Using Barcode Similarity Groups to Organize Cortinarius Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Using Barcode Similarity Groups to Organize Cortinarius Sequences Using Barcode Similarity Groups to Organize Cortinarius Sequences by Emma Harrower A thesis submitted in conformity with the requirements for the degree of Master of Science Ecology and Evolutionary Biology University of Toronto © Copyright by Emma Harrower 2010 Using Barcode Similarity Groups to Organize Cortinarius Sequences Emma Harrower Master of Science Name of Graduate Ecology and Evolutionary Biology University of Toronto 2010 Abstract To improve fungal identification using a single DNA sequence, I introduce the Barcode Similarity Group (BSG) defined as a cluster of sequences that share greater than or equal to a threshold amount of genetic similarity with each other. As a test case, I created 393 BSGs from 2463 Cortinarius ITS sequences using a 94% similarity cut-off value in DOTUR. Some BSGs may contain multiple species. The BSG database was used to label environmental sequences, find misidentified or mislabeled sequences, and find potential cryptic species and novel species. Expert taxonomists will be needed to perform detailed morphological and phylogenetic studies to identify the individual species within each BSG. The main advantage of using BSGs is that it clusters together sequences using total genetic relatedness and does not rely on any taxonomy for identification. A website was created where the RDP Classifier is used to classify a query sequence into a BSG. ii Acknowledgments I would like to thank Dr. Jean-Marc Moncalvo for his guidance, and Simona Margaritescu for her help in the lab. I would like to thank Dr. Nicholas Provart and Hardeep Nahal for their help with providing me with Perl scripts to use, for providing me an account on the BAR server and for helping set up a MySQL account for me. I would like to thank Bryn Dentinger for his understanding of the difficulties I faced and for his encouragement. I would like to thank my family and friends for their support and encouragement. The National Science and Engineering Research Council provided funding for this research. iii Table of Contents ACKNOWLEDGMENTS...............................................................................................................................................III TABLE OF CONTENTS ................................................................................................................................................ IV LIST OF ABBREVIATIONS......................................................................................................................................... VI LIST OF FIGURES ........................................................................................................................................................VII LIST OF TABLES ........................................................................................................................................................VIII LIST OF APPENDICES ................................................................................................................................................. IX CHAPTER 1: INTRODUCTION .................................................................................................................................1 FUNGAL DIVERSITY AND ECOLOGICAL ROLES .................................................................................................................1 SPECIES CONCEPTS IN FUNGI ............................................................................................................................................2 DIFFICULTIES IN IDENTIFYING FUNGAL SPECIMENS.........................................................................................................3 MOLECULAR IDENTIFICATION ..........................................................................................................................................4 GENBANK AND BLAST....................................................................................................................................................4 THE DNA BARCODING INITIATIVE...................................................................................................................................5 WHAT IS A BARCODE SIMILARITY GROUP?.....................................................................................................................7 THE GENUS CORTINARIUS (AGARICALES, BASIDIOMYCOTINA) ......................................................................................8 MOLECULAR IDENTIFICATION OF CORTINARIUS...............................................................................................................9 OBJECTIVES .....................................................................................................................................................................10 CHAPTER 2: THE CREATION OF ITS-RDNA BARCODE SIMILARITY GROUPS FOR THE GENUS CORTINARIUS (AGARICALES, FUNGI)...................................................................................................................12 INTRODUCTION................................................................................................................................................................12 MATERIALS AND METHODS............................................................................................................................................15 Obtaining sequences .................................................................................................................................................15 Creating Barcode Similarity Groups .......................................................................................................................15 Matching a query sequence to a BSG ......................................................................................................................16 Web access to the BSG database..............................................................................................................................17 RESULTS ..........................................................................................................................................................................18 ITS sequence diversity and taxonomic accuracy in public databases ...................................................................18 Creating the BSG Database......................................................................................................................................19 Finding misidentified sequences ..............................................................................................................................20 Finding novel and cryptic species............................................................................................................................21 Collecting and labeling environmental sequences and matching them to voucher specimens............................21 Metadata retrieved from BSGs.................................................................................................................................21 The BSG Classifier and website ...............................................................................................................................22 iv DISCUSSION .....................................................................................................................................................................23 CHAPTER 3: GENERAL DISCUSSION AND PERSPECTIVES FOR FUTURE STUDIES........................28 TAXONOMIC DELIMITATION AND CLASSIFICATION ......................................................................................................28 Delimitation of Species .............................................................................................................................................28 Classification tools....................................................................................................................................................30 Fungal identification tools........................................................................................................................................32 BARCODE SIMILARITY GROUPS......................................................................................................................................33 How are BSGs an improvement on the current taxonomic database model?.......................................................33 How the 94% similarity value was chosen ..............................................................................................................33 Uses of BSGs .............................................................................................................................................................34 FUTURE DEVELOPMENTS................................................................................................................................................38 CONCLUSION ...................................................................................................................................................................40 LITERATURE CITED ....................................................................................................................................................41 FIGURES............................................................................................................................................................................50 TABLES..............................................................................................................................................................................58
Recommended publications
  • Flora and Vegetation of the Eastern Goldfields Ranges: Part 4
    Journal of the Royal Society of Western Australia, 84: 71-81, 2001 Flora and vegetation of the Eastern Goldfields Ranges: Part 4. Highclere Hills N Gibson & M N Lyons Science Division, Department of Conservation and Land Management, Wildlife Research Center, PO Box 51 Wanneroo, WA 6065 email: [email protected] [email protected] (Manuscript received July 2000; accepted November 2001) Abstract A study of the flora and plant communities of the Highclere Hills (which lie some 25 km NNW of Bullfinch) recorded 242 taxa in the spring of 1996. Of these, 217 taxa were native and 25 were weeds. The flora list includes Acacia xerophila var brevior, Stenanthemum newbeyi and Tricoryne tuberosa ms, which represent significant range extensions for these taxa. No endemic taxa were found on the Highclere Hills. Five community types were defined from 45 quadrats spread across the Hills. The distribution of these community types appears to be primarily related to edaphic factors that were largely independent of topographic position. None of the five community types is known from conservation reserves. The vegetation patterning of the Highclere Hills is not as complex as that found on nearby ranges due to a more subdued topography. There has been widespread impact on the vegetation of the Highclere Hills by mineral exploration and mining and there is an urgent need to improve environmental management of mineral exploration activities. Keywords: vegetation, flora, Highclere Hills, survey Introduction have occurred during the Cainozoic (the last 65 MY). The net result is a very subdued landscape given the long pe- The Highclere Hills are composed primarily of riod of erosion this area has undergone.
    [Show full text]
  • Eucalyptus Gunnii Subsp. Divaricata (Mcaulay & Brett) B.M
    Listing StatementEucalyptus for Eucalyptus gunnii gunnii subsp. subsp. divaricata (miena divaricata cider gum) miena cider gum T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image by B. Potts Scientific name: Eucalyptus gunnii subsp. divaricata (McAulay & Brett) B.M. Potts, Pap. Proc. R. Soc. Tasm . 135: 57 (2001) Common name: miena cider gum (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Myrtaceae Status: Threatened Species Protection Act 1995 : endangered Environment Protection and Biodiversity Conservation Act 1999 : Endangered Distribution Endemic status: Endemic to Tasmania Tasmanian NRM Region: South Figure 1. Distribution of specimens attributed to Plate 1 . Eucalyptus gunnii subsp. divaricata Eucalyptus gunnii subsp. divaricata . The northern and (Image by J. Calder) western most records require verification. 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Eucalyptus gunnii subsp. divaricata (miena cider gum) IDENTIFICATION AND ECOLOGY in drought conditions or in stands disturbed by Eucalyptus gunnii subsp. divaricata is a small to stock grazing. While Eucalyptus gunnii subsp. medium sized tree in the Myrtaceae family divaricata is highly frost resistant, it is the first (Plate 1). It is endemic to Tasmania’s Central eucalypt in the area to display symptoms Plateau where it mostly grows on the edges of following drought, leading to the death of frost hollows (Potts et al. 2001). Eucalyptus gunnii mature trees in relatively large patches since the subsp.
    [Show full text]
  • SOMA News March 2011
    VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596.
    [Show full text]
  • Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium Halimifolium (Cistaceae)
    Journal of Applied Pharmaceutical Science Vol. 5 (01), pp. 052-057, January, 2014 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2015.50110 ISSN 2231-3354 Total Phenolic, Total Flavonoid, Tannin Content, and Antioxidant Capacity of Halimium halimifolium (Cistaceae) Ahlem Rebaya1*, Souad Igueld Belghith2, Béatrice Baghdikian3, Valérie Mahiou Leddet 3, Fathi Mabrouki3, Evelyne Olivier3, Jamila kalthoum Cherif1, 4, Malika Trabelsi Ayadi 1 Laboratory of Applications of Chemical Resources, Natural Substances and the Environment (LACReSNE), Faculty of Sciences of Bizerte, 7021 Zarzouna - Bizerte, Tunisia. 2 Preparatory Institute for Engineering Studies of El-Manar B.P.244 El Manar II - 2092 Tunis, Tunisia. 3 Laboratory of Pharmacognosy and Ethnopharmacology, UMR-MD3, Faculty of Pharmacy, Aix-Marseille University, 27 Bd Jean Moulin, CS 30064, 13385, Marseille cedex 5, France. 4 Preparatory Institute for Engineering Studies of Tunis, 2 rue Jawaharlal Nehru, Monfleury, 1008 Tunis, Tunisia. ABSTRACT ARTICLE INFO Article history: This study was carried out to evaluate the phytochemical constituents and antioxidant potential of the leaves and Received on: 23/10/2014 flowers extracts of Halimium halimifolium in order to validate the medicinal potential of this herb. The Revised on: 12/11/2014 antioxidant activity of alcoholic and aqueous extracts was evaluated using 2, 2-diphenyl-l-picrylhydrazyl Accepted on: 09/12/2014 (DPPH), 2, 2’-azinobis- (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power Available online: 30/01/2015 (FRAP) assays. The total polyphenol, flavonoid and tannin content were determined according respectively to Folin-Ciocalteu method, Zhishen method and Broadhurst method. The leaves of H. halimifolium had greater Key words: antioxidant activity than flowers by DPPH and ABTS assays.
    [Show full text]
  • Antibacterial and Antifungal Activities of Ethanol Extracts of Halimium Halimifolium, Cistus Salviifolius and Cistus Monspeliensis
    Available online at www.ijpcr.com International Journal of Pharmaceutical and Clinical Research 2016; 8(4): 243-247 ISSN- 0975 1556 Research Article Antibacterial and Antifungal Activities of Ethanol Extracts of Halimium halimifolium, Cistus salviifolius and Cistus monspeliensis Ahlem Rebaya1, Souad Igueld Belghith2*, Safa Hammrouni3, Abderrazak Maaroufi3, Malika Trabelsi Ayadi1, Jamila Kalthoum Chérif1,4 1Laboratory of Applications of Chemical Resources, Natural Substances and the Environment (LACReSNE), Faculty of Sciences of Bizerte, 7021 Zarzouna - Bizerte, Tunisia. 2Preparatory Institute for Engineering Studies of El-Manar B.P.244 El Manar II - 2092 Tunis, Tunisia. 3Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), BP 74, 13 place Pasteur, Belvédère, 1002 Tunis, Tunisia. 4Preparatory Institute for Engineering Studies of Tunis, 2 rue Jawaharlal Nehru, Monfleury, 1008 Tunis, Tunisia. Available Online: 01st April, 2016 ABSTRACT The objective of this study was to evaluate antimicrobial and antifungal activities of crude extracts from leaves and flower of Halimium halimifolium, and compared with those of Cistus salviifolius and Cistus monspeliensis. The tested plants (leaves and flowers) were extracted with ethanol, the activities were screened against three Gram-positive (Listeria monocytogenes, Bacillus subtilis and staphylococcus aureus), three Gram-negative bacteria (Salmonella enteric, Pseudomonas aeruginosa and Escherichia coli), and two pathogenic fungi (Candida albicans and Aspergillus niger). The efficacy of these extracts was tested against those microorganisms through a disc-diffusion method employing 15 휇L of each sample per paper discs (6 mm in diameter). Comparable results were carried out using Gentamicin and Amphotericin as standard antibiotics. Ethanol extracts of different parts of plant exhibited good activity against all microorganisms tested.
    [Show full text]
  • Key Features for the Identification of the Fungi in This Guide
    Further information Key features for the identifi cation Saprotrophic recycler fungi Books and References of the fungi in this guide Mushrooms. Roger Phillips (2006). Growth form. Fungi come in many different shapes and Fruit body colours. The different parts of the fruit body Collybia acervata Conifer Toughshank. Cap max. 5cm. Macmillan. Excellent photographs and descriptions including sizes. In this fi eld guide most species are the classic can be differently coloured and it is also important This species grows in large clusters often on the ground many species from pinewoods and other habitats. toadstool shape with a cap and stem but also included to remember that the caps sometimes change colour but possibly growing on buried wood. Sometimes there are are some that grow out of wood like small shelves or completely or as they dry out. Making notes or taking Fungi. Roy Watling and Stephen Ward (2003). several clusters growing ± in a ring. The caps are reddish brackets and others that have a coral- like shape. Take photographs can help you remember what they looked Naturally Scottish Series. Scottish Natural Heritage, Battleby, Perth. brown but dry out to a buff colour. The stems are smooth, note of whether the fungus is growing alone, trooping like when fresh. In some fungi the fl esh changes colour Good introduction to fungi in Scotland. and red brown and the gills are white and variably attached, or in a cluster. when it is damaged. Try cutting the fungus in half or Fungi. Brian Spooner and Peter Roberts (2005). adnate to free. Spore print white.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Project Cover Sheet
    Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) RM-CESU Cooperative Agreement Number: H1200040001 PROJECT COVER SHEET TITLE OF PROJECT: Investigation of Mycorrhizal fungi associated with whitebark pine in Waterton Lakes- Glacier National Parks Ecosystem. NAME OF PARK/NPS UNIT: Glacier NP NAME OF UNIVERSITY PARTNER: Montana State University NPS KEY OFFICIAL: Joyce Lapp Glacier National Park West Glacier, MT 59936 406-888-7817 [email protected] PRINCIPAL INVESTIGATOR: Cathy L. Cripps Department of Plant Sciences & Plant Pathology 119 Plant BioSciences Building Montana State University Bozeman, MT 59717 [email protected] 406-994-5226 COST OF PROJECT: Direct Cost: $ 1000.00 Indirect Cost (CESU overhead): $ 175.00 Total Cost: $ 1,175.00 NPS ACCOUNT NUMBER: 1430-7077-634 NAME OF FUND SOURCE: IMR-IMRICO PROJECT SCHEDULE, FINAL PRODUCTS, AND PAYMENTS Date of Project Initiation: May 1, 2007 List of Products: (1) Field collection of ectomycorrhizae from Whitebark pine and identification of this fungi, (2) final report due on March 31, 2008. Payment Schedule: Invoices as received from the University. End Date of Project: May 1, 2008 1 GLACIER NATIONAL PARK Investigation of Native Mycorrhizal Fungi with Whitebark Pine Final Report 2009 Cathy Cripps, Montana State University ([email protected]) INTRODUCTION Whitebark pine is a picturesque, long-lived tree of high mountain landscapes in much of the American West. It is a "keystone” species supplying food and shelter for wildlife and often holding the snow and rocky soils in places where other trees cannot grow. Now, however, in about half of its natural range, including Waterton-Glacier NP, whitebark pine is mostly dead or dying, due to an introduced blister rust disease and replacement by competing trees as a result of fire exclusion (Schwandt 2006, Tomback & Kendall 2001, Kendrick & Keane 2001).
    [Show full text]
  • Ectomycorrhizal Fungal Community Structure in a Young Orchard of Grafted and Ungrafted Hybrid Chestnut Saplings
    Mycorrhiza (2021) 31:189–201 https://doi.org/10.1007/s00572-020-01015-0 ORIGINAL ARTICLE Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings Serena Santolamazza‑Carbone1,2 · Laura Iglesias‑Bernabé1 · Esteban Sinde‑Stompel3 · Pedro Pablo Gallego1,2 Received: 29 August 2020 / Accepted: 17 December 2020 / Published online: 27 January 2021 © The Author(s) 2021 Abstract Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting signifcantly infuenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a diferent ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • A Review of Natural Values Within the 2013 Extension to the Tasmanian Wilderness World Heritage Area
    A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Nature Conservation Report 2017/6 Department of Primary Industries, Parks, Water and Environment Hobart A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Jayne Balmer, Jason Bradbury, Karen Richards, Tim Rudman, Micah Visoiu, Shannon Troy and Naomi Lawrence. Department of Primary Industries, Parks, Water and Environment Nature Conservation Report 2017/6, September 2017 This report was prepared under the direction of the Department of Primary Industries, Parks, Water and Environment (World Heritage Program). Australian Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Tasmanian or Australian Governments. ISSN 1441-0680 Copyright 2017 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright act, no part may be reproduced by any means without permission from the Department of Primary Industries, Parks, Water and Environment. Published by Natural Values Conservation Branch Department of Primary Industries, Parks, Water and Environment GPO Box 44 Hobart, Tasmania, 7001 Front Cover Photograph of Eucalyptus regnans tall forest in the Styx Valley: Rob Blakers Cite as: Balmer, J., Bradbury, J., Richards, K., Rudman, T., Visoiu, M., Troy, S. and Lawrence, N. 2017. A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2017/6, Department of Primary Industries, Parks, Water and Environment, Hobart.
    [Show full text]
  • A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
    International Journal of Environmental Research and Public Health Review A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms 1, 2,3, Dagmara Strumi ´nska-Parulska * and Jerzy Falandysz y 1 Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland 2 Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland; [email protected] 3 Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia * Correspondence: [email protected]; Tel.: +48-58-5235254 Jerzy Falandysz is visiting professor at affiliation 3. y Received: 22 September 2020; Accepted: 3 November 2020; Published: 6 November 2020 Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular, medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a range of mineral ionic constituents and radioactive elements to different extents, and are therefore considered as suitable bio-indicators of environmental pollution. The available literature indicates that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight (dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the activity of individual nuclides varies between mushrooms, which is of particular interest for edible species that are consumed either locally or, in some cases, also traded on an international scale.
    [Show full text]