Special Values of Riemann's Zeta Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lerch Zeta Function and Related Functions
The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function. -
Ch. 15 Power Series, Taylor Series
Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex. -
Rearrangement of Divergent Fourier Series
The Australian Journal of Mathematical Analysis and Applications AJMAA Volume 14, Issue 1, Article 3, pp. 1-9, 2017 A NOTE ON DIVERGENT FOURIER SERIES AND λ-PERMUTATIONS ANGEL CASTILLO, JOSE CHAVEZ, AND HYEJIN KIM Received 20 September, 2016; accepted 4 February, 2017; published 20 February, 2017. TUFTS UNIVERSITY,DEPARTMENT OF MATHEMATICS,MEDFORD, MA 02155, USA [email protected] TEXAS TECH UNIVERSITY,DEPARTMENT OF MATHEMATICS AND STATISTICS,LUBBOCK, TX 79409, USA [email protected] UNIVERSITY OF MICHIGAN-DEARBORN,DEPARTMENT OF MATHEMATICS AND STATISTICS,DEARBORN, MI 48128, USA [email protected] ABSTRACT. We present a continuous function on [−π, π] whose Fourier series diverges and it cannot be rearranged to converge by a λ-permutation. Key words and phrases: Fourier series, Rearrangements, λ-permutations. 2000 Mathematics Subject Classification. Primary 43A50. ISSN (electronic): 1449-5910 c 2017 Austral Internet Publishing. All rights reserved. This research was conducted during the NREUP at University of Michigan-Dearborn and it was sponsored by NSF-Grant DMS-1359016 and by NSA-Grant H98230-15-1-0020. We would like to thank Y. E. Zeytuncu for valuable discussion. We also thank the CASL and the Department of Mathematics and Statistics at the University of Michigan-Dearborn for providing a welcoming atmosphere during the summer REU program. 2 A. CASTILLO AND J. CHAVEZ AND H. KIM 1.1. Fourier series. The Fourier series associated with a continuous function f on [−π, π] is defined by ∞ X inθ fe(θ) ∼ ane , n=−∞ where Z π 1 −inθ an = f(θ)e dθ . 2π −π Here an’s are called the Fourier coefficients of f and we denote by fethe Fourier series associ- ated with f. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
The Summation of Power Series and Fourier Series
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real. -
Divergent and Conditionally Convergent Series Whose Product Is Absolutely Convergent
DIVERGENTAND CONDITIONALLY CONVERGENT SERIES WHOSEPRODUCT IS ABSOLUTELYCONVERGENT* BY FLORIAN CAJOKI § 1. Introduction. It has been shown by Abel that, if the product : 71—« I(¥» + V«-i + ■•• + M„«o)> 71=0 of two conditionally convergent series : 71—0 71— 0 is convergent, it converges to the product of their sums. Tests of the conver- gence of the product of conditionally convergent series have been worked out by A. Pringsheim,| A. Voss,J and myself.§ There exist certain conditionally- convergent series which yield a convergent result when they are raised to a cer- tain positive integral power, but which yield a divergent result when they are raised to a higher power. Thus, 71 = «3 Z(-l)"+13, 7>=i n where r = 7/9, is a conditionally convergent series whose fourth power is con- vergent, but whose fifth power is divergent. || These instances of conditionally * Presented to the Society April 28, 1900. Received for publication April 28, 1900. fMathematische Annalen, vol. 21 (1883), p. 327 ; vol. 2(5 (1886), p. 157. %Mathematische Annalen, vol. 24 (1884), p. 42. § American Journal of Mathematics, vol. 15 (1893), p. 339 ; vol. 18 (1896), p. 195 ; Bulletin of the American Mathematical Society, (2) vol. 1 (1895), p. 180. || This may be a convenient place to point out a slight and obvious extension of the results which I have published in the American Journal of Mathematics, vol. 18, p. 201. It was proved there that the conditionally convergent series : V(_l)M-lI (0<r5|>). Sí n when raised by Cauchy's multiplication rule to a positive integral power g , is convergent whenever (î — l)/ï <C r ! out the power of the series is divergent, if (q— 1 )¡q > r. -
The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1. -
Notes on Euler's Work on Divergent Factorial Series and Their Associated
Indian J. Pure Appl. Math., 41(1): 39-66, February 2010 °c Indian National Science Academy NOTES ON EULER’S WORK ON DIVERGENT FACTORIAL SERIES AND THEIR ASSOCIATED CONTINUED FRACTIONS Trond Digernes¤ and V. S. Varadarajan¤¤ ¤University of Trondheim, Trondheim, Norway e-mail: [email protected] ¤¤University of California, Los Angeles, CA, USA e-mail: [email protected] Abstract Factorial series which diverge everywhere were first considered by Euler from the point of view of summing divergent series. He discovered a way to sum such series and was led to certain integrals and continued fractions. His method of summation was essentialy what we call Borel summation now. In this paper, we discuss these aspects of Euler’s work from the modern perspective. Key words Divergent series, factorial series, continued fractions, hypergeometric continued fractions, Sturmian sequences. 1. Introductory Remarks Euler was the first mathematician to develop a systematic theory of divergent se- ries. In his great 1760 paper De seriebus divergentibus [1, 2] and in his letters to Bernoulli he championed the view, which was truly revolutionary for his epoch, that one should be able to assign a numerical value to any divergent series, thus allowing the possibility of working systematically with them (see [3]). He antic- ipated by over a century the methods of summation of divergent series which are known today as the summation methods of Cesaro, Holder,¨ Abel, Euler, Borel, and so on. Eventually his views would find their proper place in the modern theory of divergent series [4]. But from the beginning Euler realized that almost none of his methods could be applied to the series X1 1 ¡ 1!x + 2!x2 ¡ 3!x3 + ::: = (¡1)nn!xn (1) n=0 40 TROND DIGERNES AND V. -
Euler and His Work on Infinite Series
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 44, Number 4, October 2007, Pages 515–539 S 0273-0979(07)01175-5 Article electronically published on June 26, 2007 EULER AND HIS WORK ON INFINITE SERIES V. S. VARADARAJAN For the 300th anniversary of Leonhard Euler’s birth Table of contents 1. Introduction 2. Zeta values 3. Divergent series 4. Summation formula 5. Concluding remarks 1. Introduction Leonhard Euler is one of the greatest and most astounding icons in the history of science. His work, dating back to the early eighteenth century, is still with us, very much alive and generating intense interest. Like Shakespeare and Mozart, he has remained fresh and captivating because of his personality as well as his ideas and achievements in mathematics. The reasons for this phenomenon lie in his universality, his uniqueness, and the immense output he left behind in papers, correspondence, diaries, and other memorabilia. Opera Omnia [E], his collected works and correspondence, is still in the process of completion, close to eighty volumes and 31,000+ pages and counting. A volume of brief summaries of his letters runs to several hundred pages. It is hard to comprehend the prodigious energy and creativity of this man who fueled such a monumental output. Even more remarkable, and in stark contrast to men like Newton and Gauss, is the sunny and equable temperament that informed all of his work, his correspondence, and his interactions with other people, both common and scientific. It was often said of him that he did mathematics as other people breathed, effortlessly and continuously. -
2 Values of the Riemann Zeta Function at Integers
MATerials MATem`atics Volum 2009, treball no. 6, 26 pp. ISSN: 1887-1097 2 Publicaci´oelectr`onicade divulgaci´odel Departament de Matem`atiques MAT de la Universitat Aut`onomade Barcelona www.mat.uab.cat/matmat Values of the Riemann zeta function at integers Roman J. Dwilewicz, J´anMin´aˇc 1 Introduction The Riemann zeta function is one of the most important and fascinating functions in mathematics. It is very natural as it deals with the series of powers of natural numbers: 1 1 1 X 1 X 1 X 1 ; ; ; etc. (1) n2 n3 n4 n=1 n=1 n=1 Originally the function was defined for real argu- ments as Leonhard Euler 1 X 1 ζ(x) = for x > 1: (2) nx n=1 It connects by a continuous parameter all series from (1). In 1734 Leon- hard Euler (1707 - 1783) found something amazing; namely he determined all values ζ(2); ζ(4); ζ(6);::: { a truly remarkable discovery. He also found a beautiful relationship between prime numbers and ζ(x) whose significance for current mathematics cannot be overestimated. It was Bernhard Riemann (1826 - 1866), however, who recognized the importance of viewing ζ(s) as 2 Values of the Riemann zeta function at integers. a function of a complex variable s = x + iy rather than a real variable x. Moreover, in 1859 Riemann gave a formula for a unique (the so-called holo- morphic) extension of the function onto the entire complex plane C except s = 1. However, the formula (2) cannot be applied anymore if the real part of s, Re s = x is ≤ 1. -
Divergent Series Past, Present, Future
Divergent series past, present, future. Christiane Rousseau 1 Divergent series, JMM 2015 How many students and mathematicians have never heard of divergent series? 2 Divergent series, JMM 2015 Preamble: My presentation of the subject and of some of its history is not exhaustive. Moreover, it is biased by my interest in dynamical systems. 3 Divergent series, JMM 2015 Euler: “If we get the sum 1 - 1 + 1 - 1 + 1 - 1 + ··· 1 its only reasonable value is 2.” Divergent series have been used a lot in the past by people including Fourier, Stieltjes, Euler, . 4 Divergent series, JMM 2015 Divergent series have been used a lot in the past by people including Fourier, Stieltjes, Euler, . Euler: “If we get the sum 1 - 1 + 1 - 1 + 1 - 1 + ··· 1 its only reasonable value is 2.” 5 Divergent series, JMM 2015 A hundred years before Riemann, Euler had found the functional equation of the function ζ in the form 1s-1 - 2s-1 + 3s-1 - ··· (s - 1)!(2s - 1) 1 = - cos sπ 1 1 1 (2s-1 - 1)πs 2 1s - 2s + 3s - ··· by “calculating”, for s 2 N [ f1=2;3=2g, the sums 1s - 2s + 3s - 4s + 5s - 6s + ··· and 1 1 1 1 1 1 - + - + - + ··· 1s 2s 3s 4s 5s 6s 6 Divergent series, JMM 2015 Where is the turn? 7 Divergent series, JMM 2015 Cauchy, Abel 8 Divergent series, JMM 2015 Cauchy made one exception: he justified rigorously the use of Stirling’s divergent series in numerical computations. Cauchy, Preface of “Analyse mathematique”,´ 1821 “I have been forced to admit some propositions which will seem, perhaps, hard to accept. -
Renormalization of Factorially Divergent Series: Quantum Field Theory in Zero Dimensions
Master's Thesis Renormalization of Factorially Divergent Series: Quantum Field Theory in Zero Dimensions Supervisor: Bren Schaap Prof. dr. Ronald Kleiss Dedicated to my personal group Preliminary remarks This research is based almost entirely on information from the book Quantum Field Theory: A Diagrammatic Approach [1] by Ronald Kleiss, and is a continuation of the bachelor's theses [2, 3, 4] of Dirk van Buul, Ilija Milutin and Mila Keijer. The subject of this research was revitalized by Michael Borinsky through his work [5, 6, 7], and he was the one who pointed Ronald Kleiss in the right direction. I would therefore like to thank all of them for introducing me to this fascinating subject. Contents 1 Introduction to zero-dimensional QFT 6 1.1 Random numbers . .7 1.1.1 Green's functions . .7 1.1.2 The Schwinger-Dyson equations . .8 1.1.3 Connected Green's functions . .9 1.2 Feynman diagrams . 10 1.2.1 Diagrammatic equations . 12 2 Renormalization 14 2.1 Renormalizing '3 theory . 15 2.2 Factorially divergent series . 18 2.2.1 Retrieving αf and cf ....................... 20 2.3 The factorially divergent nature of Green's functions . 21 2.4 Asymptotic behaviour of renormalized '3 theory . 22 2.4.1 The improvement factor . 22 2.4.2 Asymptotic behaviour of the tadpole . 24 2.5 Freedom of choice . 26 2.6 Physical interpretation . 29 3 Real fields 30 3.1 '4 theory . 31 3.2 'Q theory for odd Q ........................... 33 3.3 'Q theory for even Q ........................... 35 3.4 Renormalizing '123 theory .