Thought Experiments, Einstein, and Physics Education
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Special Theory of Relativity
THE SPECIAL THEORY OF RELATIVITY Lecture Notes prepared by J D Cresser Department of Physics Macquarie University July 31, 2003 CONTENTS 1 Contents 1 Introduction: What is Relativity? 2 2 Frames of Reference 5 2.1 A Framework of Rulers and Clocks . 5 2.2 Inertial Frames of Reference and Newton’s First Law of Motion . 7 3 The Galilean Transformation 7 4 Newtonian Force and Momentum 9 4.1 Newton’s Second Law of Motion . 9 4.2 Newton’s Third Law of Motion . 10 5 Newtonian Relativity 10 6 Maxwell’s Equations and the Ether 11 7 Einstein’s Postulates 13 8 Clock Synchronization in an Inertial Frame 14 9 Lorentz Transformation 16 9.1 Length Contraction . 20 9.2 Time Dilation . 22 9.3 Simultaneity . 24 9.4 Transformation of Velocities (Addition of Velocities) . 24 10 Relativistic Dynamics 27 10.1 Relativistic Momentum . 28 10.2 Relativistic Force, Work, Kinetic Energy . 29 10.3 Total Relativistic Energy . 30 10.4 Equivalence of Mass and Energy . 33 10.5 Zero Rest Mass Particles . 34 11 Geometry of Spacetime 35 11.1 Geometrical Properties of 3 Dimensional Space . 35 11.2 Space Time Four Vectors . 38 11.3 Spacetime Diagrams . 40 11.4 Properties of Spacetime Intervals . 41 1 INTRODUCTION: WHAT IS RELATIVITY? 2 1 Introduction: What is Relativity? Until the end of the 19th century it was believed that Newton’s three Laws of Motion and the associated ideas about the properties of space and time provided a basis on which the motion of matter could be completely understood. -
A Mathematical Derivation of the General Relativistic Schwarzschild
A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components ................. -
Cen, Julia.Pdf
City Research Online City, University of London Institutional Repository Citation: Cen, J. (2019). Nonlinear classical and quantum integrable systems with PT -symmetries. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23891/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Nonlinear Classical and Quantum Integrable Systems with PT -symmetries Julia Cen A Thesis Submitted for the Degree of Doctor of Philosophy School of Mathematics, Computer Science and Engineering Department of Mathematics Supervisor : Professor Andreas Fring September 2019 Thesis Commission Internal examiner Dr Olalla Castro-Alvaredo Department of Mathematics, City, University of London, UK External examiner Professor Andrew Hone School of Mathematics, Statistics and Actuarial Science University of Kent, UK Chair Professor Joseph Chuang Department of Mathematics, City, University of London, UK i To my parents. -
Measurement of the Speed of Gravity
Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity. -
Weak Galilean Invariance As a Selection Principle for Coarse
Weak Galilean invariance as a selection principle for coarse-grained diffusive models Andrea Cairolia,b, Rainer Klagesb, and Adrian Bauleb,1 aDepartment of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; and bSchool of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved April 16, 2018 (received for review October 2, 2017) How does the mathematical description of a system change in dif- in the long-time limit, hX 2i ∼ t β with β = 1, for anomalous dif- ferent reference frames? Galilei first addressed this fundamental fusion it scales nonlinearly with β 6=1. Anomalous dynamics has question by formulating the famous principle of Galilean invari- been observed experimentally for a wide range of physical pro- ance. It prescribes that the equations of motion of closed systems cesses like particle transport in plasmas, molecular diffusion in remain the same in different inertial frames related by Galilean nanopores, and charge transport in amorphous semiconductors transformations, thus imposing strong constraints on the dynam- (5–7) that was first theoretically described in refs. 8 and 9 based ical rules. However, real world systems are often described by on the continuous-time random walk (CTRW) (10). Likewise, coarse-grained models integrating complex internal and exter- anomalous diffusion was later found for biological motion (11– nal interactions indistinguishably as friction and stochastic forces. 13) and even human movement (14). Recently, it was established Since Galilean invariance is then violated, there is seemingly no as a ubiquitous characteristic of cellular processes on a molec- alternative principle to assess a priori the physical consistency of a ular level (15). -
The Special Theory of Relativity Lecture 16
The Special Theory of Relativity Lecture 16 E = mc2 Albert Einstein Einstein’s Relativity • Galilean-Newtonian Relativity • The Ultimate Speed - The Speed of Light • Postulates of the Special Theory of Relativity • Simultaneity • Time Dilation and the Twin Paradox • Length Contraction • Train in the Tunnel paradox (or plane in the barn) • Relativistic Doppler Effect • Four-Dimensional Space-Time • Relativistic Momentum and Mass • E = mc2; Mass and Energy • Relativistic Addition of Velocities Recommended Reading: Conceptual Physics by Paul Hewitt A Brief History of Time by Steven Hawking Galilean-Newtonian Relativity The Relativity principle: The basic laws of physics are the same in all inertial reference frames. What’s a reference frame? What does “inertial” mean? Etc…….. Think of ways to tell if you are in Motion. -And hence understand what Einstein meant By inertial and non inertial reference frames How does it differ if you’re in a car or plane at different points in the journey • Accelerating ? • Slowing down ? • Going around a curve ? • Moving at a constant velocity ? Why? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction. Your friend is at 2) 3 mph westward the front of the car and throws you 3) 57 mph eastward the ball at 3 mph (according to him). 4) 57 mph westward What velocity does the ball have 5) 60 mph eastward when you catch it, according to you? ConcepTest 26.1 Playing Ball on the Train You and your friend are playing catch 1) 3 mph eastward in a train moving at 60 mph in an eastward direction. -
Hypercomplex Algebras and Their Application to the Mathematical
Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H. -
Radiation Forces on Small Particles in the Solar System T
1CARUS 40, 1-48 (1979) Radiation Forces on Small Particles in the Solar System t JOSEPH A. BURNS Cornell University, 2 Ithaca, New York 14853 and NASA-Ames Research Center PHILIPPE L. LAMY CNRS-LAS, Marseille, France 13012 AND STEVEN SOTER Cornell University, Ithaca, New York 14853 Received May 12, 1978; revised May 2, 1979 We present a new and more accurate expression for the radiation pressure and Poynting- Robertson drag forces; it is more complete than previous ones, which considered only perfectly absorbing particles or artificial scattering laws. Using a simple heuristic derivation, the equation of motion for a particle of mass m and geometrical cross section A, moving with velocity v through a radiation field of energy flux density S, is found to be (to terms of order v/c) mi, = (SA/c)Qpr[(1 - i'/c)S - v/c], where S is a unit vector in the direction of the incident radiation,/" is the particle's radial velocity, and c is the speed of light; the radiation pressure efficiency factor Qpr ~ Qabs + Q~a(l - (cos a)), where Qabs and Q~c~ are the efficiency factors for absorption and scattering, and (cos a) accounts for the asymmetry of the scattered radiation. This result is confirmed by a new formal derivation applying special relativistic transformations for the incoming and outgoing energy and momentum as seen in the particle and solar frames of reference. Qpr is evaluated from Mie theory for small spherical particles with measured optical properties, irradiated by the actual solar spectrum. Of the eight materials studied, only for iron, magnetite, and graphite grains does the radiation pressure force exceed gravity and then just for sizes around 0. -
Physics 200 Problem Set 7 Solution Quick Overview: Although Relativity Can Be a Little Bewildering, This Problem Set Uses Just A
Physics 200 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely 1. Coordinates (x; t) in one frame are related to coordinates (x0; t0) in another frame by the Lorentz transformation formulas. 2. Similarly, space and time intervals (¢x; ¢t) in one frame are related to inter- vals (¢x0; ¢t0) in another frame by the same Lorentz transformation formu- las. Note that time dilation and length contraction are just special cases: it is time-dilation if ¢x = 0 and length contraction if ¢t = 0. 3. The spacetime interval (¢s)2 = (c¢t)2 ¡ (¢x)2 between two events is the same in every frame. 4. Energy and momentum are always conserved, and we can make e±cient use of this fact by writing them together in an energy-momentum vector P = (E=c; p) with the property P 2 = m2c2. In particular, if the mass is zero then P 2 = 0. 1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0 on the earth and at 2 minutes on the sun respectively. Find the time di®erence between the events according to an observer moving at u = 0:8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u = 0:8c. Answer: According to the formula for a Lorentz transformation, ³ u ´ 1 ¢tobserver = γ ¢tEarth-Sun ¡ ¢xEarth-Sun ; γ = p : c2 1 ¡ (u=c)2 Plugging in the numbers gives (notice that the c implicit in \light-minute" cancels the extra factor of c, which is why it's nice to measure distances in terms of the speed of light) 2 min ¡ 0:8(8:3 min) ¢tobserver = p = ¡7:7 min; 1 ¡ 0:82 which means that according to the observer, event B happened before event A! If we reverse the sign of u then 2 min + 0:8(8:3 min) ¢tobserver 2 = p = 14 min: 1 ¡ 0:82 2. -
Section 22-3: Energy, Momentum and Radiation Pressure
Answer to Essential Question 22.2: (a) To find the wavelength, we can combine the equation with the fact that the speed of light in air is 3.00 " 108 m/s. Thus, a frequency of 1 " 1018 Hz corresponds to a wavelength of 3 " 10-10 m, while a frequency of 90.9 MHz corresponds to a wavelength of 3.30 m. (b) Using Equation 22.2, with c = 3.00 " 108 m/s, gives an amplitude of . 22-3 Energy, Momentum and Radiation Pressure All waves carry energy, and electromagnetic waves are no exception. We often characterize the energy carried by a wave in terms of its intensity, which is the power per unit area. At a particular point in space that the wave is moving past, the intensity varies as the electric and magnetic fields at the point oscillate. It is generally most useful to focus on the average intensity, which is given by: . (Eq. 22.3: The average intensity in an EM wave) Note that Equations 22.2 and 22.3 can be combined, so the average intensity can be calculated using only the amplitude of the electric field or only the amplitude of the magnetic field. Momentum and radiation pressure As we will discuss later in the book, there is no mass associated with light, or with any EM wave. Despite this, an electromagnetic wave carries momentum. The momentum of an EM wave is the energy carried by the wave divided by the speed of light. If an EM wave is absorbed by an object, or it reflects from an object, the wave will transfer momentum to the object. -
JOHN EARMAN* and CLARK GL YMUURT the GRAVITATIONAL RED SHIFT AS a TEST of GENERAL RELATIVITY: HISTORY and ANALYSIS
JOHN EARMAN* and CLARK GL YMUURT THE GRAVITATIONAL RED SHIFT AS A TEST OF GENERAL RELATIVITY: HISTORY AND ANALYSIS CHARLES St. John, who was in 1921 the most widely respected student of the Fraunhofer lines in the solar spectra, began his contribution to a symposium in Nncure on Einstein’s theories of relativity with the following statement: The agreement of the observed advance of Mercury’s perihelion and of the eclipse results of the British expeditions of 1919 with the deductions from the Einstein law of gravitation gives an increased importance to the observations on the displacements of the absorption lines in the solar spectrum relative to terrestrial sources, as the evidence on this deduction from the Einstein theory is at present contradictory. Particular interest, moreover, attaches to such observations, inasmuch as the mathematical physicists are not in agreement as to the validity of this deduction, and solar observations must eventually furnish the criterion.’ St. John’s statement touches on some of the reasons why the history of the red shift provides such a fascinating case study for those interested in the scientific reception of Einstein’s general theory of relativity. In contrast to the other two ‘classical tests’, the weight of the early observations was not in favor of Einstein’s red shift formula, and the reaction of the scientific community to the threat of disconfirmation reveals much more about the contemporary scientific views of Einstein’s theory. The last sentence of St. John’s statement points to another factor that both complicates and heightens the interest of the situation: in contrast to Einstein’s deductions of the advance of Mercury’s perihelion and of the bending of light, considerable doubt existed as to whether or not the general theory did entail a red shift for the solar spectrum. -
(Special) Relativity
(Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t.