Nothing but Motion Other Books by Dewey B

Total Page:16

File Type:pdf, Size:1020Kb

Nothing but Motion Other Books by Dewey B NOTHING BUT MOTION OTHER BOOKS BY DEWEY B. LARSON Physical Science The Structure of the Physical Universe The Case Against the Nuclear Atom Beyond Newton New Light on Space and Time Quasars and Pulsars Economic Science The Road to Full Employment NOTHING BUT MOTION Volume I of a revised and enlarged edition of THE STRUCTURE OF THE PHYSICAL UNIVERSE By DEWEY B. LARSON NORTH PACIFIC PUBLISHERS P. O. Box 13255 Portland, Oregon 97213 Copyright © 1959, 1965, 1979 By Dewey B. Larson All rights reserved Library of Congress Catalog Card No. 79-88078 ISBN 0-913138-07-x Contents Preface vii 1 Background 1 2 A Universe of Motion 15 3 Reference Systems 29 4 Radiation 43 5 Gravitation 57 6 The Reciprocal Relation 71 7 High Speed Motion 83 8 Motion in Time 97 9 Rotational Combinations 115 10 Atoms 127 11 Sub-atomic Particles 139 12 Basic Mathematical Relations 147 13 Physical Consta nts 157 14 Cosmic Elements 173 15 Cosmic Ray Decay 185 16 Cosmic Atom Building 199 17 Some Speculations 211 18 Simple Compounds 219 19 Complex Compounds 235 20 Chain Compounds 249 21 Ring Compounds 269 References 285 Index 289 v Preface Nearly twenty years have passed since the first edition of this work was published. As I pointed out in the preface of that first edition, my findings indicate the necessity for a drastic change in the accepted concept of the fundamental relationship that underlies the whole structure of physical theory: the relation between space and time. The physical universe, I find, is not a universe of matter existing in a framework provided by space and time, as seen by conventional science, but a universe of motion, in which space and time are simply the two reciprocal aspects of motion, and have no other significance. What I have done, in brief, is to determine the properties that space and time must necessarily possess in a universe composed entirely of motion, and to express them in the form of a set of postulates. I have then shown that development of the consequences of these postulates by logical and mathematical processes, without making any further assumptions or introducing any­ thing from experience, defines, in detail, a complete theoretical universe that coincides in all respects with the observed physical universe. Nothing of this nature has ever been developed before. No previous theory has come anywhere near covering the full range of phenomena accessible to observation with existing facilities, to say nothing of dealing with the currently inaccessible, and as yet observationally unknown, phenomena that must also come within the scope of a complete theory of the universe. Conventional scientific theories accept certain features of the observed physical universe as given, and then make assumptions on which to base conclusions as to the properties of these observed phenomena. The new theoretical system, on the other hand, has no empirical content. It bases all of its conclusions solely on the postulated properties of space and time. The theoretical deductions from these postulates provide for theexistence of the various physical entities and phenomena—matter, radiation, electrical and magnetic phenomena, gra­ vitation, etc.—as well as establishing the relations between these entities. Since all conclusions are derived from the same premises, the theoretical system is a completely integrated structure, contrasting sharply with the currently accepted body of physical theory, which, as described by Richard Feynman, is “a multitude of different parts and pieces that do not fit together very well.” The last twenty years have added a time dimension to this already vii viii Nothing but Motion unique situation. The acid test of any theory is whether it is still tenable after the empirical knowledge of the subject is enlarged by new discover­ ies. As Harlow Shapley once pointed out, facts are the principal enemies of theories. Few theories that attempt to cover any more than a severely limited field are able to survive the relentless march of discovery for very long without major changes or complete reconstruction. Butno substantive changes have been made in the postulates of this new system of theory in the nearly twenty years since the original publication, years in which tremendous strides have been made in the enlargement of empirical knowledge in many physical areas. Because the postulates and whatever can be derived from them by logical and mathematical processes, without introducing anything from observation or other exter­ nal sources, constitute the entire system of theory, this absence of substantive change in the postulates means that there has been no change anywhere in the theoretical structure. It has been necessary, of course, toextend the theory by developing more of the details, in order to account for some of the new discoveries, but in most cases the nature of the required extension was practically obvious as soon as the new phenomena or relationships were identified. Indeed, some of the new discoveries, such as the existence of exploding galaxies and the general nature of the products thereof, were actually anticipated in the first published description of the theory, along with many phenomena and relations that are still awaiting empirical verifica­ tion. Thus the new theoretical system is ahead of observation and experiment in a number of significant respects. The scientific community is naturally reluctant to change its basic views to the degree required by my findings, or even to open its journals to discussion of such a departure from orthodox thought. It has therefore been a slow and difficult task to get a significant amount of serious consideration of the new structure of theory. However, those whodo examine this new theoretical structure carefully can hardly avoid being impressed by the logical and consistent nature of the theoretical develop­ ment. As a consequence, many of the individuals who have made an effort to understand and evaluate the new system have not only recognized it as a major addition to scientific knowledge, but have developed an active personal interest in helping to bring it to the attention of others. In order to facilitate this task an organization was formed some years ago with the specific objective of promoting understanding and eventual acceptance of the new theoretical system, the Reciprocal System of physical theory, as we are calling it. Through the efforts of this organization, the New Science Advocates, Inc., and its individual members, lectures on the new theory have been given at colleges and universities throughout the United States and Canada. The NSA also Preface ix publishes a newsletter, and has been instrumental in making publication of this present volume possible. At the annual conference of this organization at the University of Mississippi in August 1977 I gave an account of the origin and early development of the Reciprocal System of theory. It has been suggested by some of those who heard this presentation that certain parts of it ought to be included in this present volume in order to bring out the fact that the central idea of the new system of theory, the general reciprocal relation between space and time, is not a product of a fertile imagination, but a conclusion reached as the result of an exhaustive and detailed analysis of the available empirical data in a number of the most basic physical fields. The validity of such a relation is determined by its consequences, rather than by its antecedents, but many persons may be more inclined to take the time to examine those consequences if they are assured that the relation in question is the product of a systematic inductive process, rather than something extracted out of thin air. The following paragraphs from my conference address should serve this purpose. Many of those who come in contact with this system of theory are surprised to find us talking of “progress” in connection with it. Some evidently look upon the theory as a construction, which should be complete before it is offered for inspection. Others apparently believe that it originated as some kind of a revelation, and that all I had to do was to write it down. Before I undertake to discuss the progress that has been made in the past twenty years, it is therefore appropriate to explain just what kind of a thing the theory actually is, and why progress is essential. Perhaps the best way of doing this will be to tell you something about how it originated. I have always been very much interested in the theoretical aspect of scientific research, and quite early in life I developed a habit of spending much of my spare time on theoretical investigations of one kind or another. Eventually I concluded that these efforts would be more likely to be productive if I directed most of them toward some specific goal, and I decided to undertake the task of devising a method whereby the magnitudes of certain physical properties could be calculated from their chemical composition. Many investigators had tackled this problem previously, but the most that had ever been accomplished was to devise some mathematical expressions whereby the effect of temperature and pressure on these properties can be evaluated if certain arbitrary “constants” are assigned to each of the various substances. The goal of a purely Nothing but Motion theoretical derivation, one which requires no arbitrary assignment of numerical constants, has eluded all of these efforts. It may have been somewhat presumptuous on my part to select such an objective, but, after all, if anyone wants to try to accomplish something new, he must aim at something that others have not done. Furthermore, I did have one significant advantage over my predecessors, in that I was not a professional physicist or chemist.
Recommended publications
  • Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz
    FUNDAMENTALS OF PHYSICS – Vol. I - Quantum Mechanical Laws - Bogdan Mielnik and Oscar Rosas-Ruiz QUANTUM MECHANICAL LAWS Bogdan Mielnik and Oscar Rosas-Ortiz Departamento de Física, Centro de Investigación y de Estudios Avanzados, México Keywords: Indeterminism, Quantum Observables, Probabilistic Interpretation, Schrödinger’s cat, Quantum Control, Entangled States, Einstein-Podolski-Rosen Paradox, Canonical Quantization, Bell Inequalities, Path integral, Quantum Cryptography, Quantum Teleportation, Quantum Computing. Contents: 1. Introduction 2. Black body radiation: the lateral problem becomes fundamental. 3. The discovery of photons 4. Compton’s effect: collisions confirm the existence of photons 5. Atoms: the contradictions of the planetary model 6. The mystery of the allowed energy levels 7. Luis de Broglie: particles or waves? 8. Schrödinger’s wave mechanics: wave vibrations explain the energy levels 9. The statistical interpretation 10. The Schrödinger’s picture of quantum theory 11. The uncertainty principle: instrumental and mathematical aspects. 12. Typical states and spectra 13. Unitary evolution 14. Canonical quantization: scientific or magic algorithm? 15. The mixed states 16. Quantum control: how to manipulate the particle? 17. Measurement theory and its conceptual consequences 18. Interpretational polemics and paradoxes 19. Entangled states 20. Dirac’s theory of the electron as the square root of the Klein-Gordon law 21. Feynman: the interference of virtual histories 22. Locality problems 23. The idea UNESCOof quantum computing and future – perspectives EOLSS 24. Open questions Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary The present day quantum laws unify simple empirical facts and fundamental principles describing the behavior of micro-systems. A parallel but different component is the symbolic language adequate to express the ‘logic’ of quantum phenomena.
    [Show full text]
  • Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27
    Albert Einstein - Wikipedia, the free encyclopedia Page 1 of 27 Albert Einstein From Wikipedia, the free encyclopedia Albert Einstein ( /ælbərt a nsta n/; Albert Einstein German: [albt a nʃta n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics.[2] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect". [3] The latter was pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He Albert Einstein in 1921 realized, however, that the principle of relativity could also be extended to gravitational fields, and with his Born 14 March 1879 subsequent theory of gravitation in 1916, he published Ulm, Kingdom of Württemberg, a paper on the general theory of relativity. He German Empire continued to deal with problems of statistical Died mechanics and quantum theory, which led to his 18 April 1955 (aged 76) explanations of particle theory and the motion of Princeton, New Jersey, United States molecules. He also investigated the thermal properties Residence Germany, Italy, Switzerland, United of light which laid the foundation of the photon theory States of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a Ethnicity Jewish [4] whole.
    [Show full text]
  • 1 Introduction
    Phosphine-catalysed reductive coupling of Dihalophosphanes Jan-Erik Siewert,[a] André Schumann[a] and Christian Hering-Junghans*[a] [a] M.Sc. Jan-Erik Siewert, Dr. André Schumann, Dr. Chirstian Hering-Junghans Leibniz Institute of Catalysis e.V. Rostock (LIKAT) Albert-Einstein-Straße 29a, 18059 Rostock, Germany E-Mail: [email protected] Abstract Classically, tetraorgano diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3-catalysed reductive coupling the diphosphene (PDip) 2 (2) with a P=P double was formed selectively. In benzene solutions (PDip)2 has a half life-time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be then debrominated by using Zn dust as sacrificial reductant. 1 Introduction The formation of element-element bonds in main group chemistry is still dominated by classic stoichiometric salt metathesis and reductive coupling reactions. Only in S1 recent years, catalytic protocols for the dehydrocoupling of main group (p-block) substrates to species with homonuclear (E−E) or heteronuclear (E−E’) bonds have emerged.1-3 Catalysis with earth-abundant metals, in particular Zr, Fe and Ni,4 has been shown to be a viable alternative to using rather expensive systems based on Rh,5-7 Ir7- 10 and Ru.11 Using main-group species to facilitate the homo- or heterocoupling of p- block elements has also been in the focus of current research.
    [Show full text]
  • Introducing Quantum and Statistical Physics in the Footsteps of Einstein: a Proposal †
    universe Article Introducing Quantum and Statistical Physics in the Footsteps of Einstein: A Proposal † Marco Di Mauro 1,*,‡ , Salvatore Esposito 2,‡ and Adele Naddeo 2,‡ 1 Dipartimento di Matematica, Universitá di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy 2 INFN Sezione di Napoli, Via Cinthia, 80126 Naples, Italy; [email protected] (S.E.); [email protected] (A.N.) * Correspondence: [email protected] † This paper is an extended version from the proceeding paper: Di Mauro, M.; Esposito, S.; Naddeo, A. Introducing Quantum and Statistical Physics in the Footsteps of Einstein: A Proposal. In Proceedings of the 1st Electronic Conference on Universe, online, 22–28 February 2021. ‡ These authors contributed equally to this work. Abstract: Introducing some fundamental concepts of quantum physics to high school students, and to their teachers, is a timely challenge. In this paper we describe ongoing research, in which a teaching–learning sequence for teaching quantum physics, whose inspiration comes from some of the fundamental papers about the quantum theory of radiation by Albert Einstein, is being developed. The reason for this choice goes back essentially to the fact that the roots of many subtle physical concepts, namely quanta, wave–particle duality and probability, were introduced for the first time in one of these papers, hence their study may represent a useful intermediate step towards tackling the final incarnation of these concepts in the full theory of quantum mechanics. An extended discussion of some elementary tools of statistical physics, mainly Boltzmann’s formula for entropy and statistical distributions, which are necessary but may be unfamiliar to the students, is included.
    [Show full text]
  • Simplifying Einstein's Thought Experiments
    Simplifying Einstein’s Thought Experiments Edward G. Lake Independent Researcher June 11, 2018 [email protected] Abstract: Einstein’s “Gedanken” experiments (thought experiments) - particularly his train-embankment thought experiments - were apparently intended to explain Special Relativity logically and in layman’s terms, but they were written in an incredibly convoluted way, which seems to have resulted in them being misinterpreted by many physicists. This is the simplified logic of Einstein’s key thought experiments. Key words: Light; train; embankment; speed of light; relativity. I. What is a “Thought Experiment”? A thought experiment (or in German: “Gedankenexperiment”) is a scientific experiment which is conducted entirely in one’s mind. It is different from a “fantasy” in that the experiment must obey all the rules of physics, and its key components and procedures have to be entirely logical. However, instead of using equipment that has not yet been constructed, you are imagining doing a scientific experiment using existing objects and events, such as moving trains, railroad embankments, boxcars, laboratories, dropped stones, the flashes of light from lightning bolts, and lighting flash simulators. Einstein’s train-embankment experiments, for example, involve a train (presumably a steam-powered train since Einstein devised the thought experiments around 1916 and earlier) that travels at about thirty or forty percent of the speed of light. That is certainly not possible, but the fact that a train is being imagined to travel at that speed is doesn’t affect the experiment. The experiment is not really about trains (or embankments), it is about what a human observer would see as happening from any type of vehicle traveling at those speeds, and what another observer would see from a stationary location as the vehicle passes close by.
    [Show full text]
  • Einstein, Mileva Maric
    ffirs.qrk 5/13/04 7:34 AM Page i Einstein A to Z Karen C. Fox Aries Keck John Wiley & Sons, Inc. ffirs.qrk 5/13/04 7:34 AM Page ii For Mykl and Noah Copyright © 2004 by Karen C. Fox and Aries Keck. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.
    [Show full text]
  • "ENTWURF" FIELD EQUATIONS to the EINSTEIN TENSOR II: November 1915 Until March 1916
    1 FROM THE BERLIN "ENTWURF" FIELD EQUATIONS TO THE EINSTEIN TENSOR II: November 1915 until March 1916 Galina Weinstein Visitor Scholar, Center for Einstein Studies, Philosophy Department, Boston University January 25, 2012 I discuss Einstein's path-breaking November 1915 General Relativity papers. I show that Einstein's field equations of November 25, 1915 with an additional term on the right hand side involving the trace of the energy-momentum tensor appear to have sprung from his first November 1915 paper: the November 4, 1915 equations. Second paper among three papers. 1 Introduction: David Hilbert Enters the Game, the priority dispute in a nutshell According to Stachel Einstein's Odyssey to general covariance during November 1915 went through two stages:1 1) Sometime in October 1915 Einstein dropped the Einstein-Grossman "Entwurf" theory. During October 1915 Einstein realized that the key to the solution lays in equations (14) and (17) of page 1041 of his 1914 review article "The Formal Foundation of the General Theory of Relativity", and adopted the determinant in equation (14), 1 as a postulate.2 This led him to general covariance. Starting on November 4 Einstein gradually expanded the range of the covariance of his field equations. 2) Between November 4 and November 11 Einstein realized that he did not need this postulate and he adopted it as a coordinate condition to simplify the field equations. Einstein was able to write the field equations of gravitation in a general covariant form. In the November 11 field equations the trace of the energy-momentum tensor vanishes. Between November 18 and November 25 Einstein found that he could write the field equations with an additional term on the right hand side of the field equations involving the trace of the energy-momentum tensor, which now need not vanish.
    [Show full text]
  • General Relativity: Gravitation As Geometry and the Machian Programme
    Physics Before and After Einstein 93 M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Chapter 5 General Relativity: Gravitation as Geometry and the Machian Programme Marco Mamone Capria To put it in another way, if only a relative meaning can be attached to the concept of velocity, ought we nevertheless to persevere in treating acceleration as an absolute concept? Albert Einstein, 1934 The path that led to the birth of general relativity is one of the most fascinating sequences of events in the whole history of theoretical physics. It was a tortuous path, to be sure, not without a fair amount of wandering and misunderstanding. The outcome was a theory with a curious destiny. On one hand it elicited the admiration of generations of theoretical physicists and provided the ground for several observational programs in astronomy and astrophysics up to the present day. On the other hand, the theory was judged inadequate by its very creator, who worked to the end of his life to devise a radical improvement of it, which eventually he did not achieve to his own satisfaction. The very name of the theory contains a degree of ambiguity: ‘general relativity’ can be read as a shortening of either ‘general theory of relativity – meaning a generalization of the previous theory of relativity – or ‘theory of general relativity – meaning something more specific, i.e. a generalization of the principle of relativity. The latter is what Einstein had in mind. In fact his primary aim was to generalize the principle of relativity which he had introduced in his 1905 theory, the validity of which was restricted to inertial reference frames.
    [Show full text]
  • Physical Principles in Revealing the Working Mechanisms of Brain
    BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică „Gheorghe Asachi” din Iaşi Volumul 66 (70), Numărul 3, 2020 Secţia MATEMATICĂ. MECANICĂ TEORETICĂ. FIZICĂ PHYSICAL PRINCIPLES IN REVEALING THE WORKING MECHANISMS OF BRAIN. PART III BY NICOLAE MAZILU1,2, 13707 Dauphin Dr, NE, Canton, OH 44721, USA 2Timotei Cipariu, #1, Focșani, Vrancea, 600004, Romania Received: July 1, 2020 Accepted for publication: September 17, 2020 Abstract. The living brain is physically modeled as a universe, analgous to the existing physical model of the universe. While in the physical model the gravitation prevails, in the brain universe the electricity prevails, but the mathematical description we provide is essentially the same in both cases. What is imperiously necessary in this approach is, first, a metric description of matter, then, of course, the physical interpretation of this description. These issues were treated, in their essentials, in the previous two instalments of the work. The object of the present episode of the work is a classical space image of the matter, as described from a „central‟ point of view. This image is connected with the concept of memory, for which we uphold the idea that in classical physics it has a well-known counterpart: the inertia. It is accomplished based on a general approach of the motion, suggested by generalizing Kepler‟s classical model of motion. Keywords: inertia; memory; matter density; Euclidean reference frame; torsion of space; Kepler‟s laws; celestial matter; neurons. Corresponding author; e-mail: [email protected] 10 Nicolae Mazilu 1. By Way of Introduction: a Synopsis of Bygone Ideas The series of works already publishedin this Bulletin [(Mazilu, 2019, 2020); these articles will be cited here as I and II respectively], or in the course of publication from now on, intends to fill an important gap in the physical science: a missing physical theory of brain.
    [Show full text]
  • The Evolution of the Concepts of Energy, Momentum, and Mass From
    The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman L.B.Okun [email protected] ITEP, Moscow, Russia No2PPT - Prosper – p. 1/75 Abstract These are slides of the talk at the 13th Lomonosov conference, 23 August,2007. The talk stresses the importance of the concept of rest energy E0 and explains how to use it in various situations. No2PPT - Prosper – p. 2/75 1. Introduction This conference is the first in a series of conferences celebrating 300 years since the birth of Mikhail Lomonosov (1711–1765). Therefore it is appropriate to consider the evolution of the laws of conservation of mass, energy, and momentum during this period. The main message of the talk is the equivalence of the 2 rest energy of a body and its mass: E0 = mc . This equivalence is a corollary of relativity principle. The total energy of a body and its mass are not equivalent: E =6 mc2 No2PPT - Prosper – p. 3/75 2. Contents 1. Introduction 2. Contents 3. XVII – XIX centuries 3.1. Galileo, Newton: relativity 3.2. Lomonosov, Lavoisier: conservation of mass 3.4. Conservation of energy 4. The first part of the XXth century 4.1. Rest energy E0 4.2. Energy and inertia 4.3. Energy and gravity 4.4. “Relativistic mass” vs mass 4.5. Famous vs true 2 4.6. Einstein supports E0 = mc No2PPT - Prosper – p. 4/75 5. The second part of the XXth century 5.1. Landau and Lifshitz 5.2. Feynman diagrams 5.3. Feynman Lectures 6.
    [Show full text]
  • Mach's Principle and the Origin of Inertia Apeiron Ams, Ph.D
    Proceedings of the International Workshop on Mach’s Principle and the M. Sachs/A.R. eds. Roy Origin of Inertia, Indian Institute of Technology, Kharagpur, India, Feb. 6-8, 2002. Ernst Mach’s non-atomistic model of matter and the associated interpretation of inertial mass (the “Mach principle”) influenced the holistic approach embodied in the continuous field concept of the theory of general relativity as a general theory of matter. The articles in these Proceedings demonstrate Mach’s MACH’S PRINCIPLE influence on contemporary thinking. We see here the views of an international group of scholars on the impact of the Mach principle in physics and astro- AND THE ORIGIN OF INERTIA physics. The ideas presented here will inspire research in physics for many generations to come. Mach's Principleand the OriginofInertia About the editors: Mendel Sachs is presently Professor of Physics Emeritus at the State University of New York at Buffalo, where he was a professor of physics from 1966 to 1997. Earlier positions were at Boston University, McGill University and the University of California Radiation Laboratory. Prof. Sachs earned his Ph.D. in theoretical physics at University of California, Los Angeles, in 1954. His main interests and publications during his professional career have been on foundational problems in theoretical physics (mainly general relativity and particle physics) and the philosophy of physics. A strong early influence came from the writings of Ernst Mach. The main theme of Mendel Sachs’s research has been a generalization of the works of Albert Einstein as a future course of physics, from the domain of micromatter to cosmology.
    [Show full text]
  • Status of Inorganic Chemistry Research in India
    Proc Indian Natn Sci Acad 86 No. 2 June 2020 pp. 983-999 Printed in India. DOI: 10.16943/ptinsa/2019/49735 Review Article Status of Inorganic Chemistry Research in India V CHANDRASEKHAR1,2,* and A CHAKRABORTY2 1Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India 2Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 107, India (Received on 03 March 2019; Revised on 25 May 2019; Accepted on 05 June 2019) The current status of research in the area of Inorganic chemistry in India is discussed. The article focuses on various aspects of inorganic chemistry being pursued in the country such as main-group chemistry, coordination chemistry, supramolecular chemistry, molecular materials and bio-inorganic chemistry. The strengths of the subject in the country and the possible future directions are discussed. Keywords: Inorganic Chemistry; Modern Chemistry; Chemical Research; Mercurous Nitrite Introduction for a long time and the amount of funding was substantially lower. It is only in the last two decades Modern chemistry research in India began with that reasonable funding became available for Acharya Prafulla Chandra Ray in Kolkata. The fact researchers across the country and this is reflected that he was an inorganic chemist by training is in the number of publications resulting from the incidental. His influence on chemical research in India country. The increased funding has resulted in higher is profound (Chakravorty, 2014). His most important number of publications. By a search of web-of-science contribution is the preparation of mercurous nitrite, using the key words “India” and “Address” (in topics Hg (NO ) , whose molecular structure was 2 2 2 search) the publications in the decades 1980-2019 is established several years later (Samanta et al., 2011).
    [Show full text]