17 the Functional Equation

Total Page:16

File Type:pdf, Size:1020Kb

17 the Functional Equation 18.785 Number theory I Fall 2018 Lecture #17 11/5/2018 17 The functional equation In the previous lecture we proved that the Riemann zeta function ζ(s) has an Euler product and an analytic continuation to the right half-plane Re(s) > 0. In this lecture we complete the picture by deriving a functional equation that relates the values of ζ(s) to those of ζ(1 − s). This will then also allow us to extend ζ(s) to a meromorphic function on C that is holomorphic except for a simple pole at s = 1. 17.1 Fourier transforms and Poisson summation A key tool we will use to derive the functional equation is the Poisson summation formula, a result from harmonic analysis that we now recall. 1 Definition 17.1. A Schwartz function on R is a complex-valued C function f : R ! C that decays rapidly to zero: for all m; n 2 Z≥0 we have m (n) sup x f (x) < 1; x2R (n) where f denotes the nth derivative of f. The Schwartz space S(R) of all Schwartz functions on R is a (non-unital) C-algebra of infinite dimension. Example 17.2. All compactly supported functions C1 functions are Schwartz functions, as is the Gaussian function g(x) := e−πx2 . Non-examples include functions that do not tend to zero as x ! ±∞ (such as non-constant polynomials), and functions like (1 + x2n)−1 and e−x2 sin(ex2 ) that either do not tend to zero quickly enough, or have derivatives that do not tend to zero as x ! ±∞. p Remark 17.3. For any p 2 R≥1, the Schwartz space S(R) is contained in the space L (R) of functions on f : ! for which the Lebesgue integral R jf(x)jpdx exists. The space R C R p p R p 1=p L (R) is a complete normed C-vector space under the L -norm kfkp := ( jf(x)j dx) , R p and is thus a Banach space. The Schwartz space S(R) is not complete under the L norm, p but it is dense in L (R) under the subspace topology. One can equip the Schwartz space with a translation-invariant metric of its own under which it is a complete metric space (and thus a Fr´echet space, since it is also locally convex), but the topology of S(R) will not n concern us here. Similar comments apply to S(R ). It follows immediately from the definition and standard properties of the derivative that the Schwartz space S(R) is closed under differentiation, multiplication by polynomials, and linear change of variable. It is also closed under convolution: for any f; g 2 S(R) the function Z (f ∗ g)(x) := f(y)g(x − y)dy R is also an element of S(R). Convolution is commutative, associative, and bilinear. Definition 17.4. The Fourier transform of a Schwartz function f 2 S(R) is the function Z f^(y) := f(x)e−2πixydx; R Andrew V. Sutherland which is also a Schwartz function [1, Thm. 5.1.3]. We can recover f(x) from f^(y) via the inverse transform Z f(x) := f^(y)e+2πixydy; R see [1, Thm. 5.1.9] for a proof of this fact. The maps f 7! f^ and f^ 7! f are thus inverse linear operators on S(R) (they are also continuous in the metric topology of S(R) and thus homeomorphisms). Remark 17.5. The invertibility of the Fourier transform on the Schwartz space S(R) a 1 key motivation for its definition. For functions in L (R) (the largest space of functions for which our definition of the Fourier transform makes sense), the Fourier transform of a smooth function decays rapidly to zero, and the Fourier transform of a function that decays rapidly to zero is smooth; this leads one to consider the subspace S(R) of smooth functions 1 that decay rapidly to zero. One can show that S(R) is the largest subspace of L (R) closed under multiplication by polynomials on which the Fourier transform is invertible.1 The Fourier transform changes convolutions into products, and vice versa. We have f[∗ g = f^g^ and fgc = f^∗ g;^ for all f; g 2 S(R) (see Problem Set 8). One can thus view the Fourier transform as an isomorphism of (non-unital) C-algebras that sends (S(R); +; ×) to (S(R); +; ∗). 1 ^ y Lemma 17.6. For all a 2 R>0 and f 2 S(R), we have f\(ax)(y) = a f( a ). Proof. Applying the substitution t = ax yields Z 1 Z 1 y f\(ax)(y) = f(ax)e−2πixydx = f(t)e−2πity=adt = f^ : R a R a a d ^ d\ ^ Lemma 17.7. For f 2 S(R) we have dy f(y) = −2πi xf\(x)(y) and dx f(x)(y) = 2πiyf(y). Proof. Noting that xf 2 S(R), the first identity follows from Z Z d ^ d −2πixy −2πixy dy f(y) = dy f(x)e dx = f(x)(−2πix)e dx = −2πi xf\(x)(y); R R since we may differentiate under the integral via dominated convergence. For the second, we note that limx→±∞ f(x) = 0, so integration by parts yields Z Z d\ 0 −2πixy −2πixy ^ dx f(x)(y) = f (x)e dx = 0 − f(x)(−2πiy)e dx = 2πiyf(y): R R The Fourier transform is compatible with the inner product hf; gi := R f(x)g(x)dx on 2 R L (R) (which contains S(R)). Indeed, we can easily derive Parseval's identity: Z Z Z Z hf; gi = f(x)g(x)dx = f^(y)g(x)e+2πixydxdy = f^(y)g^(y)dy = hf;^ g^i; R R R R which when applied to g = f yields Plancherel's identity: 2 ^ ^ ^ 2 kfk2 = hf; fi = hf; fi = kfk2; R 2 1=2 2 where kfk2 = ( jf(x)j dx) is the L -norm. For number-theoretic applications there is R an analogous result due to Poisson. 1I thank Keith Conrad and Terry Tao for clarifying this point. 18.785 Fall 2018, Lecture #17, Page 2 Theorem 17.8 (Poisson Summation Formula). For all f 2 S(R) we have the identity X X f(n) = f^(n): n2Z n2Z Proof. We first note that both sums are well defined; the rapid decay property of Schwartz functions guarantees absolute convergence. Let F (x) := P f(x + n). Then F is a n2Z periodic C1-function, so it has a Fourier series expansion X 2πinx F (x) = cne ; n2Z with Fourier coefficients Z 1 Z 1 Z −2πint X −2πint −2πint cn = F (t)e dt = f(t + m)e dt = f(t)e dt = f^(n): 0 0 m2Z R We then note that X X f(n) = F (0) = f^(n): n2Z n2Z Finally, we note that the Gaussian function e−πx2 is its own Fourier transform. Lemma 17.9. Let g(x) := e−πx2 . Then g^(y) = g(y). Proof. The function g(x) satisfies the first order ordinary differential equation g0 + 2πxg = 0; (1) with initial value g(0) = 1. Multiplying both sides by i and taking Fourier transforms yields 0 0 0 i(gb + 2πxgc) = i(2πixg^ − ig^ ) =g ^ + 2πxg^ = 0; via Lemma 17.7. Sog ^ also satisfies (1), andg ^(0) = R e−πx2 dx = 1, sog ^ = g. R 17.1.1 Jacobi's theta function We now define the theta function2 X 2 Θ(τ) := eπin τ : n2Z The sum is absolutely convergent for Im τ > 0 and thus defines a holomorphic function on the upper half plane. It is easy to see that Θ(τ) is periodic modulo 2, that is, Θ(τ + 2) = Θ(τ); but it it also satisfies another functional equation. p Lemma 17.10. For all a 2 R>0 we have Θ(ia) = Θ(i=a)= a. p Proof. Put g(x) := e−πx2 and h(x) := g( ax) = e−πx2a. Lemmas 17.6 and 17.9 imply p p p p p h^(y) = g\( ax)(y) =g ^y= a= a = gy= a= a: Plugging τ = ia into Θ(τ) and applying Poisson summation (Theorem 17.8) yields X 2 X X X p p p Θ(ia) = e−πn a = h(n) = h^(n) = gn= a= a = Θ(i=a)= a n2Z n2Z n2Z n2Z 2The function Θ(τ) we define here is a special case of one of four parameterized families of theta functions Θi(z : τ) originally defined by Jacobi for i = 0; 1; 2; 3, which play an important role in the theory of elliptic functions and modular forms; in terms of Jacobi's notation, Θ(τ) = Θ3(0; τ). 18.785 Fall 2018, Lecture #17, Page 3 17.1.2 Euler's gamma function You are probably familiar with the gamma function Γ(s), which plays a key role in the functional equation of not only the Riemann zeta function but many of the more general zeta functions and L-series we wish to consider. Here we recall some of its analytic properties. We begin with the definition of Γ(s) as a Mellin transform. Definition 17.11. The Mellin transform of a function f : R>0 ! C is the complex function defined by Z 1 M(f)(s) := f(t)ts−1dt; 0 whenever this integral converges. It is holomorphic on Re s 2 (a; b) for any interval (a; b) in R 1 σ−1 which the integral 0 jf(t)jt dt converges for all σ 2 (a; b).
Recommended publications
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Zeros of Differential Polynomials in Real Meromorphic Functions
    Zeros of differential polynomials in real meromorphic functions Walter Bergweiler∗, Alex Eremenko† and Jim Langley June 30, 2004 Abstract We investigate when differential polynomials in real transcendental meromorphic functions have non-real zeros. For example, we show that if g is a real transcendental meromorphic function, c R 0 n ∈ \{ } and n 3 is an integer, then g0g c has infinitely many non-real zeros.≥ If g has only finitely many poles,− then this holds for n 2. Related results for rational functions g are also considered. ≥ 1 Introduction and results Our starting point is the following result due to Sheil-Small [15] which solved a longstanding conjecture. 2 Theorem A Let f be a real polynomial of degree d. Then f 0 + f has at least d 1 distinct non-real zeros which are not zeros of f . − In the special case that f has only real roots this theorem is due to Pr¨ufer [14, Ch. V, 182]; see [15] for further discussion of the result. The following Theorem B is an analogue of Theorem A for transcendental meromorphic functions. Here “meromorphic” will mean “meromorphic in the complex plane” unless explicitly stated otherwise. A meromorphic function is called real if it maps the real axis R to R . ∪{∞} ∗Supported by the German-Israeli Foundation for Scientific Research and Development (G.I.F.), grant no. G-643-117.6/1999 †Supported by NSF grants DMS-0100512 and DMS-0244421. 1 Theorem B Let f be a real transcendental meromorphic function with 2 finitely many poles. Then f 0 + f has infinitely many non-real zeros which are not zeros of f .
    [Show full text]
  • Notes on Riemann's Zeta Function
    NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R.
    [Show full text]
  • 4. Complex Analysis, Rational and Meromorphic Asymptotics
    ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic Asymptotics http://ac.cs.princeton.edu ANALYTIC COMBINATORICS P A R T T W O 4. Complex Analysis, Rational and Meromorphic functions Analytic Combinatorics •Roadmap Philippe Flajolet and •Complex functions Robert Sedgewick OF •Rational functions •Analytic functions and complex integration CAMBRIDGE •Meromorphic functions http://ac.cs.princeton.edu II.4a.CARM.Roadmap Analytic combinatorics overview specification A. SYMBOLIC METHOD 1. OGFs 2. EGFs GF equation 3. MGFs B. COMPLEX ASYMPTOTICS SYMBOLIC METHOD asymptotic ⬅ 4. Rational & Meromorphic estimate 5. Applications of R&M COMPLEX ASYMPTOTICS 6. Singularity Analysis desired 7. Applications of SA result ! 8. Saddle point 3 Starting point The symbolic method supplies generating functions that vary widely in nature. − + √ + + + ...+ − ()= ()= − ()= ()= ... − − − − − − ()= ()= ln + / ( )( ) ...( ) ()= − − − − − Next step: Derive asymptotic estimates of coefficients. − []() [ ]() [ ]() + [ ]()=β ∼ ∼ ∼ (ln ) / √ / / − − − [ ]() [ ]()=ln [ ]() ∼ ! ∼ √ Classical approach: Develop explicit expressions for coefficients, then approximate Analytic combinatorics approach: Direct approximations. 4 Starting point Catalan trees Derangements Construction G = ○ × SEQ( G ) Construction D = SET (CYC>1( Z )) ln ()= ()= − OGF equation () EGF equation − − + √ − Explicit form of OGF Explicit form of EGF = ()= − − ( ) Expansion ()= ( ) Expansion ()= − − − ! " #
    [Show full text]
  • Lecture 8 - the Extended Complex Plane Cˆ, Rational Functions, M¨Obius Transformations
    Math 207 - Spring '17 - Fran¸coisMonard 1 Lecture 8 - The extended complex plane C^, rational functions, M¨obius transformations Material: [G]. [SS, Ch.3 Sec. 3] 1 The purpose of this lecture is to \compactify" C by adjoining to it a point at infinity , and to extend to concept of analyticity there. Let us first define: a neighborhood of infinity U is the complement of a closed, bounded set. A \basis of neighborhoods" is given by complements of closed disks of the form Uz0,ρ = C − Dρ(z0) = fjz − z0j > ρg; z0 2 C; ρ > 0: Definition 1. For U a nbhd of 1, the function f : U ! C has a limit at infinity iff there exists L 2 C such that for every " > 0, there exists R > 0 such that for any jzj > R, we have jf(z)−Lj < ". 1 We write limz!1 f(z) = L. Equivalently, limz!1 f(z) = L if and only if limz!0 f z = L. With this concept, the algebraic limit rules hold in the same way that they hold at finite points when limits are finite. 1 Example 1. • limz!1 z = 0. z2+1 1 • limz!1 (z−1)(3z+7) = 3 . z 1 • limz!1 e does not exist (this is because e z has an essential singularity at z = 0). A way 1 0 1 to prove this is that both sequences zn = 2nπi and zn = 2πi(n+1=2) converge to zero, while the 1 1 0 sequences e zn and e zn converge to different limits, 1 and 0 respectively.
    [Show full text]
  • The Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler's identity: 1 1 1 s 0 cps1 [ζ(s) :=] n− = p− = s : (1) X Y X Y 1 p− n=1 p prime @cp=1 A p prime − We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it: s σ We already observed that for all real n > 0 we have n− = n− , because j j s σ it log n n− = exp( s log n) = n− e − and eit log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the \Riemann zeta function"), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula n+1 n+1 1 1 s s 1 s s ζ(s) = n− Z x− dx = Z (n− x− ) dx; − s 1 X − X − − n=1 n n=1 n since for x [n; n + 1] (n 1) and σ > 0 we have 2 ≥ x s s 1 s 1 σ n− x− = s Z y− − dy s n− − j − j ≤ j j n so the formula for ζ(s) (1=(s 1)) is a sum of analytic functions converging absolutely in compact subsets− of− σ + it : σ > 0 and thus gives an analytic function there.
    [Show full text]
  • 20 the Modular Equation
    18.783 Elliptic Curves Spring 2017 Lecture #20 04/26/2017 20 The modular equation In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence subgroup (a subgroup of SL2(Z) that contains a b a b 1 0 Γ(N) := f c d 2 SL2(Z): c d ≡ ( 0 1 )g for some integer N ≥ 1). Of particular in- ∗ terest is the modular curve X0(N) := H =Γ0(N), where a b Γ0(N) = c d 2 SL2(Z): c ≡ 0 mod N : This modular curve plays a central role in the theory of elliptic curves. One form of the modularity theorem (a special case of which implies Fermat’s last theorem) is that every elliptic curve E=Q admits a morphism X0(N) ! E for some N 2 Z≥1. It is also a key ingredient for algorithms that use isogenies of elliptic curves over finite fields, including the Schoof-Elkies-Atkin algorithm, an improved version of Schoof’s algorithm that is the method of choice for counting points on elliptic curves over a finite fields of large characteristic. Our immediate interest in the modular curve X0(N) is that we will use it to prove the first main theorem of complex multiplication; among other things, this theorem implies that the j-invariants of elliptic curve E=C with complex multiplication are algebraic integers. There are two properties of X0(N) that make it so useful. The first, which we will prove in this lecture, is that it has a canonical model over Q with integer coefficients; this allows us to interpret X0(N) as a curve over any field, including finite fields.
    [Show full text]
  • LECTURE-16 Meromorphic Functions a Function on a Domain Ω Is Called
    LECTURE-16 VED V. DATAR∗ Meromorphic functions A function on a domain Ω is called meromorphic, if there exists a sequence ∗ of points p1; p2; ··· with no limit point in Ω such that if we denote Ω = Ω n fp1; · · · g ∗ • f :Ω ! C is holomorphic. • f has poles at p1; p2 ··· . We denote the collection of meromorphic functions on Ω by M(Ω). We have the following observation, whose proof we leave as an exercise. Proposition 0.1. The class of meromorphic function forms a field over C. That is, given any meromorphic functions f; g; h 2 M(Ω), we have that (1) f ± g 2 M(Ω), (2) fg 2 M(Ω), (3) f(g + h) = fg + fh: (4) f ± 0 = f; f · 1 = f, (5)1 =f 2 M. Recall that if a holomorphic function has finitely many roots, then it can be \factored" as a product of a polynomial and a no-where vanishing holo- morphic function. Something similar holds true for meromorphic functions. Proposition 0.2. Let f 2 M(Ω) such that f has only finitely many poles fp1; ··· ; png with orders fm1; ··· ; mng. Then there exist holomorphic func- tions g; h 2 O(Ω) such that for all z 2 Ω n fp1; ··· ; png, g(z) f(z) = : h(z) Moreover, we can choose g and h such that f(z) and g(z) have the exact same roots with same multiplicities, while h(z) has zeroes precisely at p1; ··· ; pn with multiplicities exactly m1; ··· ; mn. Proof. We define g :Ω n fp1; ··· ; pmg by n mk g(z) = Πk=1(z − pk) f(z): This is clearly a holomorphic function.
    [Show full text]
  • Iteration of Meromorphic Functions
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume29, Number2, October1993 ITERATION OF MEROMORPHIC FUNCTIONS WALTER BERGWEILER Contents 1. Introduction 2. Fatou and Julia Sets 2.1. The definition of Fatou and Julia sets 2.2. Elementary properties of Fatou and Julia sets 3. Periodic Points 3.1. Definitions 3.2. Existence of periodic points 3.3. The Julia set is perfect 3.4. Julia's approach 4. The Components of the Fatou set 4.1. The types of domains of normality 4.2. The classification of periodic components 4.3. The role of the singularities of the inverse function 4.4. The connectivity of the components of the Fatou set 4.5. Wandering domains 4.6. Classes of functions without wandering domains 4.7. Baker domains 4.8. Classes of functions without Baker domains 4.9. Completely invariant domains 5. Properties of the Julia Set 5.1. Cantor sets and real Julia sets 5.2. Points that tend to infinity 5.3. Cantor bouquets 6. Newton's Method 6.1. The unrelaxed Newton method 6.2. The relaxed Newton method 7. Miscellaneous topics References Received by the editors February 23, 1993 and, in revised form, May 1, 1993. 1991 MathematicsSubject Classification.Primary 30D05, 58F08; Secondary 30D30, 65H05. Key words and phrases. Iteration, meromorphic function, entire function, set of normality, Fatou set, Julia set, periodic point, wandering domain, Baker domain, Newton's method. ©1993 American Mathematical Society 0273-0979/93 $1.00 + $.25 per page 151 152 WALTER BERGWEILER 1. Introduction Mathematical models for phenomena in the natural sciences often lead to iteration.
    [Show full text]
  • Math 520A - Homework 6 - Selected Solutions
    Math 520a - Homework 6 - selected solutions 1. Let Ω be an open subset of the complex plane that is symmetric about the real axis and intersects the real axis. Let Ω+ = {z ∈ Ω : Im(z) > 0}. Let I = {z ∈ Ω : Im(z)=0}, the intersection of Ω with the real axis. Let f be analytic on Ω+ and continuous on Ω+ ∪ I. Suppose that |f(z)| = 1 for z ∈ I. Prove that f has an analytic continuation to Ω. Solution: The problem is not true as stated. We need to also assume f does not vanish on Ω+. We have already seen that f(z) is analytic on the relection of Ω+ about the real axis,which we denote by Ω−. If f never vanishes on Ω+, then g(z)=1/f(z) is analytic Ω−. Note that f is continuous on Ω+ ∪ I and g is continuous on Ω− ∪ I. On I, |f(z)| = 1 implies f(z) = g(z). By the same argument used to prove the Schwarz reflection principle, g provides the analytic continuation. 2. Problem 2 on page 109 in the book. Solution: Define z0 − z φ(z)= 1 − z0z so φ maps the unit disc to the unit disc and sends z0 to 0. Consider v(z)= u(φ(z)). It is a harmonic function on the disc, so by the mean value property, 1 2π v(0) = v(eiθ) dθ 2π Z0 We have v(0) = u(φ(0)) = u(z0). So 2π 1 iθ u(z0)= u(φ(e )) dθ 2π Z0 Do a change of variables in the integral given by iθ iα z0 − e e = iθ 1 − z0e Some calculation then yields the result.
    [Show full text]
  • A Connection Between the Riemann Hypothesis and Uniqueness
    A Connection between the Riemann Hypothesis and Uniqueness of the Riemann zeta function Pei-Chu Hu and Bao Qin Li Department of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China E-mail: [email protected] Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 USA E-mail: libaoqin@fiu.edu Abstract In this paper, we give a connection between the Riemann hypothesis and uniqueness of the Riemann zeta function and an analogue for L- functions. 1 Introduction The Riemann ζ function is defined by the Dirichlet series ∞ arXiv:1610.01583v1 [math.NT] 5 Oct 2016 1 ζ(s)= , s = σ + it (1.1) ns nX=1 Mathematics Subject Classification 2000 (MSC2000): 11M36, 30D35. Key words and phrases: Riemann zeta function; Riemann hypothesis, uniqueness, the Dedekind zeta function, L-function, Riemann functional equation. 1 for Re(s) > 1, which is absolutely convergent, and admits an analytical continuation as a meromorphic function in the complex plane C of order 1, which has only a simple pole at s = 1 with residue equal to 1. It satisfies the following Riemann functional equation: πs ζ(1 s) = 2(2π)−s cos Γ(s)ζ(s), (1.2) − 2 where Γ is the Euler gamma function ∞ Γ(z)= tz−1e−tdt, Rez > 0, Z0 analytically continued as a meromorphic function in C of order 1 without any zeros and with simple poles at s = 0, 1, 2, . − − · · · The allied function s s s ξ(s)= (s 1)π− 2 Γ ζ(s) (1.3) 2 − 2 is an entire function of order equal to 1 satisfying the functional equation ξ(1 s)= ξ(s) (1.4) − (see e.g.
    [Show full text]
  • 15 the Riemann Zeta Function and Prime Number Theorem
    18.785 Number theory I Fall 2015 Lecture #15 11/3/2015 15 The Riemann zeta function and prime number theorem We now divert our attention from algebraic number theory for the moment to talk about zeta functions and L-functions. These are analytic objects (complex functions) that are intimately related to the global fields we have been studying. We begin with the progenitor of all zeta functions, the Riemann zeta function. For the benefit of those who have not taken complex analysis (which is not a formal prerequisite for this course) the next section briefly recalls some of the basic definitions and facts we we will need; these are elementary results covered in any introductory course on complex analysis, and we state them only at the level of generality we need, which is minimal. Those familiar with this material should feel free to skip to Section 15.2, but may want to look at Section 15.1.2 on convergence, which will be important in what follows. 15.1 A quick recap of some basic complex analysis The complex numbers C are a topological field whose topology is definedp by the distance metric d(x; y) = jx − yj induced by the standard absolute value jzj := zz¯; all implicit references to the topology on C (open, compact, convergence, limits, etc.) are made with this understanding. For the sake of simplicity we restrict our attention to functions f :Ω ! C whose domain Ω is an open subset of C (so Ω denotes an open set throughout this section). 15.1.1 Holomorphic and analytic functions Definition 15.1.
    [Show full text]