An Integral Representation for the Riemann Zeta Function on Positive Integer Arguments

Total Page:16

File Type:pdf, Size:1020Kb

An Integral Representation for the Riemann Zeta Function on Positive Integer Arguments An integral representation for the Riemann zeta function on positive integer arguments Sumit Kumar Jha IIIT-Hyderabad, India Email: [email protected] May 23, 2019 Abstract In this brief note, we give an integral representation for the Riemann zeta function for positive integer arguments. To the best of our knowledge, the representation is new. Keywords: Ramanujan’s Master Theorem; Riemann Zeta Function; Polygamma Function; Polylogarithm Function AMS Classification: 33E20 We prove the following Theorem 1. We have, for integers r ≥ 2, Z ¥ −1=2 1 x Lir(−x) z(r) = r dx (1) p(2 − 2 ) 0 1 + x ¥ xk ¥ 1 where Lir(x) = ∑k=1 kr is the polylogarithm function, and z(r) = ∑n=1 nr is the Riemann zeta function. The above can be obtained as a direct consequence of the following result Theorem 2. For integers r ≥ 2 and 0 < n < 1, we have Z ¥ Li (−x) p y − (1 − n) xn−1 r dx = z(r) + (−1)r−1 r 1 .( 2) 0 1 + x sin np (r − 1)! ¥ xk dn G0(x) where Lir(x) = ∑k=1 kr is the polylogarithm function, yn(x) = dxn G(x) is the Polygamma function, G(x) is the Gamma function, and z(r) is the Riemann zeta function. Proof. Let n (r) 1 Hn = ∑ r k=1 k be the generalized Harmonic number. Then, we have the following generat- ing function from [2] Li (x) ¥ r = H(r)xn, − ∑ n 1 x n=1 for jxj< 1. We can also write ¥ Lir(−x) (r) n = ∑ Hn (−x) .( 3) (1 + x) n=1 We have for the following explicit form from [3] y − (n + 1) H(r) = z(r) + (−1)r−1 r 1 .( 4) n (r − 1)! 1 2 (r) r−1 yr−1(1) First note in this form, we have, H0 = z(r) + (−1) (r−1)! = 0. Next, we use Ramanujan’s Master Theorem (RMT) from [1], which is, Z ¥ p xs−1ff(0) − xf(1) + x2f(2) − · · ·g dx = f(−s),( 5) 0 sin sp where the integral is convergent for 0 < Re(s) < 1, and after certain condi- tions are satisfied by f. Now, using RMT with equations (3) and (4) gives us required equation (2). Proof of Theorem 1. We get the required equation (1) by plugging in n = 1=2 in equation (2), and using the following fact from [3] 1 r r y − = (−1) · (r − 1)! ·(2 − 1) · z(r). r 1 2 references 1. Amdeberhan, T., Espinosa, O., Gonzalez, I., Harrison, M., Moll, V. H., & Straub, A. (2012). Ramanujan’s master theorem. The Ramanujan Journal, 29(1-3), 103-120. 2. Weisstein, Eric W. ”Polylogarithm.” From MathWorld–A Wolfram Web Resource. 3. Weisstein, Eric W. ”Polygamma Function.” From MathWorld–A Wol- fram Web Resource.
Recommended publications
  • The Lerch Zeta Function and Related Functions
    The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function.
    [Show full text]
  • A Short and Simple Proof of the Riemann's Hypothesis
    A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35.
    [Show full text]
  • The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
    The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1.
    [Show full text]
  • The Bloch-Wigner-Ramakrishnan Polylogarithm Function
    Math. Ann. 286, 613424 (1990) Springer-Verlag 1990 The Bloch-Wigner-Ramakrishnan polylogarithm function Don Zagier Max-Planck-Insfitut fiir Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany To Hans Grauert The polylogarithm function co ~n appears in many parts of mathematics and has an extensive literature [2]. It can be analytically extended to the cut plane ~\[1, ~) by defining Lira(x) inductively as x [ Li m_ l(z)z-tdz but then has a discontinuity as x crosses the cut. However, for 0 m = 2 the modified function O(x) = ~(Liz(x)) + arg(1 -- x) loglxl extends (real-) analytically to the entire complex plane except for the points x=0 and x= 1 where it is continuous but not analytic. This modified dilogarithm function, introduced by Wigner and Bloch [1], has many beautiful properties. In particular, its values at algebraic argument suffice to express in closed form the volumes of arbitrary hyperbolic 3-manifolds and the values at s= 2 of the Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository article [7]). It is therefore natural to ask for similar real-analytic and single-valued modification of the higher polylogarithm functions Li,. Such a function Dm was constructed, and shown to satisfy a functional equation relating D=(x-t) and D~(x), by Ramakrishnan E3]. His construction, which involved monodromy arguments for certain nilpotent subgroups of GLm(C), is completely explicit, but he does not actually give a formula for Dm in terms of the polylogarithm. In this note we write down such a formula and give a direct proof of the one-valuedness and functional equation.
    [Show full text]
  • A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function
    mathematics Article A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function Daeyeoul Kim 1,* and Yilmaz Simsek 2 1 Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea 2 Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya TR-07058, Turkey; [email protected] * Correspondence: [email protected] Abstract: In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functions, which is related to the interpolation functions of the Apostol–Bernoulli polynomials, the Bernoulli polynomials, and the Euler polynomials. This new class of zeta type functions is related to the Hurwitz zeta function, the alternating Hurwitz zeta function, and the Lerch zeta function. Furthermore, by using these functions, we derive some identities and combinatorial sums involving the Bernoulli numbers and polynomials and the Euler numbers and polynomials. Keywords: Bernoulli numbers and polynomials; Euler numbers and polynomials; Apostol–Bernoulli and Apostol–Euler numbers and polynomials; Hurwitz–Lerch zeta function; Hurwitz zeta function; alternating Hurwitz zeta function; generating function; Mellin transformation MSC: 05A15; 11B68; 26C0; 11M35 Citation: Kim, D.; Simsek, Y. A New Family of Zeta Type Function 1. Introduction Involving the Hurwitz Zeta Function The families of zeta functions and special numbers and polynomials have been studied and the Alternating Hurwitz Zeta widely in many areas. They have also been used to model real-world problems.
    [Show full text]
  • 2 Values of the Riemann Zeta Function at Integers
    MATerials MATem`atics Volum 2009, treball no. 6, 26 pp. ISSN: 1887-1097 2 Publicaci´oelectr`onicade divulgaci´odel Departament de Matem`atiques MAT de la Universitat Aut`onomade Barcelona www.mat.uab.cat/matmat Values of the Riemann zeta function at integers Roman J. Dwilewicz, J´anMin´aˇc 1 Introduction The Riemann zeta function is one of the most important and fascinating functions in mathematics. It is very natural as it deals with the series of powers of natural numbers: 1 1 1 X 1 X 1 X 1 ; ; ; etc. (1) n2 n3 n4 n=1 n=1 n=1 Originally the function was defined for real argu- ments as Leonhard Euler 1 X 1 ζ(x) = for x > 1: (2) nx n=1 It connects by a continuous parameter all series from (1). In 1734 Leon- hard Euler (1707 - 1783) found something amazing; namely he determined all values ζ(2); ζ(4); ζ(6);::: { a truly remarkable discovery. He also found a beautiful relationship between prime numbers and ζ(x) whose significance for current mathematics cannot be overestimated. It was Bernhard Riemann (1826 - 1866), however, who recognized the importance of viewing ζ(s) as 2 Values of the Riemann zeta function at integers. a function of a complex variable s = x + iy rather than a real variable x. Moreover, in 1859 Riemann gave a formula for a unique (the so-called holo- morphic) extension of the function onto the entire complex plane C except s = 1. However, the formula (2) cannot be applied anymore if the real part of s, Re s = x is ≤ 1.
    [Show full text]
  • Chow Polylogarithms and Regulators
    Chow polylogarithms and regulators A.B.Goncharov Contents 1 Introduction 1 2 Construction of Chow polylogarithms 2 3 Properties of Chow polylogarithm functions 6 4 Cocycles for all continuous cohomology classes of GLN (C) 9 5 Explicit construction of Beilinson’s regulator 10 6 The Abel-Jacobi map for Higher Chow groups 12 7 The multivalued analytic version of Chow polylogarithms 13 1 Introduction The classical dilogarithm z Li2(z) := − log(1 − t)d log t Z0 is a multivalued analitic function on CP 1\{0, 1, ∞}. It has a single-valued version: the Bloch- Wigner function L2(z) := ImLi2(z) + arg(1 − z) log |z| which satisfies the famous 5-term functional relation. Namely, for any 5 distinct points z1, ..., z5 on CP 1 one has (r is the cross-ratio). 5 i (−1) L2(r(z1, ..., zˆi, ..., z5))=0 i=1 X In this note we show that the Bloch-Wigner function can be naturally extended to the (infinite dimensional) variety of all algebraic curves in CP 3 which are in sufficiently general position with respect to a given simplex L. (By definition a simplex in CP 3 is a collection of 4 hyperplanes in generic position). 1 We call the corresponding function the Chow dilogarithm function. When our curve is a straight line we obtain just the Bloch-Wigner function evaluated at the cross-ratio of the 4 intersection points of this line with the faces of the simplex L. It is interesting that even in this case we get a new presentation of L2(z). Any algebraic surface in CP 4 which is in general position with respect to a given simplex produces a 5-term relation for the Chow dilogarithm function.
    [Show full text]
  • Special Values of Riemann's Zeta Function
    The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 Special values of Riemann's zeta function Cameron Franc UC Santa Cruz March 6, 2013 Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 Riemann's zeta function If s > 1 is a real number, then the series X 1 ζ(s) = ns n≥1 converges. Proof: Compare the partial sum to an integral, N X 1 Z N dx 1 1 1 ≤ 1 + = 1 + 1 − ≤ 1 + : ns xs s − 1 Ns−1 s − 1 n=1 1 Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 The resulting function ζ(s) is called Riemann's zeta function. Was studied in depth by Euler and others before Riemann. ζ(s) is named after Riemann for two reasons: 1 He was the first to consider allowing the s in ζ(s) to be a complex number 6= 1. 2 His deep 1859 paper \Ueber die Anzahl der Primzahlen unter einer gegebenen Gr¨osse" (\On the number of primes less than a given quantity") made remarkable connections between ζ(s) and prime numbers. Cameron Franc Special values of Riemann's zeta function The divergence of ζ(1) The identity ζ(2) = π2=6 The identity ζ(−1) = −1=12 In this talk we will discuss certain special values of ζ(s) for integer values of s.
    [Show full text]
  • Polylogarithms and Riemann's Function
    PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997 Polylogarithms and Riemann’s z function M. Howard Lee Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 ~Received 12 March 1997! Riemann’s z function has been important in statistical mechanics for many years, especially for the under- standing of Bose-Einstein condensation. Polylogarithms can yield values of Riemann’s z function in a special limit. Recently these polylogarithm functions have unified the statistical mechanics of ideal gases. Our par- ticular concern is obtaining the values of Riemann’s z function of negative order suggested by a physical application of polylogs. We find that there is an elementary way of obtaining them, which also provides an insight into the nature of the values of Riemann’s z function. It relies on two properties of polylogs—the recurrence and duplication relations. The relevance of the limit process in the statistical thermodynamics is described. @S1063-651X~97!01510-9# PACS number~s!: 05.90.1m, 02.90.1p I. INTRODUCTION standard methods. It also lends an interesting insight into the nature of the values of Riemann’s z function. Riemann’s z function perhaps first appeared in statistical mechanics in 1900 in Planck’s theory of the blackbody ra- II. POLYLOGS AND THEIR PROPERTIES diation and then in 1912 in Debye’s theory of the specific heats of solids @1#. Subsequently, this function has played an To show their relationship to Riemann’s z function, we important role in the statistical theory of the ideal Bose gas, shall introduce a convenient integral representation for poly- especially for the understanding of Bose-Einstein condensa- logs Lis(z) of complex numbers s and z @6#, defined by tion ~BEC!@2#.
    [Show full text]
  • From Elliptic Polylogarithms to Iterated Integrals of Eisenstein Series
    Prepared for submission to JHEP CP3-18-24, CERN-TH-2018-057 HU-Mathematik-2018-03, HU-EP-18/09 SLAC-PUB-17240 Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series Johannes Broedela Claude Duhrb;c Falko Dulatd Brenda Penanteb Lorenzo Tancredib aInstitut f¨urMathematik und Institut f¨urPhysik, Humboldt-Universit¨atzu Berlin, IRIS Adlershof, Zum Grossen Windkanal 6, 12489 Berlin, Germany bTheoretical Physics Department, CERN, Geneva, Switzerland cCenter for Cosmology, Particle Physics and Phenomenology (CP3), Universit´eCatholique de Louvain, 1348 Louvain-La-Neuve, Belgium dSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. We illustrate how to use our formalism to derive relations among elliptic polylogarithms, in complete analogy with the non-elliptic case. We then analyze the symbol alphabet of elliptic polylogarithms evaluated at rational points, and we observe that it is given by Eisenstein series for a certain congruence subgroup. We apply our formalism to hypergeometric functions that can be expressed in terms of elliptic polylogarithms and show that they can equally be written in terms of iterated integrals of Eisenstein series. Finally, we present the symbol of the equal-mass sunrise integral in two space-time dimensions.
    [Show full text]
  • Polylog and Hurwitz Zeta Algorithms Paper
    AN EFFICIENT ALGORITHM FOR ACCELERATING THE CONVERGENCE OF OSCILLATORY SERIES, USEFUL FOR COMPUTING THE POLYLOGARITHM AND HURWITZ ZETA FUNCTIONS LINAS VEPŠTAS ABSTRACT. This paper sketches a technique for improving the rate of convergence of a general oscillatory sequence, and then applies this series acceleration algorithm to the polylogarithm and the Hurwitz zeta function. As such, it may be taken as an extension of the techniques given by Borwein’s “An efficient algorithm for computing the Riemann zeta function”[4, 5], to more general series. The algorithm provides a rapid means of evaluating Lis(z) for¯ general values¯ of complex s and a kidney-shaped region of complex z values given by ¯z2/(z − 1)¯ < 4. By using the duplication formula and the inversion formula, the range of convergence for the polylogarithm may be extended to the entire complex z-plane, and so the algorithms described here allow for the evaluation of the polylogarithm for all complex s and z values. Alternatively, the Hurwitz zeta can be very rapidly evaluated by means of an Euler- Maclaurin series. The polylogarithm and the Hurwitz zeta are related, in that two evalua- tions of the one can be used to obtain a value of the other; thus, either algorithm can be used to evaluate either function. The Euler-Maclaurin series is a clear performance winner for the Hurwitz zeta, while the Borwein algorithm is superior for evaluating the polylogarithm in the kidney-shaped region. Both algorithms are superior to the simple Taylor’s series or direct summation. The primary, concrete result of this paper is an algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable.
    [Show full text]
  • The Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler's identity: 1 1 1 s 0 cps1 [ζ(s) :=] n− = p− = s : (1) X Y X Y 1 p− n=1 p prime @cp=1 A p prime − We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it: s σ We already observed that for all real n > 0 we have n− = n− , because j j s σ it log n n− = exp( s log n) = n− e − and eit log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the \Riemann zeta function"), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula n+1 n+1 1 1 s s 1 s s ζ(s) = n− Z x− dx = Z (n− x− ) dx; − s 1 X − X − − n=1 n n=1 n since for x [n; n + 1] (n 1) and σ > 0 we have 2 ≥ x s s 1 s 1 σ n− x− = s Z y− − dy s n− − j − j ≤ j j n so the formula for ζ(s) (1=(s 1)) is a sum of analytic functions converging absolutely in compact subsets− of− σ + it : σ > 0 and thus gives an analytic function there.
    [Show full text]