A Result on Value Distribution of L-Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lerch Zeta Function and Related Functions
The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1. -
Complex Analysis
Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition. -
2 Values of the Riemann Zeta Function at Integers
MATerials MATem`atics Volum 2009, treball no. 6, 26 pp. ISSN: 1887-1097 2 Publicaci´oelectr`onicade divulgaci´odel Departament de Matem`atiques MAT de la Universitat Aut`onomade Barcelona www.mat.uab.cat/matmat Values of the Riemann zeta function at integers Roman J. Dwilewicz, J´anMin´aˇc 1 Introduction The Riemann zeta function is one of the most important and fascinating functions in mathematics. It is very natural as it deals with the series of powers of natural numbers: 1 1 1 X 1 X 1 X 1 ; ; ; etc. (1) n2 n3 n4 n=1 n=1 n=1 Originally the function was defined for real argu- ments as Leonhard Euler 1 X 1 ζ(x) = for x > 1: (2) nx n=1 It connects by a continuous parameter all series from (1). In 1734 Leon- hard Euler (1707 - 1783) found something amazing; namely he determined all values ζ(2); ζ(4); ζ(6);::: { a truly remarkable discovery. He also found a beautiful relationship between prime numbers and ζ(x) whose significance for current mathematics cannot be overestimated. It was Bernhard Riemann (1826 - 1866), however, who recognized the importance of viewing ζ(s) as 2 Values of the Riemann zeta function at integers. a function of a complex variable s = x + iy rather than a real variable x. Moreover, in 1859 Riemann gave a formula for a unique (the so-called holo- morphic) extension of the function onto the entire complex plane C except s = 1. However, the formula (2) cannot be applied anymore if the real part of s, Re s = x is ≤ 1. -
Zeros of Differential Polynomials in Real Meromorphic Functions
Zeros of differential polynomials in real meromorphic functions Walter Bergweiler∗, Alex Eremenko† and Jim Langley June 30, 2004 Abstract We investigate when differential polynomials in real transcendental meromorphic functions have non-real zeros. For example, we show that if g is a real transcendental meromorphic function, c R 0 n ∈ \{ } and n 3 is an integer, then g0g c has infinitely many non-real zeros.≥ If g has only finitely many poles,− then this holds for n 2. Related results for rational functions g are also considered. ≥ 1 Introduction and results Our starting point is the following result due to Sheil-Small [15] which solved a longstanding conjecture. 2 Theorem A Let f be a real polynomial of degree d. Then f 0 + f has at least d 1 distinct non-real zeros which are not zeros of f . − In the special case that f has only real roots this theorem is due to Pr¨ufer [14, Ch. V, 182]; see [15] for further discussion of the result. The following Theorem B is an analogue of Theorem A for transcendental meromorphic functions. Here “meromorphic” will mean “meromorphic in the complex plane” unless explicitly stated otherwise. A meromorphic function is called real if it maps the real axis R to R . ∪{∞} ∗Supported by the German-Israeli Foundation for Scientific Research and Development (G.I.F.), grant no. G-643-117.6/1999 †Supported by NSF grants DMS-0100512 and DMS-0244421. 1 Theorem B Let f be a real transcendental meromorphic function with 2 finitely many poles. Then f 0 + f has infinitely many non-real zeros which are not zeros of f . -
Notes on Riemann's Zeta Function
NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R. -
4. Complex Analysis, Rational and Meromorphic Asymptotics
ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic Asymptotics http://ac.cs.princeton.edu ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic functions Analytic Combinatorics •Roadmap Philippe Flajolet and •Complex functions Robert Sedgewick OF •Rational functions •Analytic functions and complex integration CAMBRIDGE •Meromorphic functions http://ac.cs.princeton.edu II.4a.CARM.Roadmap Analytic combinatorics overview specification A. SYMBOLIC METHOD 1. OGFs 2. EGFs GF equation 3. MGFs B. COMPLEX ASYMPTOTICS SYMBOLIC METHOD asymptotic ⬅ 4. Rational & Meromorphic estimate 5. Applications of R&M COMPLEX ASYMPTOTICS 6. Singularity Analysis desired 7. Applications of SA result ! 8. Saddle point 3 Starting point The symbolic method supplies generating functions that vary widely in nature. − + √ + + + ...+ − ()= ()= − ()= ()= ... − − − − − − ()= ()= ln + / ( )( ) ...( ) ()= − − − − − Next step: Derive asymptotic estimates of coefficients. − []() [ ]() [ ]() + [ ]()=β ∼ ∼ ∼ (ln ) / √ / / − − − [ ]() [ ]()=ln [ ]() ∼ ! ∼ √ Classical approach: Develop explicit expressions for coefficients, then approximate Analytic combinatorics approach: Direct approximations. 4 Starting point Catalan trees Derangements Construction G = ○ × SEQ( G ) Construction D = SET (CYC>1( Z )) ln ()= ()= − OGF equation () EGF equation − − + √ − Explicit form of OGF Explicit form of EGF = ()= − − ( ) Expansion ()= ( ) Expansion ()= − − − ! " # -
Special Values of Riemann's Zeta Function
The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 Special values of Riemann's zeta function Cameron Franc UC Santa Cruz March 6, 2013 Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 Riemann's zeta function If s > 1 is a real number, then the series X 1 ζ(s) = ns n≥1 converges. Proof: Compare the partial sum to an integral, N X 1 Z N dx 1 1 1 ≤ 1 + = 1 + 1 − ≤ 1 + : ns xs s − 1 Ns−1 s − 1 n=1 1 Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 The resulting function ζ(s) is called Riemann's zeta function. Was studied in depth by Euler and others before Riemann. ζ(s) is named after Riemann for two reasons: 1 He was the first to consider allowing the s in ζ(s) to be a complex number 6= 1. 2 His deep 1859 paper \Ueber die Anzahl der Primzahlen unter einer gegebenen Gr¨osse" (\On the number of primes less than a given quantity") made remarkable connections between ζ(s) and prime numbers. Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 In this talk we will discuss certain special values of ζ(s) for integer values of s. -
Lecture 8 - the Extended Complex Plane Cˆ, Rational Functions, M¨Obius Transformations
Math 207 - Spring '17 - Fran¸coisMonard 1 Lecture 8 - The extended complex plane C^, rational functions, M¨obius transformations Material: [G]. [SS, Ch.3 Sec. 3] 1 The purpose of this lecture is to \compactify" C by adjoining to it a point at infinity , and to extend to concept of analyticity there. Let us first define: a neighborhood of infinity U is the complement of a closed, bounded set. A \basis of neighborhoods" is given by complements of closed disks of the form Uz0,ρ = C − Dρ(z0) = fjz − z0j > ρg; z0 2 C; ρ > 0: Definition 1. For U a nbhd of 1, the function f : U ! C has a limit at infinity iff there exists L 2 C such that for every " > 0, there exists R > 0 such that for any jzj > R, we have jf(z)−Lj < ". 1 We write limz!1 f(z) = L. Equivalently, limz!1 f(z) = L if and only if limz!0 f z = L. With this concept, the algebraic limit rules hold in the same way that they hold at finite points when limits are finite. 1 Example 1. • limz!1 z = 0. z2+1 1 • limz!1 (z−1)(3z+7) = 3 . z 1 • limz!1 e does not exist (this is because e z has an essential singularity at z = 0). A way 1 0 1 to prove this is that both sequences zn = 2nπi and zn = 2πi(n+1=2) converge to zero, while the 1 1 0 sequences e zn and e zn converge to different limits, 1 and 0 respectively. -
The Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler's identity: 1 1 1 s 0 cps1 [ζ(s) :=] n− = p− = s : (1) X Y X Y 1 p− n=1 p prime @cp=1 A p prime − We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it: s σ We already observed that for all real n > 0 we have n− = n− , because j j s σ it log n n− = exp( s log n) = n− e − and eit log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the \Riemann zeta function"), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula n+1 n+1 1 1 s s 1 s s ζ(s) = n− Z x− dx = Z (n− x− ) dx; − s 1 X − X − − n=1 n n=1 n since for x [n; n + 1] (n 1) and σ > 0 we have 2 ≥ x s s 1 s 1 σ n− x− = s Z y− − dy s n− − j − j ≤ j j n so the formula for ζ(s) (1=(s 1)) is a sum of analytic functions converging absolutely in compact subsets− of− σ + it : σ > 0 and thus gives an analytic function there. -
Numerous Proofs of Ζ(2) = 6
π2 Numerous Proofs of ζ(2) = 6 Brendan W. Sullivan April 15, 2013 Abstract In this talk, we will investigate how the late, great Leonhard Euler P1 2 2 originally proved the identity ζ(2) = n=1 1=n = π =6 way back in 1735. This will briefly lead us astray into the bewildering forest of com- plex analysis where we will point to some important theorems and lemmas whose proofs are, alas, too far off the beaten path. On our journey out of said forest, we will visit the temple of the Riemann zeta function and marvel at its significance in number theory and its relation to the prob- lem at hand, and we will bow to the uber-famously-unsolved Riemann hypothesis. From there, we will travel far and wide through the kingdom of analysis, whizzing through a number N of proofs of the same original fact in this talk's title, where N is not to exceed 5 but is no less than 3. Nothing beyond a familiarity with standard calculus and the notion of imaginary numbers will be presumed. Note: These were notes I typed up for myself to give this seminar talk. I only got through a portion of the material written down here in the actual presentation, so I figured I'd just share my notes and let you read through them. Many of these proofs were discovered in a survey article by Robin Chapman (linked below). I chose particular ones to work through based on the intended audience; I also added a section about justifying the sin(x) \factoring" as an infinite product (a fact upon which two of Euler's proofs depend) and one about the Riemann Zeta function and its use in number theory.