The Collaboration of Mileva Marić and Albert Einstein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLUNGE #305 - William K
20--MANCHESTER HERALD, Friday, Oct. 1.^, 1989 READ YOUR AD: ClassiFed odvertlsoments a r t I qi^ cars I CARS [g^CARS I CARS W E D ELIVER taken by telephone os o conyenlence. The FOR SALE FOR SALE FOR SALE Manchester Herald Is responsible For only one FOR SALE For Horr>© Del: 'sry. Call Incorrect Insertion and then only tor the size oF 6 4 7 - 9 9 4 6 the original Insertion. E . rorswhichdonot lessen the yolue oF the advertisement will not be 1984 HONDA Civic Wagon CHEVROLET 1980 Ma O L D S M O B IL E 1981 R e CHEVROLET 1985 Celeb Monday to Friday. 9 to 6 - 646-0767 or 649-4554, libu - 4 door, good gency - Loaded, must rity wagon. Excellent corrected by on additional Insertion._____________ J o c k . ________ condition. $1,250. 643- sell. 643-1364.___________ condition. V-6 auto 1986 JEEP Wogoneer Li 5484. 1984 CELEBRITY-4door, matic, power steerlng- /brakes, air, cruise. CARS mited - Excellent con CHEVROLET 1974 Co Fully equipped, excel CARS CARS dition, 43,000 miles, moro - New point, new lent condition. $3,500. $4,500 or best otter. IQI i FOR SALE 647-8894. FOR SALE automatic, olr condl- vinvl top, 6 cylinder 1987 MUSTANG LX - 4 I^^H foR sale FOR SALE tlonlng, om/tm automatic, $1,750. Ne cylinder, hatchback, 5 cassette, leather Inte- gotiable. 649-8944, speed, $6,500. 646-2392. rlor. $10,900, 643-2938. leave message. TRUCKS/VANS 1984 FORD Escort Wagon C O R V E T T E 1971 S tlno STEAL It. -
Einstein and Physics Hundred Years Ago∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 1 EINSTEIN AND PHYSICS HUNDRED YEARS AGO∗ Andrzej K. Wróblewski Physics Department, Warsaw University Hoża 69, 00-681 Warszawa, Poland [email protected] (Received November 15, 2005) In 1905 Albert Einstein published four papers which revolutionized physics. Einstein’s ideas concerning energy quanta and electrodynamics of moving bodies were received with scepticism which only very slowly went away in spite of their solid experimental confirmation. PACS numbers: 01.65.+g 1. Physics around 1900 At the turn of the XX century most scientists regarded physics as an almost completed science which was able to explain all known physical phe- nomena. It appeared to be a magnificent structure supported by the three mighty pillars: Newton’s mechanics, Maxwell’s electrodynamics, and ther- modynamics. For the celebrated French chemist Marcellin Berthelot there were no major unsolved problems left in science and the world was without mystery. Le monde est aujourd’hui sans mystère— he confidently wrote in 1885 [1]. Albert A. Michelson was of the opinion that “The more important fundamen- tal laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote . Our future dis- coveries must be looked for in the sixth place of decimals” [2]. Physics was not only effective but also perfect and beautiful. Henri Poincaré maintained that “The theory of light based on the works of Fresnel and his successors is the most perfect of all the theories of physics” [3]. -
0045-Flyer-Einstein-En-2.Pdf
FEATHERBEDDINGCOMPANYWEIN HOFJEREMIAHSTATUESYN AGOGEDREYFUSSMOOSCEMETERY MÜNSTERPLATZRELATIVI TYE=MC 2NOBELPRIZEHOMELAND PERSECUTIONAFFIDAVIT OFSUPPORTEMIGRATIONEINSTEIN STRASSELETTERSHOLOCAUSTRESCUE FAMILYGRANDMOTHERGRANDFAT HERBUCHAUPRINCETONBAHNHOF STRASSE20VOLKSHOCHSCHULEFOU NTAINGENIUSHUMANIST 01 Albert Einstein 6 7 Albert Einstein. More than just a name. Physicist. Genius. Science pop star. Philosopher and humanist. Thinker and guru. On a par with Copernicus, Galileo or Newton. And: Albert Einstein – from Ulm! The most famous scientist of our time was actually born on 14th March 1879 at Bahnhofstraße 20 in Ulm. Albert Einstein only lived in the city on the Danube for 15 months. His extended family – 18 of Einstein’s cousins lived in Ulm at one time or another – were a respected and deep-rooted part of the city’s society, however. This may explain Einstein’s enduring connection to the city of his birth, which he described as follows in a letter to the Ulmer Abend- post on 18th March 1929, shortly after his 50th birthday: “The birthplace is as much a unique part of your life as the ancestry of your biological mother. We owe part of our very being to our city of birth. So I look on Ulm with gratitude, as it combines noble artistic tradition with simple and healthy character.” 8 9 The “miracle year” 1905 – Einstein becomes the founder of the modern scientific world view Was Einstein a “physicist of the century”? There‘s no doubt of that. In his “miracle year” (annus mirabilis) of 1905 he pub- lished 4 groundbreaking works along- side his dissertation. Each of these was worthy of a Nobel Prize and turned him into a physicist of international standing: the theory of special relativity, the light quanta hypothesis (“photoelectric effect”), Thus, Albert Einstein became the found- for which he received the Nobel Prize in er of the modern scientific world view. -
Otto Sackur's Pioneering Exploits in the Quantum Theory Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Catalogo dei prodotti della ricerca Chapter 3 Putting the Quantum to Work: Otto Sackur’s Pioneering Exploits in the Quantum Theory of Gases Massimiliano Badino and Bretislav Friedrich After its appearance in the context of radiation theory, the quantum hypothesis rapidly diffused into other fields. By 1910, the crisis of classical traditions of physics and chemistry—while taking the quantum into account—became increas- ingly evident. The First Solvay Conference in 1911 pushed quantum theory to the fore, and many leading physicists responded by embracing the quantum hypoth- esis as a way to solve outstanding problems in the theory of matter. Until about 1910, quantum physics had drawn much of its inspiration from two sources. The first was the complex formal machinery connected with Max Planck’s theory of radiation and, above all, its close relationship with probabilis- tic arguments and statistical mechanics. The fledgling 1900–1901 version of this theory hinged on the application of Ludwig Boltzmann’s 1877 combinatorial pro- cedure to determine the state of maximum probability for a set of oscillators. In his 1906 book on heat radiation, Planck made the connection with gas theory even tighter. To illustrate the use of the procedure Boltzmann originally developed for an ideal gas, Planck showed how to extend the analysis of the phase space, com- monplace among practitioners of statistical mechanics, to electromagnetic oscil- lators (Planck 1906, 140–148). In doing so, Planck identified a crucial difference between the phase space of the gas molecules and that of oscillators used in quan- tum theory. -
EINSTEIN and NAZI PHYSICS When Science Meets Ideology and Prejudice
MONOGRAPH Mètode Science Studies Journal, 10 (2020): 147-155. University of Valencia. DOI: 10.7203/metode.10.13472 ISSN: 2174-3487. eISSN: 2174-9221. Submitted: 29/11/2018. Approved: 23/05/2019. EINSTEIN AND NAZI PHYSICS When science meets ideology and prejudice PHILIP BALL In the 1920s and 30s, in a Germany with widespread and growing anti-Semitism, and later with the rise of Nazism, Albert Einstein’s physics faced hostility and was attacked on racial grounds. That assault was orchestrated by two Nobel laureates in physics, who asserted that stereotypical racial features are exhibited in scientific thinking. Their actions show how ideology can infect and inflect science. Reviewing this episode in the current context remains an instructive and cautionary tale. Keywords: Albert Einstein, Nazism, anti-Semitism, science and ideology. It was German society, Einstein said, that revealed from epidemiology and research into disease (the to him his Jewishness. «This discovery was brought connection of smoking to cancer, and of HIV to home to me by non-Jews rather than Jews», he wrote AIDS) to climate change, this idea perhaps should in 1929 (cited in Folsing, 1998, p. 488). come as no surprise. But it is for that very reason that Shortly after the boycott of Jewish businesses at the the hostility Einstein’s physics sometimes encountered start of April 1933, the German Students Association, in Germany in the 1920s and 30s remains an emboldened by Hitler’s rise to total power, declared instructive and cautionary tale. that literature should be cleansed of the «un-German spirit». The result, on 10 May, was a ritualistic ■ AGAINST RELATIVITY burning of tens of thousands of books «marred» by Jewish intellectualism. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2! -
Cosmos: a Spacetime Odyssey (2014) Episode Scripts Based On
Cosmos: A SpaceTime Odyssey (2014) Episode Scripts Based on Cosmos: A Personal Voyage by Carl Sagan, Ann Druyan & Steven Soter Directed by Brannon Braga, Bill Pope & Ann Druyan Presented by Neil deGrasse Tyson Composer(s) Alan Silvestri Country of origin United States Original language(s) English No. of episodes 13 (List of episodes) 1 - Standing Up in the Milky Way 2 - Some of the Things That Molecules Do 3 - When Knowledge Conquered Fear 4 - A Sky Full of Ghosts 5 - Hiding In The Light 6 - Deeper, Deeper, Deeper Still 7 - The Clean Room 8 - Sisters of the Sun 9 - The Lost Worlds of Planet Earth 10 - The Electric Boy 11 - The Immortals 12 - The World Set Free 13 - Unafraid Of The Dark 1 - Standing Up in the Milky Way The cosmos is all there is, or ever was, or ever will be. Come with me. A generation ago, the astronomer Carl Sagan stood here and launched hundreds of millions of us on a great adventure: the exploration of the universe revealed by science. It's time to get going again. We're about to begin a journey that will take us from the infinitesimal to the infinite, from the dawn of time to the distant future. We'll explore galaxies and suns and worlds, surf the gravity waves of space-time, encounter beings that live in fire and ice, explore the planets of stars that never die, discover atoms as massive as suns and universes smaller than atoms. Cosmos is also a story about us. It's the saga of how wandering bands of hunters and gatherers found their way to the stars, one adventure with many heroes. -
Berlin Period Reports on Albert Einstein's Einstein's FBI File –
Appendix Einstein’s FBI file – reports on Albert Einstein’s Berlin period 322 Appendix German archives are not the only place where Einstein dossiers can be found. Leaving aside other countries, at least one personal dossier exists in the USA: the Einstein File of the Federal Bureau of Investigation (FBI).1036 This file holds 1,427 pages. In our context the numerous reports about Ein- stein’s “Berlin period” are of particular interest. Taking a closer look at them does not lead us beyond the scope of this book. On the contrary, these reports give a complex picture of Einstein’s political activities during his Berlin period – albeit from a very specific point of view: the view of the American CIC (Counter Intelligence Corps) and the FBI of the first half of the 1950s. The core of these reports is the allegation that Einstein had cooperated with the communists and that his address (or “office”) had been used from 1929 to 1932 as a relay point for messages by the CPG (Communist Party of Germany, KPD), the Communist International and the Soviet Secret Service. The ultimate aim of these investigations was, reportedly, to revoke Einstein’s United States citizenship and banish him. Space constraints prevent a complete review of the individual reports here. Sounderthegivencircumstancesasurveyofthecontentsofthetwomost im- portant reports will have to suffice for our purposes along with some additional information. These reports are dated 13 March 1950 and 25 January 1951. 13 March 1950 The first comprehensive report by the CIC (Hq. 66th CIC Detachment)1037 about Einstein’s complicity in activities by the CPG and the Soviet Secret Service be- tween 1929 and 1932 is dated 13 March 1950.1038 Army General Staff only submit- ted this letter to the FBI on 7 September 1950. -
Design of Experiments for Light Speed Invariance to Moving Observers
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2021 doi:10.20944/preprints202102.0547.v1 DESIGN OF EXPERIMENTS FOR LIGHT SPEED INVARIANCE TO MOVING OBSERVERS Design of experiments for light speed invariance to moving observers Revised 2/22/2021 08:08:00 Qian Chen International Education Foundation 4667 Highland Ct, Grandville, MI, USA 49418 e-mail: [email protected] The principle of the constancy of the velocity of light, which stated that the light velocity is invariant to the motion of the emitter, was well established and directly proven by experiments. Interestingly, the further assumption that the light velocity is independent of the motion of the observer was, arguably, never directly proven by any experiment for a century. This paper proposed the design of two experiments to directly test this assumption, which tried to address some perceived technical difficulty in such experiments. One is to directly measure the light speed as to moving sensors. The experiment setup is designed in such a way that the concerns of time synchronization and dilation can be avoided. Another experiment is to test the isotropy of the light speed to a moving particle in the electromagnetic accelerator by measuring the momentum to acceleration ratio. The experiment result, if positive, will provide direct and solid proof of the assumption. Otherwise, it may imply a need for further investigation. Since the light speed invariance to moving observers is a key assumption of some fundamental physical theory, either way, the experiments will have significant meanings. Keywords: Light velocity, Special Relativity, Time dilation, Time synchronization, Sagnac effect, Mass- Energy relationship, Particle acceleration, Michelson-Morley experiment, Asymmetry Theory search for direct experimental proof is of significant I. -
Einstein's Equations for Spin 2 Mass 0 from Noether's Converse Hilbertian
Einstein’s Equations for Spin 2 Mass 0 from Noether’s Converse Hilbertian Assertion October 4, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge [email protected] forthcoming in Studies in History and Philosophy of Modern Physics Abstract An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether’s 1918 paper developed Hilbert’s and Klein’s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a “curl” term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations as- suming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity’s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric curl, which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld’s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form. The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed. -
Chronological List of Correspondence, 1895–1920
CHRONOLOGICAL LIST OF CORRESPONDENCE, 1895–1920 In this chronological list of correspondence, the volume and document numbers follow each name. Documents abstracted in the calendars are listed in the Alphabetical List of Texts in this volume. 1895 13 or 20 Mar To Mileva Maric;;, 1, 45 29 Apr To Rosa Winteler, 1, 46 Summer To Caesar Koch, 1, 6 18 May To Rosa Winteler, 1, 47 28 Jul To Julia Niggli, 1, 48 Aug To Rosa Winteler, 5: Vol. 1, 48a 1896 early Aug To Mileva Maric;;, 1, 50 6? Aug To Julia Niggli, 1, 51 21 Apr To Marie Winteler, with a 10? Aug To Mileva Maric;;, 1, 52 postscript by Pauline Einstein, after 10 Aug–before 10 Sep 1,18 From Mileva Maric;;, 1, 53 7 Sep To the Department of Education, 10 Sep To Mileva Maric;;, 1, 54 Canton of Aargau, 1, 20 11 Sep To Julia Niggli, 1, 55 4–25 Nov From Marie Winteler, 1, 29 11 Sep To Pauline Winteler, 1, 56 30 Nov From Marie Winteler, 1, 30 28? Sep To Mileva Maric;;, 1, 57 10 Oct To Mileva Maric;;, 1, 58 1897 19 Oct To the Swiss Federal Council, 1, 60 May? To Pauline Winteler, 1, 34 1900 21 May To Pauline Winteler, 5: Vol. 1, 34a 7 Jun To Pauline Winteler, 1, 35 ? From Mileva Maric;;, 1, 61 after 20 Oct From Mileva Maric;;, 1, 36 28 Feb To the Swiss Department of Foreign Affairs, 1, 62 1898 26 Jun To the Zurich City Council, 1, 65 29? Jul To Mileva Maric;;, 1, 68 ? To Maja Einstein, 1, 38 1 Aug To Mileva Maric;;, 1, 69 2 Jan To Mileva Maric;; [envelope only], 1 6 Aug To Mileva Maric;;, 1, 70 13 Jan To Maja Einstein, 8: Vol. -
Quantum Mechanics As a Theory of Relativistic Brownian Motion 3
ANNALEN DER PHYSIK 7. FOLGE * BAND 27, HEFT 1 * 1971 Quantum Mechanics as a Theory of Relativistic 6RowNian Motion By Yu.A.RYLOV Abstract It is shown that non-relativistic quantum mechanics can be treated as a kind of relati- vistic statistical theory which describes a random motion of a classical particle. The theory is relativistic in the sense that for the description of the particle behaviour the relativistic notion of the state is used. This is very important because a statistics is a state calculus and the result depends on the definition of the notion of state. Attempts by different authors [1-1411) to treat quantum mechanics from the position of classical theory did not lead to full success2). Though it may seem paradoxical, the reason there of, in our opinion, lies in the fact that the attempts to understand non-relativistic quantum mechanics were based on non-relati- vistic classical mechanics. In this paper we shall show that quantum mechanics is a variety of the re- lativistic theory of BRowNian motion3). The difference of our approach from approaches of others lies in the fact that we treat non-relativistic quantum mechanics from the point of view of relativistic classical mechanics. New principles are not needed for understanding the quantum mechanics of a single particle in this approach. In particular, such specific quantum mechanical principles as the uncertainty and the correspondence principle may be under- stood from the classical position. The clue to such an approach is the relativistic notion of system state. 1. The notion of state In non-relativistic physics the state of a physical system is defined4) as a set of quantities which are given at a certain moment of time and determine these quantities at any subsequent moment of time.