15 the Riemann Zeta Function and Prime Number Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lerch Zeta Function and Related Functions
The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function. -
Transcendence Theory and Its Applications
J. Austral. Math. Soc. (Series A) 25 (1978), 438-444 TRANSCENDENCE THEORY AND ITS APPLICATIONS A. BAKER Dedicated to Professor K. Mahler on his 75th birthday (Received 19 December 1977) Communicated by J. H. Coates Abstract This is the text of an invited address given at the Summer Research Institute of the Australian National University in January 1978. It provides a survey of the subject matter of the title. Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10-02, 1OF35; secondary 10B15. 1. Introduction I should like to speak today about some of the latest developments that have taken place in connexion with the theory of linear forms in the logarithms of algebraic numbers. This is, of course, just one aspect of transcendence theory, but it has been an especially active area of development throughout the past decade, and it has found many applications relating to a wide variety of Diophantine problems. I shall discuss some of these applications later in my talk, but let me begin with some basic definitions. 2. Definitions An algebraic number is a zero of a polynomial with integer coefficients; thus if a. is algebraic we have for some integers a0, ...,an. We can suppose that the polynomial on the left is irreducible, and that ao,...,an are relatively prime; then n is called the degree of 438 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.93, on 25 Sep 2021 at 06:49:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
Topic 7 Notes 7 Taylor and Laurent Series
Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof. -
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
Sequence Rules
SEQUENCE RULES A connected series of five of the same colored chip either up or THE JACKS down, across or diagonally on the playing surface. There are 8 Jacks in the card deck. The 4 Jacks with TWO EYES are wild. To play a two-eyed Jack, place it on your discard pile and place NOTE: There are printed chips in the four corners of the game board. one of your marker chips on any open space on the game board. The All players must use them as though their color marker chip is in 4 jacks with ONE EYE are anti-wild. To play a one-eyed Jack, place the corner. When using a corner, only four of your marker chips are it on your discard pile and remove one marker chip from the game needed to complete a Sequence. More than one player may use the board belonging to your opponent. That completes your turn. You same corner as part of a Sequence. cannot place one of your marker chips on that same space during this turn. You cannot remove a marker chip that is already part of a OBJECT OF THE GAME: completed SEQUENCE. Once a SEQUENCE is achieved by a player For 2 players or 2 teams: One player or team must score TWO SE- or a team, it cannot be broken. You may play either one of the Jacks QUENCES before their opponents. whenever they work best for your strategy, during your turn. For 3 players or 3 teams: One player or team must score ONE SE- DEAD CARD QUENCE before their opponents. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
Inverse Polynomial Expansions of Laurent Series, II
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 28 (1989) 249-257 249 North-Holland Inverse polynomial expansions of Laurent series, II Arnold KNOPFMACHER Department of Computational & Applied Mathematics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa John KNOPFMACHER Department of Mathematics, University of the Witwatersrand, Johannesburg Wits ZOSO, South Africa Received 6 May 1988 Revised 23 November 1988 Abstract: An algorithm is considered, and shown to lead to various unusual and unique series expansions of formal Laurent series, as the sums of reciprocals of polynomials. The degrees of approximation by the rational functions which are the partial sums of these series are investigated. The types of series corresponding to rational functions themselves are also partially characterized. Keywords: Laurent series, polynomial, rational function, degree of approximation, series expansion. 1. Introduction Let ZP= F(( z)) denote the field of all formal Laurent series A = Cr= y c,z” in an indeterminate z, with coefficients c, all lying in a given field F. Although the main case of importance here occurs when P is the field @ of complex numbers, certain interest also attaches to other ground fields F, and almost all results below hold for arbitrary F. In certain situations below, it will be convenient to write x = z-l and also consider the ring F[x] of polynomials in x, as well as the field F(x) of rational functions in x, with coefficients in F. If c, # 0, we call v = Y(A) the order of A, and define the norm (or valuation) of A to be II A II = 2- “(A). -
Arithmetic Properties of Certain Functions in Several Variables III
BULL. AUSTRAL. MATH. SOC. I0F35, 39A30 VOL. 16 (1977), 15-47. Arithmetic properties of certain functions in several variables III J.H. Loxton and A.J. van der Poorten We obtain a general transcendence theorem for the solutions of a certain type of functional equation. A particular and striking consequence of the general result is that, for any irrational number u) , the function I [ha]zh h=l takes transcendental values at all algebraic points a with 0 < lal < 1 . Introduction In this paper, we continue our study of the transcendency of functions in one or more complex variables which satisfy one of a certain general class of functional equations. The ideas for this work go back almost 50 years to 3 papers of Mahler [9], [JO], and [H] in which he analyses solutions of functional equations of the form f{Tz) = R{z; f{z)) , where T is a certain transformation of the n complex variables z = [z , ..., z ) , and R(z; w) is a rational function. In our earlier papers [7] and [£], we extended Mahler's results by widening the class of allowable transformations T . It is our object here to generalise the theory in another direction and, specifically, to answer a problem posed by Mahler, namely Problem 2 of [72]. In view of the technical nature of our Received 16 August 1976. 15 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 24 Sep 2021 at 14:25:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
Laurent-Series-Residue-Integration.Pdf
Laurent Series RUDY DIKAIRONO AEM CHAPTER 16 Today’s Outline Laurent Series Residue Integration Method Wrap up A Sequence is a set of things (usually numbers) that are in order. (z1,z2,z3,z4…..zn) A series is a sum of a sequence of terms. (s1=z1,s2=z1+z2,s3=z1+z2+z3, … , sn) A convergent sequence is one that has a limit c. A convergent series is one whose sequence of partial sums converges. Wrap up Taylor series: or by (1), Sec 14.4 Wrap up A Maclaurin series is a Taylor series expansion of a function about zero. Wrap up Importance special Taylor’s series (Sec. 15.4) Geometric series Exponential function Wrap up Importance special Taylor’s series (Sec. 15.4) Trigonometric and hyperbolic function Wrap up Importance special Taylor’s series (Sec. 15.4) Logarithmic Lauren Series Deret Laurent adalah generalisasi dari deret Taylor. Pada deret Laurent terdapat pangkat negatif yang tidak dimiliki pada deret Taylor. Laurent’s theorem Let f(z) be analytic in a domain containing two concentric circles C1 and C2 with center Zo and the annulus between them . Then f(z) can be represented by the Laurent series Laurent’s theorem Semua koefisien dapat disajikan menjadi satu bentuk integral Example 1 Example 1: Find the Laurent series of z-5sin z with center 0. Solution. menggunakan (14) Sec.15.4 kita dapatkan. Substitution Example 2 Find the Laurent series of with center 0. Solution From (12) Sec. 15.4 with z replaced by 1/z we obtain Laurent series whose principal part is an infinite series. -
The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1. -
0.999… = 1 an Infinitesimal Explanation Bryan Dawson
0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder . -
Chapter 4 the Riemann Zeta Function and L-Functions
Chapter 4 The Riemann zeta function and L-functions 4.1 Basic facts We prove some results that will be used in the proof of the Prime Number Theorem (for arithmetic progressions). The L-function of a Dirichlet character χ modulo q is defined by 1 X L(s; χ) = χ(n)n−s: n=1 P1 −s We view ζ(s) = n=1 n as the L-function of the principal character modulo 1, (1) (1) more precisely, ζ(s) = L(s; χ0 ), where χ0 (n) = 1 for all n 2 Z. We first prove that ζ(s) has an analytic continuation to fs 2 C : Re s > 0gnf1g. We use an important summation formula, due to Euler. Lemma 4.1 (Euler's summation formula). Let a; b be integers with a < b and f :[a; b] ! C a continuously differentiable function. Then b X Z b Z b f(n) = f(x)dx + f(a) + (x − [x])f 0(x)dx: n=a a a 105 Remark. This result often occurs in the more symmetric form b Z b Z b X 1 1 0 f(n) = f(x)dx + 2 (f(a) + f(b)) + (x − [x] − 2 )f (x)dx: n=a a a Proof. Let n 2 fa; a + 1; : : : ; b − 1g. Then Z n+1 Z n+1 x − [x]f 0(x)dx = (x − n)f 0(x)dx n n h in+1 Z n+1 Z n+1 = (x − n)f(x) − f(x)dx = f(n + 1) − f(x)dx: n n n By summing over n we get b Z b X Z b (x − [x])f 0(x)dx = f(n) − f(x)dx; a n=a+1 a which implies at once Lemma 4.1.