Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27

Total Page:16

File Type:pdf, Size:1020Kb

Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27 Albert Einstein - Wikipedia, the free encyclopedia Page 1 of 27 Albert Einstein From Wikipedia, the free encyclopedia Albert Einstein ( /ælbərt a nsta n/; Albert Einstein German: [albt a nʃta n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics.[2] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect". [3] The latter was pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He Albert Einstein in 1921 realized, however, that the principle of relativity could also be extended to gravitational fields, and with his Born 14 March 1879 subsequent theory of gravitation in 1916, he published Ulm, Kingdom of Württemberg, a paper on the general theory of relativity. He German Empire continued to deal with problems of statistical Died mechanics and quantum theory, which led to his 18 April 1955 (aged 76) explanations of particle theory and the motion of Princeton, New Jersey, United States molecules. He also investigated the thermal properties Residence Germany, Italy, Switzerland, United of light which laid the foundation of the photon theory States of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a Ethnicity Jewish [4] whole. Citizenship Württemberg/Germany (until 1896) He was visiting the United States when Hitler came to Stateless (1896–1901) power in 1933, and did not go back to Germany, where Switzerland (from 1901) he had been a professor at the Berlin Academy of Austria (1911–12) Sciences. He settled in the U.S., becoming a citizen in Germany (1914–33) 1940. On the eve of World War II, he helped alert [1] President Franklin D. Roosevelt that Germany might United States (from 1940) be developing an atomic weapon, and recommended Alma mater ETH Zurich that the U.S. begin similar research. Later, together University of Zurich with Bertrand Russell, Einstein signed the Russell– Einstein Manifesto, which highlighted the danger of Known for General relativity and special nuclear weapons. Einstein taught physics at the relativity Institute for Advanced Study at Princeton, New Jersey, Photoelectric effect until his death in 1955. Mass-energy equivalence Einstein published more than 300 scientific papers Quantification of the Brownian along with over 150 non-scientific works. [4][5] His motion http://en.wikipedia.org/wiki/Albert_Einstein 5/23/2011 Albert Einstein - Wikipedia, the free encyclopedia Page 2 of 27 great intelligence and originality have made the word "Einstein" synonymous with genius.[6] Einstein field equations Bose–Einstein statistics Unified Field Theory Contents Spouse Mileva Mari ć (1903–1919) Elsa Löwenthal, née Einstein, 1 Biography (1919–1936) 1.1 Early life and education 1.2 Marriages and children Awards Nobel Prize in Physics (1921) 1.3 Patent office Copley Medal (1925) 1.4 Academic career Max Planck Medal (1929) 1.5 Travels abroad Time Person of the Century 1.6 Emigration from Germany 1.6.1 World War II and the Signature Manhattan Project 1.6.2 U.S. citizenship 1.7 Death 2 Scientific career 2.1 Annus Mirabilis papers 2.2 Thermodynamic fluctuations and statistical physics 2.3 General principles postulated by Einstein 2 2.4 Theory of relativity and E = mc 2.5 Photons and energy quanta 2.6 Quantized atomic vibrations 2.7 Adiabatic principle and action-angle variables 2.8 Wave-particle duality 2.9 Theory of critical opalescence 2.10 Zero-point energy 2.11 General relativity and the Equivalence Principle 2.12 Hole argument and Entwurf theory 2.13 Cosmology 2.14 Modern quantum theory 2.15 Bose–Einstein statistics 2.16 Energy momentum pseudotensor 2.17 Unified field theory 2.18 Wormholes 2.19 Einstein–Cartan theory 2.20 Equations of motion 2.21 Other investigations 2.22 Collaboration with other scientists 2.22.1 Einstein-de Haas experiment 2.22.2 Schrödinger gas model 2.22.3 Einstein refrigerator 2.23 Bohr versus Einstein http://en.wikipedia.org/wiki/Albert_Einstein 5/23/2011 Albert Einstein - Wikipedia, the free encyclopedia Page 3 of 27 2.24 Einstein–Podolsky–Rosen paradox 3 Political and religious views 4 Non-scientific legacy 5 In popular culture 6 Awards and honors 7 See also 8 Publications 9 Notes 10 References 11 Further reading 12 External links Biography Early life and education Albert Einstein was born in Ulm, in the Kingdom of Württemberg in the German Empire on 14 March 1879. [7] His father was Hermann Einstein, a salesman and engineer. His mother was Pauline Einstein (née Koch). In 1880, the family moved to Munich, where his father and his uncle founded Elektrotechnische Fabrik J. Einstein & Cie , a company that manufactured electrical equipment based on direct current.[7] The Einsteins were non-observant Jews. Albert attended a Catholic elementary school from the age of five for three years. Later, at the age of eight, Einstein was transferred to the Luitpold Gymnasium where he received advanced primary and secondary school education till he left Germany seven years later. [8] Although it has been thought that Einstein had early speech difficulties, this is disputed by the Albert Einstein Archives, and he excelled at the first school that he attended. [9] Einstein at the age of 4 His father once showed him a pocket compass; Einstein realized that there must be something causing the needle to move, despite the apparent "empty space". [10] As he grew, Einstein built models and mechanical devices for fun and began to show a talent for mathematics. [7] In 1889, Max Talmud (later changed to Max Talmey) introduced the ten-year old Einstein to key texts in science, mathematics and philosophy, including Immanuel Kant's Critique of Pure Reason and Euclid's Elements (which Einstein called the "holy little geometry book"). [11] Talmud was a poor Jewish medical student from Poland. The Jewish community arranged for Talmud to take meals with the Einsteins each week on Thursdays for six years. During this time Talmud wholeheartedly guided Einstein through many secular educational interests. [fn 1][fn 2] In 1894, his father's company failed: direct current (DC) lost the War of Currents to alternating current (AC). In search of business, the Einstein Albert Einstein in 1893 (age family moved to Italy, first to Milan and then, a few months later, to http://en.wikipedia.org/wiki/Albert_Einstein 5/23/2011 Albert Einstein - Wikipedia, the free encyclopedia Page 4 of 27 Pavia . When the family moved to Pavia, Einstein stayed in Munich to finish his studies at the Luitpold Gymnasium. His father intended for 14) him to pursue electrical engineering, but Einstein clashed with authorities and resented the school's regimen and teaching method. He later wrote that the spirit of learning and creative thought were lost in strict rote learning. In the spring of 1895, he withdrew to join his family in Pavia, convincing the school to let him go by using a doctor's note. [7] During this time, Einstein wrote his first scientific work, "The Investigation of the State of Aether in Magnetic Fields". [14] Einstein applied directly to the Eidgenössische Polytechnische Schule (ETH) in Zurich, Switzerland. Lacking the requisite Matura certificate, he took an entrance examination, which he failed, although he got exceptional marks in mathematics and physics. [15] The Einsteins sent Albert to Aarau, in northern Switzerland to finish secondary school. [7] While lodging with the family of Professor Jost Winteler, he fell in love with Winteler's daughter, Marie. (His sister Maja later married the Wintelers' son, Paul.) [16] In Aarau, Einstein studied Maxwell's electromagnetic theory. At age 17, he graduated, and, with his father's approval, renounced his citizenship in the German Kingdom of Württemberg to avoid military service, and in 1896 he enrolled in the four year mathematics and physics teaching diploma program at the Polytechnic in Zurich. Marie Winteler moved to Olsberg, Switzerland for a teaching post. Einstein's future wife, Mileva Mari ć, also enrolled at the Polytechnic that same year, the only woman among the six students in the mathematics and physics section of the teaching diploma course. Over the next few years, Einstein and Mari ć's friendship developed into romance, and they read books together on extra-curricular physics in which Einstein was taking an increasing interest. In 1900 Einstein was awarded the Zurich Polytechnic teaching diploma, but Mari ć failed the examination with a poor grade in the mathematics component, theory of functions. [17] There have been claims that Mari ć collaborated with Einstein on his celebrated 1905 papers, [18][19] but historians of physics who have studied the issue find no evidence that she made any substantive contributions. [20][21][22][23] Marriages and children Main article: Einstein family In early 1902, Einstein and Mileva Mari ć had a daughter they named Lieserl in their correspondence, who was born in Novi Sad where Mari ć's parents lived. [24] Her full name is not known, and her fate is uncertain after 1903. [25] Einstein and Mari ć married in January 1903. In May 1904, the couple's first son, Hans Albert Einstein, was born in Bern, Switzerland. Their second son, Eduard, was born in Zurich in July 1910. In 1914, Einstein moved to Berlin, while his wife remained in Zurich with their sons.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • The E.P.R. Paradox George Levesque
    Undergraduate Review Volume 3 Article 20 2007 The E.P.R. Paradox George Levesque Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Quantum Physics Commons Recommended Citation Levesque, George (2007). The E.P.R. Paradox. Undergraduate Review, 3, 123-130. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/20 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 George Levesque The E.P.R. Paradox George Levesque George graduated from Bridgewater his paper intends to discuss the E.P.R. paradox and its implications State College with majors in Physics, for quantum mechanics. In order to do so, this paper will discuss the Mathematics, Criminal Justice, and features of intrinsic spin of a particle, the Stern-Gerlach experiment, Sociology. This piece is his Honors project the E.P.R. paradox itself and the views it portrays. In addition, we will for Electricity and Magnetism advised by consider where such a classical picture succeeds and, eventually, as we will see Dr. Edward Deveney. George ruminated Tin Bell’s inequality, fails in the strange world we live in – the world of quantum to help the reader formulate, and accept, mechanics. why quantum mechanics, though weird, is valid. Intrinsic Spin Intrinsic spin angular momentum is odd to describe by any normal terms. It is unlike, and often entirely unrelated to, the classical “orbital angular momentum.” But luckily we can describe the intrinsic spin by its relationship to the magnetic moment of the particle being considered.
    [Show full text]
  • Einstein's Washington Manuscript on Unified Field Theory
    Einstein’s Washington Manuscript on Unified Field Theory Tilman Sauer∗ and Tobias Schütz† Institute of Mathematics Johannes Gutenberg University Mainz D-55099 Mainz, Germany Version of August 25, 2020 Abstract In this note, we point attention to and briefly discuss a curious manu- script of Einstein, composed in 1938 and entitled “Unified Field Theory,” the only such writing, published or unpublished, carrying this title without any further specification. Apparently never intended for publication, the manuscript sheds light both on Einstein’s modus operandi as well as on the public role of Einstein’s later work on a unified field theory of gravitation and electromagnetism. arXiv:2008.10005v1 [physics.hist-ph] 23 Aug 2020 ∗[email protected][email protected] 1 1 The “Washington manuscript” In July 1938, the Princeton based journal Annals of Mathematics published a paper On a Generalization of Kaluza’s Theory of Electricity in its Vol. 39, issue No. 3 (Einstein and Bergmann, 1938). The paper was co-authored by Albert Einstein (1879–1955) and his then assistant Peter Gabriel Bergmann (1915– 2002). It presented a new discussion of an approach toward a unified theory of the gravitational and electromagnetic fields based on an extension of the number of physical dimensions characterizing space-time. Such five-dimensional theories had been discussed already a number of times, notably by Theodor Kaluza in 1921, and then again in the late twenties by Oskar Klein and others (Goenner, 2004). Einstein had contributed to the discussion already in 1923 and in 1927, but had given up the approach in favor of another one based on distant parallelism (Sauer, 2014).
    [Show full text]
  • Einstein's Equations for Spin $2 $ Mass $0 $ from Noether's Converse
    Einstein’s Equations for Spin 2 Mass 0 from Noether’s Converse Hilbertian Assertion November 9, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge [email protected] forthcoming in Studies in History and Philosophy of Modern Physics Abstract An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether’s 1918 paper developed Hilbert’s and Klein’s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a “curl” term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations as- suming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity’s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric curl, which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld’s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form. The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed.
    [Show full text]
  • Einstein Solid 1 / 36 the Results 2
    Specific Heats of Ideal Gases 1 Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side `. Show the average pressure P exerted by this gas is 1 N 35 P = mv 2 3 V total SO 30 2 7 7 (J/K-mole) R = NAkB Use the ideal gas law (PV = NkB T = V 2 2 CO2 C H O CH nRT )and the conservation of energy 25 2 4 Cl2 (∆Eint = CV ∆T ) to calculate the specific 5 5 20 2 R = 2 NAkB heat of an ideal gas and show the following. H2 N2 O2 CO 3 3 15 CV = NAkB = R 3 3 R = NAkB 2 2 He Ar Ne Kr 2 2 10 Is this right? 5 3 N - number of particles V = ` 0 Molecule kB - Boltzmann constant m - atomic mass NA - Avogadro's number vtotal - atom's speed Jerry Gilfoyle Einstein Solid 1 / 36 The Results 2 1 N 2 2 N 7 P = mv = hEkini 2 NAkB 3 V total 3 V 35 30 SO2 3 (J/K-mole) V 5 CO2 C N k hEkini = NkB T H O CH 2 A B 2 25 2 4 Cl2 20 H N O CO 3 3 2 2 2 3 CV = NAkB = R 2 NAkB 2 2 15 He Ar Ne Kr 10 5 0 Molecule Jerry Gilfoyle Einstein Solid 2 / 36 Quantum mechanically 2 E qm = `(` + 1) ~ rot 2I where l is the angular momen- tum quantum number.
    [Show full text]
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • History of the Israeli/ Understand How the “Einstein Letter” Relates to the Palestinian Conflict, We Can Turn to a Trustworthy Jewish Present Situation
    The Israeli-Palestinian Conflict continues primarily to advocate on behalf of Israel and to address threats to its continued existence and security. Part 1 A religious variety of Zionism supports Jews upholding Zionism is both an ideology and nationalist movement their Jewish identity defined as adherence to religious among the Jewish people that espouses the re- Judaism, opposes the assimilation of Jews into other establishment and support for a Jewish state in the societies, and has advocated the return of Jews territory defined as the historic Land of Israel (roughly to Israel as a means for Jews to be a majority nation in corresponding to Canaan, the Holy Land, or the region their own state. A variety of Zionism, called cultural of Palestine). Modern Zionism emerged in the late 19th Zionism, founded and represented most prominently century in Central and Eastern Europe as a national revival by Ahad Ha'am, fostered a secular vision of a Jewish movement, both in reaction to newer waves "spiritual center" in Israel. Unlike Herzl, the founder of of antisemitism and as a response to Haskalah, or Jewish political Zionism, Ahad Ha'am strived for Israel to be "a [17] Enlightenment. Soon after this, most leaders of the Jewish state and not merely a state of Jews". movement associated the main goal with creating the Advocates of Zionism view it as a national liberation desired state in Palestine, then an area controlled by movement for the repatriation of a persecuted people the Ottoman Empire. residing as minorities in a variety of nations to their Until 1948, the primary goals of Zionism were the re- ancestral homeland.
    [Show full text]
  • Einstein's Life and Legacy
    Reflections Einstein's Life and Legacy Introduction Albert Einstein is the most luminous scientist of the past century, and ranks with Isaac Newton as one among the greatest physicists of all time. There is an enormous amount of material to choose from in talking about Einstein. He is without doubt also the most written about scientist of the past century, may be of all time. The Einstein Archives contain about 43,000 documents, and so far as I know the "Collected Papers of Albert Einstein" have only come upto 1917 with Volume 8 in English translation; another 32 volumes remain to be produced. In the face of all this, this account must be severely selective, and coherent as well. Einstein's life was incredibly rich and intense in the intellectual sense. This will become clear as I go along. In any case let me begin by presenting in Box 1 a brieflisting of a few important dates in his life, howsoever inadequate it may be. He was scientifically active essentially from 1902 upto 1935 at the highest imaginable levels, thus for more than three decades. The Miraculous Year Now let us turn to technical matters. First, a brief mention of his creative outburst of 1905, whose centenary we are celebrating this year. There were four fundamental papers, and the doctoral thesis, all in the six months from March to September. The first paper on the light quantum concept and explanation of the photo electric effect was submitted to Annalen der Physik in March; the second on Brownian Motion in May; and the third setting out the Special Theory of Relativity in June.
    [Show full text]
  • Empirical Modelling of Einstein Absorption Refrigeration System
    Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 75, Issue 3 (2020) 54-62 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Empirical Modelling of Einstein Absorption Refrigeration Open Access System Keng Wai Chan1,*, Yi Leang Lim1 1 School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia ARTICLE INFO ABSTRACT Article history: A single pressure absorption refrigeration system was invented by Albert Einstein and Received 4 April 2020 Leo Szilard nearly ninety-year-old. The system is attractive as it has no mechanical Received in revised form 27 July 2020 moving parts and can be driven by heat alone. However, the related literature and Accepted 5 August 2020 work done on this refrigeration system is scarce. Previous researchers analysed the Available online 20 September 2020 refrigeration system theoretically, both the system pressure and component temperatures were fixed merely by assumption of ideal condition. These values somehow have never been verified by experimental result. In this paper, empirical models were proposed and developed to estimate the system pressure, the generator temperature and the partial pressure of butane in the evaporator. These values are important to predict the system operation and the evaporator temperature. The empirical models were verified by experimental results of five experimental settings where the power input to generator and bubble pump were varied. The error for the estimation of the system pressure, generator temperature and partial pressure of butane in evaporator are ranged 0.89-6.76%, 0.23-2.68% and 0.28-2.30%, respectively.
    [Show full text]
  • 0045-Flyer-Einstein-En-2.Pdf
    FEATHERBEDDINGCOMPANYWEIN HOFJEREMIAHSTATUESYN AGOGEDREYFUSSMOOSCEMETERY MÜNSTERPLATZRELATIVI TYE=MC 2NOBELPRIZEHOMELAND PERSECUTIONAFFIDAVIT OFSUPPORTEMIGRATIONEINSTEIN STRASSELETTERSHOLOCAUSTRESCUE FAMILYGRANDMOTHERGRANDFAT HERBUCHAUPRINCETONBAHNHOF STRASSE20VOLKSHOCHSCHULEFOU NTAINGENIUSHUMANIST 01 Albert Einstein 6 7 Albert Einstein. More than just a name. Physicist. Genius. Science pop star. Philosopher and humanist. Thinker and guru. On a par with Copernicus, Galileo or Newton. And: Albert Einstein – from Ulm! The most famous scientist of our time was actually born on 14th March 1879 at Bahnhofstraße 20 in Ulm. Albert Einstein only lived in the city on the Danube for 15 months. His extended family – 18 of Einstein’s cousins lived in Ulm at one time or another – were a respected and deep-rooted part of the city’s society, however. This may explain Einstein’s enduring connection to the city of his birth, which he described as follows in a letter to the Ulmer Abend- post on 18th March 1929, shortly after his 50th birthday: “The birthplace is as much a unique part of your life as the ancestry of your biological mother. We owe part of our very being to our city of birth. So I look on Ulm with gratitude, as it combines noble artistic tradition with simple and healthy character.” 8 9 The “miracle year” 1905 – Einstein becomes the founder of the modern scientific world view Was Einstein a “physicist of the century”? There‘s no doubt of that. In his “miracle year” (annus mirabilis) of 1905 he pub- lished 4 groundbreaking works along- side his dissertation. Each of these was worthy of a Nobel Prize and turned him into a physicist of international standing: the theory of special relativity, the light quanta hypothesis (“photoelectric effect”), Thus, Albert Einstein became the found- for which he received the Nobel Prize in er of the modern scientific world view.
    [Show full text]
  • Otto Sackur's Pioneering Exploits in the Quantum Theory Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Catalogo dei prodotti della ricerca Chapter 3 Putting the Quantum to Work: Otto Sackur’s Pioneering Exploits in the Quantum Theory of Gases Massimiliano Badino and Bretislav Friedrich After its appearance in the context of radiation theory, the quantum hypothesis rapidly diffused into other fields. By 1910, the crisis of classical traditions of physics and chemistry—while taking the quantum into account—became increas- ingly evident. The First Solvay Conference in 1911 pushed quantum theory to the fore, and many leading physicists responded by embracing the quantum hypoth- esis as a way to solve outstanding problems in the theory of matter. Until about 1910, quantum physics had drawn much of its inspiration from two sources. The first was the complex formal machinery connected with Max Planck’s theory of radiation and, above all, its close relationship with probabilis- tic arguments and statistical mechanics. The fledgling 1900–1901 version of this theory hinged on the application of Ludwig Boltzmann’s 1877 combinatorial pro- cedure to determine the state of maximum probability for a set of oscillators. In his 1906 book on heat radiation, Planck made the connection with gas theory even tighter. To illustrate the use of the procedure Boltzmann originally developed for an ideal gas, Planck showed how to extend the analysis of the phase space, com- monplace among practitioners of statistical mechanics, to electromagnetic oscil- lators (Planck 1906, 140–148). In doing so, Planck identified a crucial difference between the phase space of the gas molecules and that of oscillators used in quan- tum theory.
    [Show full text]
  • Essays on Einstein's Science And
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science PREPRINT 63 (1997) Giuseppe Castagnetti, Hubert Goenner, Jürgen Renn, Tilman Sauer, and Britta Scheideler Foundation in Disarray: Essays on Einstein’s Science and Politics in the Berlin Years ISSN 0948-9444 PREFACE This collection of essays is based on a series of talks given at the Boston Colloquium for Philosophy of Science, March 3 – 4, 1997, under the title “Einstein in Berlin: The First Ten Years.“ The meeting was organized by the Center for Philosophy and History of Science at Boston University and the Collected Papers of Albert Einstein, and co-sponsored by the Max Planck Institute for the History of Science. Although the three essays do not directly build upon one another, we have nevertheless decided to present them in a single preprint for two reasons. First, they result from a project that grew out of an earlier cooperation inaugurated by the Berlin Working Group “Albert Einstein.“ This group was part of the research center “Development and Socialization“ under the direction of Wolfgang Edel- stein at the Max Planck Institute for Human Development and Education.1 The Berlin Working Group, directed by Peter Damerow and Jürgen Renn, was sponsored by the Senate of Berlin. Its aim was to pursue research on Einstein in Berlin with particular attention to the relation between his science and its context. The research activities of the Working Group are now being continued at the Max Planck Institute for the History of Science partly, in cooperation with Michel Janssen, John Norton, and John Stachel.
    [Show full text]