<<

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 4, April 1997, Pages 1447–1462 S 0002-9947(97)01504-3

INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS

JEONGH.KIMANDLEEA.RUBEL

Abstract. Let G be a given open set in the . We prove that there is an entire such that its translations forms a in a neighborhood of z exactly for z in G if and only if G is periodic with period 1, i.e., z 1 G for all z G. ± ∈ ∈

1. Introduction and preliminaries Let be a space of functions defined on an open set G. For each positive integer S n,weletTn be an operator from into itself. Our concern is the normality of the family T (f): n =0,1,2,... forS a function f . In this paper, we consider the { n } ∈S case Tn(f(z)) = f(z + n), translation by n. To discuss the normality of families of meromorphic functions, we need the fol- lowing notion. Definition 1.1. Let f be a meromorphic function in the complex plane C.We define the spherical derivative of f at z by

f 0(z) ρ(f (z)) = | | . 1+ f(z)2 | | Theorem (Marty [6]). A family of functions f(z), meromorphic in a domain D,isnormalinDif and only if theF set ρ(f(z)): f is uniformly bounded on every compact subset of D. { ∈F} Now we state our definition and an example. Definition 1.2. For a meromorphic function f, we define the set N(f)tobethe set of all z0 C such that the family f(z + n): n =0,1,2,... is normal in a ∈ { } neighborhood of z0. Example 1.3. Let f(z)=zsin πz;thenN(f)=CZwhere Z is the set of all . \ Proof. For all integers n, f(z + n)=(z+n)sinπ(z+n)=(z+n)sinπz; thus we have =0, if z Z, f(z + n) ∈ , if z Z and n . (→∞ 6∈ →∞ Received by the editors October 17, 1994 and, in revised form, March 31, 1995. 1991 Mathematics Subject Classification. Primary 30D45. The research of the second author was partially supported by a grant from the National Science Foundation.

c 1997 American Mathematical Society

1447

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1448 J. H. KIM AND LEE A. RUBEL

Hence no subsequence of f(z +n): n =0,1,2,... converges on any neighborhood of any integer. But the sequence{ f(z + n): n =0,}1,2,... converges uniformly to infinity on any compact subset which{ does not contain integers.} These facts prove that N(f)=C Z. \ 2. Some properties of N(f) From the definition, the set N(f)isopeninthecomplexplaneCand is periodic with period 1. The set N(f) may not be connected. For a certain meromorphic function f,the set N(f) has infinitely many components. Example 2.1. Let f(z)=tanez; then the set N(f) is not connected. Proof. We let I = z C:Imz=kπ, k =0, 1, 2,... , c { ∈ ± ± } and we shall show that N(f)=C I.Forz=x+kπi I ,wehave \ c ∈ c f(z+n)2 = tan ex+n+kπi 2 =tan2ex+n | | | | and x+n+kπi 2 x+n+kπi x+n 2 x+n f 0(z + n) = e sec e = e sec e . | | | | So for every real number x with ex+n = kπ + π (k =0, 1, 2,...), 6 2 ± ± ex+n sec2 ex+n ρ(f(z + n)) = 1+tan2ex+n ex+n = sin2 ex+n +cos2ex+n =ex+n →∞ as n . But for an integer l every neighborhood of x + lπi contains a point →∞ x0+n π x0 + lπi such that e = kπ + 2 . Hence by Marty’s Theorem, x + lπi N(f)for all real x. 6 6∈ Now for z0 Ic,wechooseapositivenumberεso that B(z0,ε) Ic =∅.LetF 6∈ ∩ be a compact subset in B(z0,ε); then for z = x + iy F ,wehave ∈ z+n (tan e )0 ρ(f(z+n)) = | | 1+ tan ez+n 2 | | ez+n sec2 ez+n (2.1) = | | 1+ tan ez+n 2 | | ez+n = | | . sin ez+n 2 + cos ez+n 2 | | | | For z = x + iy,itiseasytoshow 2 2 1 2y 2y sin z + cos z = (e + e− ) | | | | 2 and since ez+n = ex+n cos y + iex+n sin y, we can write z+n 2 z+n 2 1 2ex+n sin y 2ex+n sin y sin e + cos e = (e + e− ). | | | | 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1449

Thus from (2.1), 2ex+n ρ(f(z + n)) = 2ex+n sin y 2ex+n sin y (2.2) e + e− 2ex+n . 2 sin y ex+n ≤ e | | We let δ =min sin y : z = x + iy F ;thenδ>0. We define a function g on the real line R by {| | ∈ } 2et g(t)= ; e2δet then we get

t 2δet t g0(t)=2e− (1 2δe ). − 1 So the positive continuous function g takes the maximum value δe at t = log 2δ. Hence from (2.2), we have − 1 ρ(f(z + n)) g(x + n) ≤ ≤ δe for all z F and n =0,1,2,.... Therefore z0 belongs to the set N(f). This completes∈ the proof. Let be the space of all entire functions equipped with the topology of uniform convergenceA on compact subset of the complex plane C. Theorem 2.2. If is a family of entire functions which is dense in , then the family is not normalF on any open set in C. A F Proof. For a given open set Ω and z0 Ω, we choose a positive number ε so that ∈ B(z0,ε) Ω is a compact subset. By the density of , there exists a sequence g (z) ⊂ , such that F { n }⊂F 1 g (z) n(z z0) < | n − − | n

for all z B(z0,ε). So we have ∈ 1 g (z0) < 0 | n | n → as n . →∞ On the other hand, for z B(z0,ε) z0 , ∈ \{ } 1 g (z) >nz z0 | n | | − |−n →∞ as n . Hence the family is not normal on Ω. An→∞ entire function f whoseF translates are dense in is called a universal entire function. In 1929, the existence of a universal entire functionA was proved by G. D. Birkhoff [1]. For a proof of the following theorem, see [5, pp. 60–61]. Theorem (Birkhoff [1]). There is an entire function whose integer translations are dense in the set of all entire functions. A Birkhoff’s Theorem and Theorem 2.2 have the following consequence.

Corollary 2.3. There is an entire function f such that N(f)=∅.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1450 J. H. KIM AND LEE A. RUBEL

In Definition 1.2, we considered positive integer translations only. At this time we allow the negative integer translations also.

Definition 2.4. Let f be a meromorphic function in the complex plane C.We define as set N (f)bythesetofallz0 Csuch that the family f(z + n): n = B ∈ { 0, 1, 2,... is normal at z0. ± ± } By the same reasons as in N(f), the set NB(f) is a periodic open set with period 1. And clearly NB(f) is a subset of N(f). But NB(f) is different from N(f)fora certain meromorphic function f.

Theorem 2.5. There is an entire function f such that N (f) = N(f). B 6 Proof. We shall show that the entire function

ez2 f(z)= Γ(z)

satisfies the property by proving 0 N(f) NB(f). (i) 0 N (f): Let 0 <ε< 1 and∈ n be\ a positive integer. Since 6∈ B 10 zΓ(z)=Γ(z+1), we have Γ(ε n +1) Γ(ε n)= − − ε n − Γ(ε) = (ε n)(ε n +1) (ε 1) − − ··· − and

(ε n)2 e − (ε n)(ε n +1) (ε 1) (2.3) f(ε n) = − − ··· − . | − | Γ(ε)

The right-hand side of (2.3) tends to infinity as n .Butf ( n) = 0 for all →∞ − positive integers. Hence 0 does not belong to NB(f). (ii) 0 N(f): Since ∈

Γ0(z) ∞ z 1 = γ + − Γ(z) − m(z + m 1) m=1 X − where 1 1 1 γ = lim 1+ + + + log n n 2 3 ··· n − →∞   =0.5772157 , ··· we get

z2 e Γ0(z) f 0(z)= 2z Γ(z) − Γ(z)   2 ez ∞ z 1 = 2z + γ − . Γ(z) − m(z + m 1) m=1 ! X −

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1451

Let K be a compact subset of B(0, 1 ). Then for z K and positive integer n, 10 ∈ 2 e(z+n) ∞ z + n 1 f 0(z + n) = 2(z + n)+γ − | | Γ(z + n) − m(z + n + m 1) m=1 ! X − 2 e(z+n) ∞ 1 2(n +1)+γ+n ≤ Γ(z + n) m2 m=1 ! X 2 e(z+n) π2 = 2(n +1)+γ+ n . Γ(z + n) 6  

So we can write

2 e(z+n) π2 Γ(z+n) 2(n +1)+γ+ 6 n ρ(f(z + n)) 2  2  ≤ 1+ e(z+n) (2.4) Γ(z+n) Γ(z + n) π2 2(n +1)+ γ+ n . ≤ e(z+n)2 6  

By Stirling’s formula,

z+n 1/2 (z+n) Γ(z + n) √2π(z + n) − e− (2.5) | |. e(z+n)2 ∼ e(z+n)2

| | But for all z K B(0, 1 ), we have ∈ ⊂ 10 n Re((z + n)2 +(z+n)) n2 + ≥ 2 and

z+n 1/2 nlog(n+1) z + n − = n2+ n − n2+ n n − e 2 ne 2 en2 en log(n+1) > > 0. − n2+ n e 2 With (2.5), for sufficiently large n we obtain an inequality, Γ(z + n) √2π (2.6) < . e(z+n)2 n

So we can write (2.4) as

√2π π2 ρ(f(z + n)) 2(n +1)+γ+ n <16 ≤ n 6   for all z K and every positive integer n. Hence by Marty’s theorem 0 N(f). This completes∈ the proof of the theorem. ∈

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1452 J. H. KIM AND LEE A. RUBEL

3. Main results Now we shall prove our main result. We know that, for every meromorphic func- tion f,thesetN(f) is a periodic open set with period 1. To prove the existence part we shall construct an entire function with the help of the Weierstrass factorization theorem. Theorem 3.1. Let G be an open set in the complex plane C. Then there exists an entire function f such that N(f)=Gif and only if G is periodic with period 1.

Theorem 3.1 is also true for the set NB(f). We can prove it by a slight modifi- cation of the proof of Theorem 3.1. Theorem 3.2. Let G be an open set in the complex plane C. Then there exists an entire function f such that NB(f)=Gif and only if G is periodic with period 1. Proof of Theorem 3.1. If G = C, then we take a constant function for f.We assume G is a proper subset of C.SinceGis a periodic open set with period 1, it is enough to check for the set z G:0 Re z<1 to show N(f)=G. Because of its length we divide the proof{ into∈ three≤ steps and} put each step as a section.

3.1. Construction of an entire function. Let G be a periodic open set in the complex plane C with period 1. For each positive integer i,welet W = w : j i i { ij ≥ } be a countable dense subset of R = z Gc :0 Re z<1,i 1 Im z

Table 3.1. Sequence Z = z { ij }

C1 C2 C3 ... 3 3 z11 = w11 +2 z12 = w11 +(2 +1)! z13 = w11 +(3 +1)! ... 3 3 z22 = w12 +(2 +2)! z23 = w12 +(3 +2)! 3 3 z32 = w22 +(2 +3)! z33+=w22 +(3 +3)! 3 z43 = w13 +(3 +4)! 3 z53 = w23 +(3 +5)! 3 z63 = w33 +(3 +6)!

integer i if the set Wi contains only finitely many elements, for instance, suppose that W = w : i j k ,andifz is a translation of w where l>k,then i { ij ≤ ≤ } st il we skip the term zst.Soifwelet Cj be the number of the elements in the jth column of the Table 3.1, then we havek k j(j+1) (3.2) C . k jk≤ 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1453

And for each z C ,wehave ij ∈ j j(j+1) (3.3) Re z < 1+ j3 + ! ij 2   and j(j+1) (3.4) (j3 +1)! z

∞ z (3.5) g(z)= 1 . − zij j=1 zij Cj   Y Y∈ From (3.2) and (3.4) we have

∞ 1 ∞ j(j +1) 1 < 3 zij 2 (j +1)! j=1 z C j=1 X ijX∈ j | | X

Therefore the function g is entire and its only zeros are at the points zij Z. Finally, we define a function f on the complex plane C by ∈

(3.6) f (z)=ezg(z).

Then f is an entire function whose zero set is equal to that of g. We shall show that f is a suitable function.

3.2. For all z G,wehavez N(f).For z 0 G (we assume 0 Re z0 < 1), 1 ∈ ∈ ∈ c ≤ 0 <ε< 10 ,letF=B(z0,ε)beacompactsubsetofG.SinceG is a closed set, there is a positive number ε0 such that

c (3.7) d(F, G )=ε0.

Let n be a sufficiently large positive integer and suppose that k is the largest integer such that k(k+1) (3.8) 1+ k3 + ! Re(z + n z ) | ij − | − ij j(j+1) >n 2 j3+ ! − − 2  

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1454 J. H. KIM AND LEE A. RUBEL

by (3.3). Thus from the inequalities (3.4) and (3.8), we obtain z + n 1 1 = z (z + n) − z z | ij − | ij | ij | j(j+1) n 2 (j3 + )! > − − 2 3 j(j+1) j +1+(j + 2 )! (k3 + k(k+1) )! 1 (j3 + j(j+1) )! > 2 − − 2 3 j(j+1) j +1+(j + 2 )! > 1. Hence we can conclude k 1 − z + n (3.9) 1 > 1. − zij j=1 zij Cj Y Y∈

Case 2. j = k If z = w +(k3 + k(k+1) )! C , then for all z F we have ik kk 2 ∈ k ∈ z (z + n) ε0 | ik − |≥ by (3.7). Thus by (3.4), we get z + n ε (3.10) 1 0 . k(k+1) − zik ≥ 3 k +1+(k + 2 )!

( +1) Now we suppose z = w +( k3 + k k )!. Then from Table 3.1, we get ik 6 kk 2 k(k+1) Re z < 1+ k3 + 1 ! ik 2 −   and k(k+1) z 2 − 2 − − k(k+1) (3.11) − zik 3 k +1+(k + 2 1)! − > 1.

From (3.10) and (3.11), we conclude

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1455

z + n ε (3.12) 1 > 0 k(k+1) − zik k +1+(k3 + )! zik Ck 2 Y∈

for all z F . Case 3.∈ j = k +1 We shall show that

3 3 (k+1)(k+2) 2 z + n 2[((k +1) +2)! ((k +1) +1)!] 2 − (3.13) 1 >ε0 − (k+1)(k+2) − zij (k+1)(k+2) 2 xij Ck+1 3 ∈Y k +2+ (k+1) + 2 !

h   i for all z F . ∈ Let zαj , zβj Cj be the first and second nearest points to the compact set F +n; then from (3.7)∈ and Table 3.1, we have

ε , if z = z or z , z (z + n) 0 ij αj βj | ij − |≥ (j3 +2)! (j3 +1)!, if z = z and z . ( − ij 6 αj βj

So by (3.2) and (3.4), we have

z + n z C zij (z + n) ij ∈ j | − | 1 j(j+1) − zij ≥ j(j+1) 2 zij Cj Q 3 Y∈ j +1+(j + 2 )! (3.14)  3 3  j(j+1) 2 2 ((j +2)! (j +1)!) 2 − >ε0 − j(j+1) . 3 j(j+1) 2 j +1+ j + 2 !     Put j = k + 1 into (3.14); then it becomes (3.13). Case 4. j>k+1 We define a sequence α by { k}

∞ z + n (3.15) ak =min 1 zF − zij nN∈(k) j=k+2 zij Cj   ∈ Y Y∈

where

k(k+1) (k+1)(k+2) N(k)= n:1+ k3+ !

Since F G, by the periodicity of G,wehaveF+n Gfor all positive integers n. Hence g⊂(z + n) =0forallz F.Thusa >0 for⊂ all positive integers k. | |6 ∈ k

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1456 J. H. KIM AND LEE A. RUBEL

We shall show that a is eventually an increasing sequence. For convenience, { k} we write minz,n1 and minz0,n2 instead of min z F and min z0 F (and likewise n1 ∈N(k) n N∈(k+1) ∈ 2∈ for max). To prove that ak is increasing, we examine the ratio:

z0+n min ∞ (1 2 a z0,n2 j=k+3 z0 Cj z k+1 ij ∈ − ij0 z+n ak ≥ max Q ∞ Q (1 1 z0,n1 j=k+2 z C z ij ∈ j − ij0 z0 (z0+n ) Q Q min ij − 2 z z0,n2 z0 Ck+3 z min ij ij ∈ ij0 ≥ z,n1 zij (z + n1) × zij (z+n1) z C maxz,n Q − ij k+2 − 1 zij Ck+3 zij ∈Y ∈ z0 (z0+n ) min ij − 2 Q z0,n2 z C x ij0 ∈ k+4 ij0 zij (z+n1) × Q − ×··· maxz,n1 z C z ij ∈ k+4 ij min z (z + n ) Q z z0,n2 z C ij0 0 2 ij ij0 k+3 | − | (3.16) min ∈ ≥ z,n1 z (z + n ) × max z (z + n ) ij 1 z,n1 Q zij Ck+3 ij 1 zij Ck+2 ∈Y − ∈ | − |

minz0,n2 z C zij0 (z0 + n2) Q ij0 ∈ k+4 | − | × max z (z + n ) ×··· z,n1 Q zij Ck+4 ij 1 ∈ | − | Q zij =min min zij0 (z0 + n2) z,n1 zij (z + n1) × z0,n2 | − | zij Ck+2 − zij0 Ck+3 ∈Y ∈Y min z (z + n ) z0,n2 z C ij0 0 2 ij0 ∈ k+4 | − | × max z (z + n ) z,n1 Q zij C ij 1 ∈ k+3 | − | min z (z + n2) z0,n2 Qz0 Ck+5 ij0 0 ij ∈ | − | . × max z (z + n ) ×··· z,n1 Q zij Ck+4 ij 1 ∈ | − | Q We can easily check that the first and second terms of the last equation of (3.16) are greater than 1. From (3.4) and Table 3.1, for all z F , n1 N(k)andzij Ck+l 1 (l 4), we have ∈ ∈ ∈ − ≥

3 (k + l 1)(k + l) z (z + n1) z k+l+ (k+l 1) + − ! | ij − |≤| ij |≤ − 2  

and for z0 F , n2 N(k +1)andz0 C + (l 4), we have ∈ ∈ ij ∈ k l ≥

z0 (z + n2) Re z0 (z + n2) | ij − |≥ | ij − | (k+2)(k+3) ((k + l)3 +1)! 2 (k +2)3 + ! ≥ − − 2   >((k + l)3 +1)! (k+3)3!. −

So we have an inequality,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1457

z0 (z0 + n2) z (z + n1) | ij − |−| ij − | > ((k + l)3 +1)! (k+3)3! − (k + l 1)(k + l) k+l+ (k+l 1)3 + − ! − − 2 (3.17)     =(k+3)3! (k+l)3 +1) ((k +3)3 +1) 1 ··· −  (k + l 1)(k + l) k+l+(k+l 1)3 + − ((k +3)3 +1) . − − 2 ···    It is easy to check that (k + l 1)(k + l) (k + l)3 +1>k+l+(k+l 1)3 + − − 2 for l 4. Hence the right-hand side of (3.17) is greater than 0 and we have ≥ z0 (z0 + n2) ij − > 1 z (z + n ) ij 1 − for all z,z0 F, n1 N(k), n 2 N(k +1), z ij Ck+l 1 and zij0 Ck+l.Since ∈ ∈ ∈ ∈ − ∈ Ck+l Ck+l 1 ,wehave k k≥k − k

minz0,n2 z C zij0 (z0 + n2) ij0 ∈ k+l | − | > 1 max z (z + n ) z,n1 Qzij Ck+l 1 ij 1 ∈ − | − | for all l 4. Q ≥ ak+1 Now we can conclude that > 1. Therefore ak is a positive and eventually ak increasing sequence. { } From (3.9), (3.12), (3.13) and (3.15), for all z f and n N(k), we can write ∈ ∈ f(z + n) = ez+ng(z + n) | | | | k 1 − z + n z + n = ez+n 1 1 | |× − zij × − zij j=1 zij Cj zij Ck Y Y∈ Y∈

z + n ∞ z + n 1 1 × − zij × − zij zij Ck+1 j=k+2 zij Cj   ∈Y Y Y∈ n ε0 (3.18) >ake 3 k(k+1)) k+1+(k + 2 )! 3 3 (k+1)(k+2) 2 [((k +1) +2)! ((k +1) +1)!] 2 − ε2 − × 0 (k+1)(k+2) 3 (k+1)(k+2) 2 k +2+ (k+1) + 2 !

h 3 3  i(k+1)(k+2) 2 3 n [((k +1) +2)! ((k +1) +1)!] 2 − >ε0ake − . (k+1)(k+2) +1 3 (k+1)(k+2) 2 k +2+ (k+1) + 2 ! Here we will show that h   i (3.19) (k +1)(k+2) (k+1)(k+2) log en +1 log k +2+ (k+1)3 + ! >0. − 2 2     

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1458 J. H. KIM AND LEE A. RUBEL

3 k(k+1) Since n N(k), 1+(k + 2 )!

(k +1)(k+2) (k+1)(k+2) log en +1 log k +2+ (k+1)3 + ! − 2 2      k(k+1) 1 k3 + ! (k+2)2log(k +2)3! ≥ 2 −2   3 k(k+1) 1 2 3 (k+2)3 3(k+2)3 k + ! (k+2) log 2π(k +2) e− (k +2) ∼ 2 −2   k(k +1) 1 p = k3 + !+ (k+2)5 2 2   1 (k+2)2(3(k +2)3log(k + 2) + log 2π(k +2)3) −2 k(k+1) 3 p > k3 + ! (k+2)5log(k +2) 2 −2   >0

for large enough k. This implies

3 3 3 (k+1)(k+2) 2 (3.20) f(z + n) >ε a [((k +1) +2)! ((k +1) +1)!] 2 − | | 0 k − and the right-hand side of (3.20) tends to infinity as k . From (3.8), k as n ,so f(z+n) uniformly on the compact→∞ set F as n . Therefore→∞ →∞ | |→∞ →∞ z0 N(f). ∈ 3.3. If z Gc, then z N(f). Since W is a countable subset of Gc,foreach ∈ 6∈ 0 wst W and δ>0, we can choose a number δ0,0<δ0 <δ,sothatwst + δ0 = wkl (and∈= w + 1) for all w W. From the construction of the sequence Z, t 6 is the 6 kl kl ∈ smallest integer such that Ct contains the translation of wst. And the translations of wst have the form

3 (3.21) zγn = wst +(n +γ)!

t(t 1) where n t and γ = −2 + s.Wefixwst and show f(zγn +δ0) as n . For each≥ positive integer n,welet | |→∞ →∞

n 1 − zγn + δ0 (3.22.1) In = 1 , − zij j=1 zij Cj   Y Y∈

zγn + δ0 (3.22.2) Jn = 1 , − zij zij Cn   Y∈ and

∞ zγn + δ0 (3.22.3) Kn = 1 . − zij j=n+1 zij Cj   Y Y∈

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1459

We fix n for a moment and write

∞ zγn + δ0 g(zγn + δ0)= 1 (3.23) − zij j=1 zij Cj   Y Y∈ = I J K . n × n × n We examine the moduli of In,Jn,andKn. (i) Estimation of In : Assume δ0 < 1; then by (3.4), for each zij Cj where 1 j

n3!

n(n 1) ≥ n +((n 1)3 + − )! − 2 > 2. So we obtain z + δ z + δ 1 γn 0 1 γn 0 − z ≥ − z ij ij

> 1

and n 1 − zγn + δ0 (3.24) In = 1 > 1. | | − zij j=1 zij Cj Y Y∈

(ii) Estimation of J :Since | n| min z z : z C ,z = z {| γn − in| in ∈ n in 6 γn} > z1 z2 Re(z2 z1 ) | n − n|≥ n − n > (n3 +2)! ((n3 +1)!+1) − >(n3 +1)! and

zγn + δ0 Jn = 1 | | − zin zin Cn Y∈ z + δ z + δ = 1 γn 0 1 γn 0 − zγn × − zin zin Cn zinY=∈zγn 6 δ0 z (z + δ0) in − γn , ≥ zγn × zin | | zin Cn zinY=∈zγn 6

with (3.2) and (3.4), we obtain the following inequality

3 n(n+1) 1 ((n +1)!) 2 − (3.25) J >δ0 . | n| n(n+1) 3 n(n+1) 2 n +1+(n + 2 )!  

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1460 J. H. KIM AND LEE A. RUBEL

(iii) K is an eventually increasing sequence: We consider the ratio (for {| n|} convenience, we let zγnˆ = zγ(n+1)):

1 zγnˆ +δ0 k ∞ z0 Cj+1 z n+1 = ij ∈ − ij0 K  zγn+δ0  n j=n+1 Q Cj 1 Y zij ∈ − zij   + Q 1 zγnˆ δ0 z z0 Cn+2 z = ij ij ∈ − ij0 zij (zγn + δ0) ×  zγn+δ0  z C Q 1 ij n+1 − zij Cn+2 zij ∈Y ∈ − +   1 zγnˆ δ0 Q z Cn+3 z ij0 ∈ − ij0 × Q  zγn+δ0  ×··· z C 1 z ij ∈ n+3 − ij   (z (z ˆ + δ0)) (3.26) Q z z0 Cn+2 ij0 γn = ij ij ∈ − zij (zγn + δ0) × (zij (zγn + δ0)) z C Qzij Cn+2 ij ∈Yn+1 − ∈ − z C (zij0 (zγnˆ +Qδ0)) ij0 ∈ n+3 − × (z (z + δ )) ×··· Qzij Cn+3 ij γn 0 ∈ − zij = Q (zij0 (zγnˆ + δ0)) zij (zγn + δ0) × − zij Cn+1 z C ∈Y − ij0 ∈Yn+2 z C (zij0 (zγnˆ + δ0)) z C (zij0 (zγnˆ + δ0)) ij0 ∈ n+3 − ij0 ∈ n+4 − × (z =(z + δ )) × (z (z + δ )) Qzij Cn+2 ij γn 0 Qzij Cn+3 ij γn 0 ∈ ∈ − . ×···Q Q

The moduli of the first and second parts of the last equation of (3.26) are greater than 1. And for z0 C + +1 and z C + , l 2, we have ij ∈ n l ij ∈ n l ≥

z0 (zγnˆ + δ0) z0 zγnˆ +δ0 | ij − | > | ij |−| | z (z + δ0) z | ij − γn | | ij | 3 3 (n+1)(n+2) ((n + l +1) +1)! (n+1)+1+ (n+1) + 2 ! > − h 3 (n+l)(n+l+1)  i n + l +1+ (n+l) + 2 ! ((n + l +1)3 +1)! (n+2) 3!  > − ((n + l)3 +(n+l)2)! > 1

for sufficiently large n.Since C++1 C + , k n l k≥k n lk

z C zij0 (zγnˆ + δ0) ij0 ∈ n+l+1 | − | > 1 z (z + δ ) Q zij Cn+l ij ij 0 ∈ | − | Q for all l 2. Hence we can conclude that Kn+1 > 1 for sufficiently large n. ≥ | Kn |

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use INTEGER TRANSLATION OF MEROMORPHIC FUNCTIONS 1461

Now we can estimate the value f(zγn +δ0) . From (3.23), (3.24) and (3.25), we obtain | |

zγn+δ0 f(z + δ0) = e g(z + δ0) | γn | | γn | = ezγn+δ0 I J K | |·| n|·| n|·| n| (3.27) 3 n(n+1) 1 (n3+γ)! 1 ((n +1)!) 2 − e − δ0 K . ≥ n(n+1) | n| 3 n(n+1) 2 n +1+(n + 2 )! Here we let   e(n3+γ)! 1 α = − . n n(n+1) 3 n(n+1) n +1+ n + 2 ! Then for large enough n, by Stirling’s formula we get n(n +1) log α (n3 + γ)! log(n3 + n2)! n ≥ − 2 3 n(n +1) 3 2 (n3+n2) 3 2 n3+n2 (n + γ)! log 2π(n + n )e− (n + n ) ∼ − 2 n(n +1) p =(n3+γ)! + (n3 +n2) 2 n(n+1) [(n3 + n2) log(n3 + n2) + log 2π(n3 + n2)] − 2 n3(n +1)2 p > (n3 + γ)! log(n3 + n2) − 2 > 0.

So αn > 1 and the inequality (3.27) becomes

3 n(n+1) 1 f(z + δ0) >δ0 K ((n +1)!) 2 − . | γn | ·| n|· Since Kn is an increasing sequence, f(zγn + δ0) as n . But{| for each|} positive integer n, | |→∞ →∞ 3 f(zγn)=f(wst +(n +γ)!) =0

by the definition of the function f.Sowst does not belong to N(f). We choose c wst arbitrarily from the set W and W is a dense subset of G0. Hence no point in c G0 can be in N(f).

References 1. G. D. Birkhoff, D´emostration d’un th´eor´eme ´el´ementaire sur les fonctions enti`eres,C.R.Acad. Sci. Paris 189 (1929), 473–475. 2. C. Blair and L. A. Rubel, A universal entire function, Amer. Math. Monthly 90 (1983), 331– 332. MR 85a:30046 3. J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117–148. MR 33:282 4. W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. MR 29:1337 5. D. H. Luecking and L. A. Rubel, , Springer-Verlag, New York, 1984. MR 86d:30002

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1462 J. H. KIM AND LEE A. RUBEL

6. F. Marty, Recherches sur la r´epartition des valeurs d’une fonction m´eromorphe, Ann. Fac. Sci. Univ. Toulouse (3) 23 (1931), 183–261. 7. Paul Montel, Le¸cons sur les familles normals de fonctions analytiques et leurs applications, Paris, 1927.

Korea Military Academy, Seoul 139-799, Korea E-mail address: [email protected]

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use