Albert Einstein's Key Breakthrough — Relativity

Total Page:16

File Type:pdf, Size:1020Kb

Albert Einstein's Key Breakthrough — Relativity { EINSTEIN’S CENTURY } Albert Einstein’s key breakthrough — relativity — came when he looked at a few ordinary things from a different perspective. /// BY RICHARD PANEK Relativity turns 1001 How’d he do it? This question has shadowed Albert Einstein for a century. Sometimes it’s rhetorical — an expression of amazement that one mind could so thoroughly and fundamentally reimagine the universe. And sometimes the question is literal — an inquiry into how Einstein arrived at his special and general theories of relativity. Einstein often echoed the first, awestruck form of the question when he referred to the mind’s workings in general. “What, precisely, is ‘thinking’?” he asked in his “Autobiographical Notes,” an essay from 1946. In somebody else’s autobiographical notes, even another scientist’s, this question might have been unusual. For Einstein, though, this type of question was typical. In numerous lectures and essays after he became famous as the father of relativity, Einstein began often with a meditation on how anyone could arrive at any subject, let alone an insight into the workings of the universe. An answer to the literal question has often been equally obscure. Since Einstein emerged as a public figure, a mythology has enshrouded him: the lone- ly genius sitting in the patent office in Bern, Switzerland, thinking his little thought experiments until one day, suddenly, he has a “Eureka!” moment. “Eureka!” moments young Einstein had, but they didn’t come from nowhere. He understood what scientific questions he was trying to answer, where they fit within philosophical traditions, and who else was asking them. He knew which giants’ shoulders he was standing on. WHEN ALBERT EINSTEIN developed his theories of relativity, no one knew what galaxies were. Today, astronomers use Einstein’s theories to decipher a universe filled with 100 billion galaxies and other objects not known during his lifetime. ESO © 2015 Kalmbach Publishing Co. This material may not be reproduced in any /// 32 astronomy februaryform without permission 05 from the publisher. www.Astronomy.com For Einstein, the answer to how anyone could do what he did “Thank you!” Einstein greeted Besso the following morning. “I might have been, “Who knows?” But the answer to how Einstein have completely solved the problem.” The trouble with the current 1 did what he did is simple: Here’s how. conception of the universe, he explained, wasn’t space. It was time. 1 Space and time Time changes The problem was space. When Einstein finally solved it in the Go back to the dock and look at Galileo’s ship, still in harbor after spring of 1905, he had already been thinking about it for 10 years. all these centuries. While it’s at rest in the water, you on the dock But the problem had been around for nearly 3 centuries, since the and an observer on the ship measure the mast and agree it is modern scientific era dawned. 186,282 miles high. (It’s a very tall ship.) In 1632, in Dialogue Concerning the Two Chief World Systems, Now suppose that, as in the earlier example, the ship is moving Galileo Galilei tried to explain how a Copernican view of the uni- at a constant speed across your line of sight. If the person at the verse alters physics. He invited you to imagine yourself on a dock, mast’s top sends a light signal straight down, where will it land? observing a ship moving at a steady rate across your line of vision. The Aristotelian answer is some distance behind the mast’s If someone at the top of the ship’s mast dropped a rock, where base. The Galilean answer is the base of the mast — which is the would it land? At the base of the mast? Or would it land some Einsteinian answer as well. small distance behind the mast — a distance corresponding to the From your point of view on the dock, the base of the mast will THE PERSON DROPPING THE ROCK from the top of the ship’s mast distance the ship covers between the release of the rock at the top have moved out from under the top of the mast during the light AN ELEVATOR FLOATING in space — or falling in a gravitational field observes a perpendicular drop — the rock appears to fall straight of the mast and its arrival on the deck? beam’s descent, just as it did during the rock’s descent. This — feels the same to a passenger inside it. You can’t see outside, so down to the base of the mast. The intuitive, Aristotelian answer is a small distance back. The means the distance the light has traveled, from your point of you have no frame of reference, and you feel weightless. correct, counterintuitive — and, Galileo argued, Copernican — view, has lengthened. It’s not 186,282 miles. It’s more. answer is the base of the mast, because the movement of the ship You can easily find how much more by measuring the light’s 2 and the movement of the rock together comprise a single motion. journey time — and this is where Einstein’s interpretation begins 2 From an observer’s point of view at the top of the mast, the to depart from Galileo’s. rock’s motion seems to be a perpendicular drop — the kind Any velocity is distance divided by time — for instance, miles Aristotle argued a rock would make in seeking to return to its divided by seconds. In the case of light, though, the velocity isn’t natural place in the universe, the ground. A person at the ship just 186,282 miles per second; according to Maxwell, and now mast’s top would take into account only the rock’s motion. Einstein, it’s always 186,282 miles per second. It’s a constant. It’s But for you, observing from the dock, both the rock and the on one side of the equal sign, moving at its imperturbable rate. ship would be moving, and together, those movements constitute On the other side of the equal sign are the parts of the equa- a single system in motion. To you, therefore, the motion of the tion that can vary: distance and time. They can undergo infinite rock falling toward the ship would not seem perpendicular but changes in value, so long as they continue to divide in such a way at an angle. that the result is 186,282 miles per second. Change the distance And vice versa. If, instead, you the observer standing on the the light beam travels, as happened from your point of view on dock dropped a rock, then, to you, the motion of that rock rela- the dock when the light beam on the moving ship “fell” from the tive to Earth would appear perpendicular, while to an observer on top of the mast, and you have to change the time. AN OBSERVER ON A DOCK sees the ship and rock moving together. the ship, the trajectory of the rock would make an angle. You have to change the time. IN AN ACCELERATING ELEVATOR, you feel a force on your feet. But Instead of a straight fall to the base of the mast, the dockside Either way, to trace the rock’s trajectory would require just “The step,” Einstein called this insight later, as if it had been because you can’t see outside, you can’t tell if the elevator is mov- observer sees the rock fall at an angle, taking a longer path. basic geometry, and you on the dock or the observer on the ship merely a matter of putting one foot in front of another. ing upward or if you’re at rest on a planetary surface. would have equal claim to being right. And there you have it — And one person, in fact, already had arrived at the idea that a 3-century-old Galilean principle of relativity. time might differ for different observers: Henri Poincaré, proba- motion of ship Einstein, however, introduced a complication into this sce- bly the most eminent mathematician of the day — and one of the 3 nario: What if the object descending from the top of the mast two sets of shoulders on which Einstein rested. As a member of 3 wasn’t a rock but a beam of light? the French Bureau des Longitudes and a professor at the École His choice of falling object wasn’t arbitrary. According to the Professionelle Supérieure des Postes et Télégraphes, Poincaré electromagnetic theory that Scottish-born physicist James Clerk presided over one of the most pressing practical matters at the force of Maxwell devised 40 years earlier, the speed of light is constant. It’s turn of the 20th century: the coordination of clocks, specifically, resultant gravity the same no matter what. What changes isn’t the speed of the the coordination of electrical clocks. path of rock on rock light waves but their frequency — the number of waves that Unlike mechanical clocks, electrical clocks allowed the trans- reaches you in a certain length of time. mission of information from city to city, capital to capital, even Part of Einstein’s larger ambition was to reconcile electromag- shore to ship once radio signals came into use, and all at the netism with Galileo’s version of relativity. And one night in May speed of light. Poincaré understood that this speed is a natural 1905, after discussing the problem with his longtime friend and limit in the transmission and reception of information. In 1898, patent office sounding-board, Michele Besso, Einstein understood he published an essay on the subject, “The Measure of Time.” how to do it.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • The Special Theory of Relativity
    THE SPECIAL THEORY OF RELATIVITY Lecture Notes prepared by J D Cresser Department of Physics Macquarie University July 31, 2003 CONTENTS 1 Contents 1 Introduction: What is Relativity? 2 2 Frames of Reference 5 2.1 A Framework of Rulers and Clocks . 5 2.2 Inertial Frames of Reference and Newton’s First Law of Motion . 7 3 The Galilean Transformation 7 4 Newtonian Force and Momentum 9 4.1 Newton’s Second Law of Motion . 9 4.2 Newton’s Third Law of Motion . 10 5 Newtonian Relativity 10 6 Maxwell’s Equations and the Ether 11 7 Einstein’s Postulates 13 8 Clock Synchronization in an Inertial Frame 14 9 Lorentz Transformation 16 9.1 Length Contraction . 20 9.2 Time Dilation . 22 9.3 Simultaneity . 24 9.4 Transformation of Velocities (Addition of Velocities) . 24 10 Relativistic Dynamics 27 10.1 Relativistic Momentum . 28 10.2 Relativistic Force, Work, Kinetic Energy . 29 10.3 Total Relativistic Energy . 30 10.4 Equivalence of Mass and Energy . 33 10.5 Zero Rest Mass Particles . 34 11 Geometry of Spacetime 35 11.1 Geometrical Properties of 3 Dimensional Space . 35 11.2 Space Time Four Vectors . 38 11.3 Spacetime Diagrams . 40 11.4 Properties of Spacetime Intervals . 41 1 INTRODUCTION: WHAT IS RELATIVITY? 2 1 Introduction: What is Relativity? Until the end of the 19th century it was believed that Newton’s three Laws of Motion and the associated ideas about the properties of space and time provided a basis on which the motion of matter could be completely understood.
    [Show full text]
  • Measurement of the Speed of Gravity
    Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity.
    [Show full text]
  • Hypercomplex Algebras and Their Application to the Mathematical
    Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H.
    [Show full text]
  • Curriculum Overview Physics/Pre-AP 2018-2019 1St Nine Weeks
    Curriculum Overview Physics/Pre-AP 2018-2019 1st Nine Weeks RESOURCES: Essential Physics (Ergopedia – online book) Physics Classroom http://www.physicsclassroom.com/ PHET Simulations https://phet.colorado.edu/ ONGOING TEKS: 1A, 1B, 2A, 2B, 2C, 2D, 2F, 2G, 2H, 2I, 2J,3E 1) SAFETY TEKS 1A, 1B Vocabulary Fume hood, fire blanket, fire extinguisher, goggle sanitizer, eye wash, safety shower, impact goggles, chemical safety goggles, fire exit, electrical safety cut off, apron, broken glass container, disposal alert, biological hazard, open flame alert, thermal safety, sharp object safety, fume safety, electrical safety, plant safety, animal safety, radioactive safety, clothing protection safety, fire safety, explosion safety, eye safety, poison safety, chemical safety Key Concepts The student will be able to determine if a situation in the physics lab is a safe practice and what appropriate safety equipment and safety warning signs may be needed in a physics lab. The student will be able to determine the proper disposal or recycling of materials in the physics lab. Essential Questions 1. How are safe practices in school, home or job applied? 2. What are the consequences for not using safety equipment or following safe practices? 2) SCIENCE OF PHYSICS: Glossary, Pages 35, 39 TEKS 2B, 2C Vocabulary Matter, energy, hypothesis, theory, objectivity, reproducibility, experiment, qualitative, quantitative, engineering, technology, science, pseudo-science, non-science Key Concepts The student will know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. The student will know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers.
    [Show full text]
  • Experimental Determination of the Speed of Light by the Foucault Method
    Experimental Determination of the Speed of Light by the Foucault Method R. Price and J. Zizka University of Arizona The speed of light was measured using the Foucault method of reflecting a beam of light from a rotating mirror to a fixed mirror and back creating two separate reflected beams with an angular displacement that is related to the time that was required for the light beam to travel a given distance to the fixed mirror. By taking measurements relating the displacement of the two light beams and the angular speed of the rotating mirror, the speed of light was found to be (3.09±0.204)x108 m/s, which is within 2.7% of the defined value for the speed of light. 1 Introduction The goal of the experiment was to experimentally measure the speed of light, c, in a vacuum by using the Foucault method for measuring the speed of light. Although there are many experimental methods available to measure the speed of light, the underlying principle behind all methods on the simple kinematic relationship between constant velocity, distance and time given below: D c = (1) t In all forms of the experiment, the objective is to measure the time required for the light to travel a given distance. The large magnitude of the speed of light prevents any direct measurements of the time a light beam going across a given distance similar to kinematic experiments. Galileo himself attempted such an experiment by having two people hold lights across a distance. One of the experiments would put out their light and when the second observer saw the light cease, they would put out theirs.
    [Show full text]
  • Systematic Errors in High-Precision Gravity Measurements by Light-Pulse Atom Interferometry on the Ground and in Space
    Systematic errors in high-precision gravity measurements by light-pulse atom interferometry on the ground and in space Anna M. Nobili,1, 2 Alberto Anselmi,3 and Raffaello Pegna1 1Dept. of Physics \E. Fermi", University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 2INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 3Thales Alenia Space Italia, Strada Antica di Collegno 253, 10146 Torino, Italy (Dated: February 18, 2020) We focus on the fact that light-pulse atom interferometers measure the atoms' acceleration with only three data points per drop. As a result, the measured effect of the gravity gradient is system- atically larger than the true one, an error linear with the gradient and quadratic in time almost unnoticed so far. We show how this error affects the absolute measurement of the gravitational acceleration g as well as ground and space experiments with gradiometers based on atom inter- ferometry such as those designed for space geodesy, the measurement of the universal constant of gravity and the detection of gravitational waves. When atom interferometers test the universality of free fall and the weak equivalence principle by dropping different isotopes of the same atom one laser interrogates both isotopes and the error reported here cancels out. With atom clouds of different species and two lasers of different frequencies the phase shifts measured by the interferometer differ by a large amount even in absence of violation. Systematic errors, including common mode acceler- ations coupled to the gravity gradient with the reported error, lead to hard concurrent requirements {on the ground and in space{ on several dimensionless parameters all of which must be smaller than the sought-for violation signal.
    [Show full text]
  • (Special) Relativity
    (Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t.
    [Show full text]
  • LIGO: the Search for the Gravitational Wave Sky
    LIGO: The Search for the Gravitational Wave Sky • Science • LIGO status • UO in LIGO R Frey Oct 2008 1 General Relativity • Grav ity as a “fic titious f orce” Gravity can be “removed” in a special ref. frame -- free fall • Einstein took this as a clue that gravity is really caused by the structure of spacetime • Postulates of General Relativity (Einstein ca. 1915): Equivalence of inertial and gravitational mass There is no physics experiment which can distinguish between a gravitational field and an accelerating reference frame • An elevator at rest in earth’s gravity (g=9.8 m/s2) • An elevator accelerating upward with a= 9. 8 m/s2 • What this means extends special relativity to non-zero acceleration GitGravity re-dibddescribed as curva ture o f space time • A test particle (or light) in free fall follows a “straight” geodesic R Frey Oct 2008 2 General Relativity (contd) SdiiSome predictions: Gravity influences both mass and energy • e.g. bending of light in regions with gravitational field • 1919 Eddington; Gravitational lensing: Einstein Cross Many small deviations from Newtonian gravity in “weak” fields • Gravitational “redshift” (e.g. clocks on satellites are faster) • Perihelion advance of mercury • Global Positioning System would not work without GR corrections “Strong” field effects 2 • Black holes; Rs = 2GM/c Spacetime structure of universe – evolution of spacetime from Big Bang • the “bi g s tre tc h” And gravitational radiation (gravitational waves) R Frey Oct 2008 3 GWs in GR R Frey Oct 2008 4 The 4 Forces of Nature
    [Show full text]
  • Principle of Relativity in Physics and in Epistemology Guang-Jiong
    Principle of Relativity in Physics and in Epistemology Guang-jiong Ni Department of Physics, Fudan University, Shanghai 200433,China Department of Physics , Portland State University, Portland,OR97207,USA (Email: [email protected]) Abstract: The conceptual evolution of principle of relativity in the theory of special relativity is discussed in detail . It is intimately related to a series of difficulties in quantum mechanics, relativistic quantum mechanics and quantum field theory as well as to new predictions about antigravity and tachyonic neutrinos etc. I. Introduction: Two Postulates of Einstein As is well known, the theory of special relativity(SR) was established by Einstein in 1905 on two postulates (see,e.g.,[1]): Postulate 1: All inertial frames are equivalent with respect to all the laws of physics. Postulate 2: The speed of light in empty space always has the same value c. The postulate 1 , usually called as the “principle of relativity” , was accepted by all physicists in 1905 without suspicion whereas the postulate 2 aroused a great surprise among many physicists at that time. The surprise was inevitable and even necessary since SR is a totally new theory out broken from the classical physics. Both postulates are relativistic in essence and intimately related. This is because a law of physics is expressed by certain equation. When we compare its form from one inertial frame to another, a coordinate transformation is needed to check if its form remains invariant. And this Lorentz transformation must be established by the postulate 2 before postulate 1 can have quantitative meaning. Hence, as a metaphor, to propose postulate 1 was just like “ to paint a dragon on the wall” and Einstein brought it to life “by putting in the pupils of its eyes”(before the dragon could fly out of the wall) via the postulate 2[2].
    [Show full text]
  • Reconsidering Time Dilation of Special Theory of Relativity
    International Journal of Advanced Research in Physical Science (IJARPS) Volume 5, Issue 8, 2018, PP 7-11 ISSN No. (Online) 2349-7882 www.arcjournals.org Reconsidering Time Dilation of Special Theory of Relativity Salman Mahmud Student of BIAM Model School and College, Bogra, Bangladesh *Corresponding Author: Salman Mahmud, Student of BIAM Model School and College, Bogra, Bangladesh Abstract : In classical Newtonian physics, the concept of time is absolute. With his theory of relativity, Einstein proved that time is not absolute, through time dilation. According to the special theory of relativity, time dilation is a difference in the elapsed time measured by two observers, either due to a velocity difference relative to each other. As a result a clock that is moving relative to an observer will be measured to tick slower than a clock that is at rest in the observer's own frame of reference. Through some thought experiments, Einstein proved the time dilation. Here in this article I will use my thought experiments to demonstrate that time dilation is incorrect and it was a great mistake of Einstein. 1. INTRODUCTION A central tenet of special relativity is the idea that the experience of time is a local phenomenon. Each object at a point in space can have it’s own version of time which may run faster or slower than at other objects elsewhere. Relative changes in the experience of time are said to happen when one object moves toward or away from other object. This is called time dilation. But this is wrong. Einstein’s relativity was based on two postulates: 1.
    [Show full text]
  • Equivalence Principle (WEP) of General Relativity Using a New Quantum Gravity Theory Proposed by the Authors Called Electro-Magnetic Quantum Gravity Or EMQG (Ref
    WHAT ARE THE HIDDEN QUANTUM PROCESSES IN EINSTEIN’S WEAK PRINCIPLE OF EQUIVALENCE? Tom Ostoma and Mike Trushyk 48 O’HARA PLACE, Brampton, Ontario, L6Y 3R8 [email protected] Monday April 12, 2000 ACKNOWLEDGMENTS We wish to thank R. Mongrain (P.Eng) for our lengthy conversations on the nature of space, time, light, matter, and CA theory. ABSTRACT We provide a quantum derivation of Einstein’s Weak Equivalence Principle (WEP) of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is manifestly compatible with Cellular Automata (CA) theory (ref. 2 and 4), and is also based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia, QI). QI states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force interactions contributed by each of the (electrically charged) elementary particles of the mass with the surrounding (electrically charged) virtual particles (virtual masseons) of the quantum vacuum. The sum of all the tiny electrical forces (photon exchanges with the vacuum particles) originating in each charged elementary particle of the accelerated mass is the source of the total inertial force of a mass which opposes accelerated motion in Newton’s law ‘F = MA’. The well known paradoxes that arise from considerations of accelerated motion (Mach’s principle) are resolved, and Newton’s laws of motion are now understood at the deeper quantum level. We found that gravity also involves the same ‘inertial’ electromagnetic force component that exists in inertial mass.
    [Show full text]