICIA R CHACON 071905138 YSLETA ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 ANN RICHARDS MIDDLE 108912045 LA JOYA ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 ARAGON MIDDLE 101907051 CYPRESS-FAIRB Met Standard M M M ● ● ● ● ● ● ● 7 of 7 ARNOLD MIDDLE 101907041 CYPRESS-FAIRB Met Standard M M M ● ● ● ● ● ● ● 7 of 7 B L GRAY J H 108911041 SHARYLAND ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 BENJAMIN SCHOOL 138904001 BENJAMIN ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 BRIARMEADOW CHARTER 101912344 HOUSTON ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 BROOKS WESTER MIDDLE 220908043 MANSFIELD ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 BRYAN ADAMS H S 057905001 DALLAS ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 BURBANK MIDDLE 101912043 HOUSTON ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 C M RICE MIDDLE 043910053 PLANO ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 CALVIN NELMS MIDDLE 101837041 CALVIN NELMS Met Standard M M M ● ● ● ● ● ● ● 7 of 7 CAMINO REAL MIDDLE 071905051 YSLETA ISD Met Standard M M M ● ● ● ● ● ● ● 7 of 7 CARNEGIE VANGUARD H S 101912322 HOUSTON ISD Met Standard M M M ● ● ●
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Outer Planets: the Ice Giants
    Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena.
    [Show full text]
  • Stargazer Vice President: James Bielaga (425) 337-4384 Jamesbielaga at Aol.Com P.O
    1 - Volume MMVII. No. 1 January 2007 President: Mark Folkerts (425) 486-9733 folkerts at seanet.com The Stargazer Vice President: James Bielaga (425) 337-4384 jamesbielaga at aol.com P.O. Box 12746 Librarian: Mike Locke (425) 259-5995 mlocke at lionmts.com Everett, WA 98206 Treasurer: Carol Gore (360) 856-5135 janeway7C at aol.com Newsletter co-editor: Bill O’Neil (774) 253-0747 wonastrn at seanet.com Web assistance: Cody Gibson (425) 348-1608 sircody01 at comcast.net See EAS website at: (change ‘at’ to @ to send email) http://members.tripod.com/everett_astronomy nearby Diablo Lake. And then at night, discover the night sky like EAS BUSINESS… you've never seen it before. We hope you'll join us for a great weekend. July 13-15, North Cascades Environmental Learning Center North Cascades National Park. More information NEXT EAS MEETING – SATURDAY JANUARY 27TH including pricing, detailed program, and reservation forms available shortly, so please check back at Pacific Science AT 3:00 PM AT THE EVERETT PUBLIC LIBRARY, IN Center's website. THE AUDITORIUM (DOWNSTAIRS) http://www.pacsci.org/travel/astronomy_weekend.html People should also join and send mail to the mail list THIS MONTH'S MEETING PROGRAM: [email protected] to coordinate spur-of-the- Toby Smith, lecturer from the University of Washington moment observing get-togethers, on nights when the sky Astronomy department, will give a talk featuring a clears. We try to hold informal close-in star parties each month visualization presentation he has prepared called during the spring, summer, and fall months on a weekend near “Solar System Cinema”.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]