Proteomic Distinction of Renal Oncocytomas and Chromophobe Renal Cell Carcinomas Vanessa Drendel1†, Bianca Heckelmann1†, Christoph Schell1, Lucas Kook2, Martin L

Total Page:16

File Type:pdf, Size:1020Kb

Proteomic Distinction of Renal Oncocytomas and Chromophobe Renal Cell Carcinomas Vanessa Drendel1†, Bianca Heckelmann1†, Christoph Schell1, Lucas Kook2, Martin L Drendel et al. Clin Proteom (2018) 15:25 https://doi.org/10.1186/s12014-018-9200-6 Clinical Proteomics RESEARCH Open Access Proteomic distinction of renal oncocytomas and chromophobe renal cell carcinomas Vanessa Drendel1†, Bianca Heckelmann1†, Christoph Schell1, Lucas Kook2, Martin L. Biniossek2, Martin Werner1,3,5, Cordula A. Jilg3,4* and Oliver Schilling2,3,6* Abstract Background: Renal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5–7% of renal neoplasias. ROs and chRCCs show pronounced molecular and histological similarities, which renders their diferentiation demanding. We aimed for the diferential proteome profling of ROs and early-stage chRCCs in order to better understand distinguishing protein patterns. Methods: We employed formalin-fxed, parafn-embedded samples (six RO cases, six chRCC cases) together with isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immu- nohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases. Results: At 1% false discovery rate, we identifed > 3900 proteins, of which > 2400 proteins were consistently quanti- fed in at least four RO and four chRCC cases. The proteomic expression profling discriminated ROs and chRCCs and highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of LAMP1 in chRCC and of ITGAV in RO. Conclusion: We present one of the frst diferential proteome profling studies on ROs and chRCCs and highlight dif- ferential abundance of LAMP1 and ITGAV in these renal tumors. Keywords: Renal cell tumors, Formalin-fxation, Parafn embedment, Proteomics, Immunohistochemistry Background overall prognosis is more favourable than for renal Chromophobe renal cell carcinoma (chRCC) consti- clear cell carcinomas with a 5-year survival rate tute 5–7% of renal neoplasias [1]. ChRCC are thought of > 75% [1, 3]. However, this is still a malignant tumor to originate from cell of the distal nephron [2]. Their entity with the potential for recurrence or metastatic spread. Renal oncocytomas (ROs) are benign epithelial tumors of the kidney. They constitute up to 7% of all adult renal tumors [4]. ROs have been first described *Correspondence: Cordula.Jilg@uniklinik‑freiburg.de; oliver. schilling@mol‑med.uni‑freiburg.de as late as 1942 [5] and clinical reports have remained †Vanessa Drendel and Bianca Heckelmann contributed equally to this scarce until the 1970s [6]. Differentiation between RO work and chRCC in pathological routine practice is often 2 Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany4 considered challenging [4, 7]. This is because of strong Department of Urology, Medical Center – University of Freiburg, Faculty similarities in morphology, growth pattern and locali- of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, zation of benign ROs and malignant chRCCs. For this Germany Full list of author information is available at the end of the article reason, distinguishing biomarkers are actively being © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Drendel et al. Clin Proteom (2018) 15:25 Page 2 of 15 researched. In this context, system-wide, omics-type Histopathological diagnosis for renal oncocytoma expression profiling studies are emerging as a strong or chromophobe renal cell carcinoma and unbiased approach. Several of such expression Te diagnosis for all RO or chRCC cases used in this studies aimed at a comprehensive differential profiling study was based on histopathologic parameters (cyto- of various renal cell tumors, also including clear cell plasm, cell membrane, perinuclear halo, tumor border renal cell carcinoma (ccRCCs) or papillary renal cell and septae) and corroborated by immunohistochemis- carcinoma. Often, such studies involved only low num- try (IHC) for CD117, cytokeratin-7, and vimentin. Tese bers of RO and chRCC cases and aimed at their col- IHC stainings were part of the routine immunohisto- lective distinction from other renal cell tumors rather pathological diagnosis with the corresponding antibod- than molecularly distinguishing ROs and chRCCs. ies being supplied by Dako (Hamburg, Germany). We Yusenko et al. probed genome alterations and DNA focused on chRCC cases that displayed difuse-membra- copy number variants to specifically differentiate ROs nous expression of cytokeratin-7 whereas its expression and chRCCs. They identified several genomic altera- was largely absent in the RO cases [1, 7]. Moreover, the tions that differ between chRCCs and ROs [8]. A sec- RO and chRCC cases displayed membranous expres- ond genomic study identified differing chromosomal sion of CD117 [7]. Finally, the RO and chRCC cases were abnormalities with regard to chromosome 19 in ROs vimentin-negative [1]. or chRCCs [9]. The resulting gene expression effects affected oxygen sensing. This is an intriguing parallel Tissue collection, sample preparation, liquid to ccRCCs which frequently carry somatic, inactivat- chromatography‑tandem mass spectrometry (LC–MS/MS), ing mutations of the Von Hippel-Lindau gene, ulti- and data analysis mately leading to the expression of hypoxia-related FFPE tissue specimens of six ROs and six chRCCs were genes and promotion of tumorigenesis [10]. On the used as described previously [15, 19], including micro- genomic level, Joshi et al. [11] distinguish two types scopically controlled macrodissection to remove areas of ROs and link chromosomal abnormalities involv- of necrosis, fbrosis, hemorrhage, and infammation. For ing chromosome 1, X or Y, and/or 14 and 21 with the quantitative comparison, triplex isotopic dimethylation potential for progression from RO to chRCC. Rohan of primary amines was employed [20], distinguishing et al. [12] performed a global transcriptomic profil- RO, chRCC, and a pooled mix that serves as a standard ing of ROs and chRCCs. Major expression differences similar to the Super-SILAC approach [21]. Samples were were found with regard to transcript encoding pro- further fractionated by strong cation exchange chroma- teins involved in vesicular transport and cell junction. tography as described [22]. LC–MS/MS was performed On the protein level, multiple protein biomarkers have using a Q-Exactive plus (Termo Scientifc) mass spec- been suggested (reviewed in [4]) but to date there has trometer coupled to an Easy nanoLC 1000 (Termo not been an unbiased, differential proteomic profiling Scientifc) as described previously [18]. MS data were of ROs and chRCCs. However, proteomic profiling is analyzed by MaxQuant version 1.5.28 [23] as described gaining interest for the investigation of malignancies previously [19]. Proteins were only further considered due to the limited correlation between mRNA and pro- if they were identifed and quantifed in at least four tein levels [13, 14]. Formalin-fixed, paraffin-embedded RO samples and four chRCC samples. Due to this strict (FFPE) samples are a valuable resource for proteomic requirement, we also included proteins that were identi- profiling [15–17], enabling retrospective profiling of fed and quantifed by single peptides in individual sam- clinic-pathologically annotated specimens [18, 19]. In ples. Files obtained by MaxQuant were further processed the present study, we employed “FFPE proteomics” for using RStudio v.0.99.446 (R Foundation for Statistical the differential proteomic profiling of RO and chRCC Computing, Vienna, Austria) as previously described cases for which we find noticeable differences. In a [24]. Reverse and potential contaminants entries were larger cohort comprising > 70 RO and chRCC cases, we removed. Ratios were log2 transformed, normalized by corroborate elevated presence of lysosomal-associated centering, and a linear model was ftted using the limma membrane protein 1 in chRCCs and elevated presence package [25]. of integrin alpha-V in ROs. Immunohistochemical analysis Methods IHC analysis was performed with an extended patient Ethics statement cohort, comprising 42 RO cases and 31 chRCC cases. Te study was approved by the Ethics Committee of the IHC was performed for lysosomal-associated membrane University Medical Center Freiburg (311/12). Before protein 1 (LAMP1) and integrin alpha-V (ITGAV). Slices study inclusion, all patient data were anonymized. Drendel et al. Clin Proteom (2018) 15:25 Page 3 of 15 of 2 µm thickness from FFPE tissue samples were pre- to the kidney (T1 or T2). An overview of the patient pared using a Leica RM2255 microtome. Heat induced characteristics is provided in Table 1. antigen retrieval was performed at pH 9.0.
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • CD56+ T-Cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients
    CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients Institute of Infection and Global Health Department of Clinical Infection, Microbiology and Immunology Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Mazen Mohammed Almehmadi December 2014 - 1 - Abstract Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. The work described in this thesis aimed to investigate CD56+ T-cells in relation to cytomegalovirus infection in healthy subjects and kidney transplant patients (KTPs). Proportions of CD56+ T cells were found to be highly significantly increased in healthy cytomegalovirus-seropositive (CMV+) compared to cytomegalovirus-seronegative (CMV-) subjects (8.38% ± 0.33 versus 3.29%± 0.33; P < 0.0001). In donor CMV-/recipient CMV- (D-/R-)- KTPs levels of CD56+ T cells were 1.9% ±0.35 versus 5.42% ±1.01 in D+/R- patients and 5.11% ±0.69 in R+ patients (P 0.0247 and < 0.0001 respectively). CD56+ T cells in both healthy CMV+ subjects and KTPs expressed markers of effector memory- RA T-cells (TEMRA) while in healthy CMV- subjects and D-/R- KTPs the phenotype was predominantly that of naïve T-cells. Other surface markers, CD8, CD4, CD58, CD57, CD94 and NKG2C were expressed by a significantly higher proportion of CD56+ T-cells in healthy CMV+ than CMV- subjects. Functional studies showed levels of pro-inflammatory cytokines IFN-γ and TNF-α, as well as granzyme B and CD107a were significantly higher in CD56+ T-cells from CMV+ than CMV- subjects following stimulation with CMV antigens.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Cell Communication and Signaling Biomed Central
    Cell Communication and Signaling BioMed Central Review Open Access Extravasation of leukocytes in comparison to tumor cells Carina Strell and Frank Entschladen* Address: Institute of Immunology, Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany Email: Carina Strell - [email protected]; Frank Entschladen* - [email protected] * Corresponding author Published: 4 December 2008 Received: 18 November 2008 Accepted: 4 December 2008 Cell Communication and Signaling 2008, 6:10 doi:10.1186/1478-811X-6-10 This article is available from: http://www.biosignaling.com/content/6/1/10 © 2008 Strell and Entschladen; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium.
    [Show full text]
  • Lysosomal Membrane Glycoproteins Bind Cholesterol and Contribute to Lysosomal Cholesterol Export
    1 Lysosomal membrane glycoproteins bind cholesterol and 2 contribute to lysosomal cholesterol export 3 4 Jian Li and Suzanne R. Pfeffer* 5 Department of Biochemistry, Stanford University School of Medicine 6 Stanford, CA USA 94305-5307 7 8 *Correspondence to: [email protected]. 9 10 Abstract: LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins 11 that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. 12 LAMP2 deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 13 is needed for chaperone-mediated autophagy, and its expression improves tissue function in 14 models of aging. We show here that LAMP1 and LAMP2 bind cholesterol in a manner that 15 buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that 16 export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels 17 suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome 18 limiting membrane, and may signal cholesterol availability. Functional rescue experiments show 19 that the ability of LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to 20 bind cholesterol directly. 21 22 23 Introduction 24 Eukaryotic lysosomes are acidic, membrane-bound organelles that contain proteases, lipases and 25 nucleases and degrade cellular components to regenerate catabolic precursors for cellular use (1- 26 3). Lysosomes are crucial for the degradation of substrates from the cytoplasm, as well as 27 membrane bound compartments derived from the secretory, endocytic, autophagic and 28 phagocytic pathways. The limiting membrane of lysosomes is lined with so-called lysosomal 29 membrane glycoproteins (LAMPs) that are comprised of a short cytoplasmic domain, a single 30 transmembrane span, and a highly, N- and O-glycosylated lumenal domain (4-6).
    [Show full text]
  • Sensitization to the Lysosomal Cell Death Pathway by Oncogene- Induced Down-Regulation of Lysosome-Associated Membrane Proteins 1 and 2
    Research Article Sensitization to the Lysosomal Cell Death Pathway by Oncogene- Induced Down-regulation of Lysosome-Associated Membrane Proteins 1 and 2 Nicole Fehrenbacher,1 Lone Bastholm,2 Thomas Kirkegaard-Sørensen,1 Bo Rafn,1 Trine Bøttzauw,1 Christina Nielsen,1 Ekkehard Weber,3 Senji Shirasawa,4 Tuula Kallunki,1 and Marja Ja¨a¨ttela¨1 1Apoptosis Department and Centre for Genotoxic Stress Response, Institute for Cancer Biology, Danish Cancer Society; 2Institute of Molecular Pathology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; 3Institute of Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany; and 4Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan Abstract molecules of the cell to breakdown products available for Expression and activity of lysosomal cysteine cathepsins metabolic reuse (3, 4). Cathepsin proteases are among the best- correlate with the metastatic capacity and aggressiveness of studied lysosomal hydrolases. They are maximally active at the tumors. Here, we show that transformation of murine acidic pH of lysosomes (pH 4–5). However, many of them can be Y527F embryonic fibroblasts with v-H-ras or c-src changes the active at the neutral pH outside lysosomes, albeit with a decreased distribution, density, and ultrastructure of the lysosomes, efficacy and/or altered specificity (5). For example, transformation and tumor environment enhance the expression of lysosomal decreases the levels of lysosome-associated membrane pro- teins (LAMP-1 and LAMP-2) in an extracellular signal- cysteine cathepsins and increase their secretion into the extracel- regulated kinase (ERK)- and cathepsin-dependent manner, lular space (6). Once outside the tumor cells, cathepsins stimulate and sensitizes the cells to lysosomal cell death pathways angiogenesis, tumor growth, and invasion in murine cancer induced by various anticancer drugs (i.e., cisplatin, etoposide, models, thereby enhancing cancer progression (7, 8).
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Dipeptidase Aminodipeptidase, Quiescent Cell Proline of a Novel
    Vesicular Localization and Characterization of a Novel Post-Proline-Cleaving Aminodipeptidase, Quiescent Cell Proline Dipeptidase This information is current as of September 26, 2021. Murali Chiravuri, Fernando Agarraberes, Suzanne L. Mathieu, Henry Lee and Brigitte T. Huber J Immunol 2000; 165:5695-5702; ; doi: 10.4049/jimmunol.165.10.5695 http://www.jimmunol.org/content/165/10/5695 Downloaded from References This article cites 28 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/165/10/5695.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Vesicular Localization and Characterization of a Novel Post-Proline-Cleaving Aminodipeptidase, Quiescent Cell Proline Dipeptidase1 Murali Chiravuri,* Fernando Agarraberes,† Suzanne L. Mathieu,* Henry Lee,* and Brigitte T. Huber2* A large number of chemokines, cytokines, and signal peptides share a highly conserved X-Pro motif on the N-terminus.
    [Show full text]
  • The Clinical Biochemistry of 5'-Nucleotidase*
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 20, No. 2 Copyright © 1990, Institute for Clinical Science, Inc. The Clinical Biochemistry of 5'-Nucleotidase* F. WILLIAM SUNDERMAN JR., M.D. Departments of Laboratory Medicine and Pharmacology, University of Connecticut Medical School, Farmington, CT 06032 ABSTRACT This review delineates the subcellular distribution, biochemical charac­ teristics, and metabolic functions of 5'-nucleotidase (5'NT), summarizes the analytical biochemistry of 5'NT, and assesses the clinical significance of5'NT determinations in body fluids, cells, and tissues. Salient aspects of the clinical biochemistry of 5'NT, discussed herein, are as follows: (A) Serum 5'NT activity is generally elevated in hepatobiliary diseases, espe­ cially with intrahepatic obstruction, but, unlike serum alkaline phospha­ tase, serum 5'NT activity is not increased in infancy, childhood, preg­ nancy, or osteoblastic disorders. (B) In cancer patients, elevated serum 5'NT activity does not always indicate hepatobiliary involvement; in some cases, 5'NT may be released into serum from the primary tumor or local metastases. (C) Genetic deficiency of erythrocyte pyrimidine 5'NT activity is a common cause of hereditary non-spherocytic hemolytic anemia. (D) Acquired deficiency of erythrocyte pyrimidine 5'NT activity occurs in patients with P-thalassemia and lead poisoning. (E) 5'NT activity is low in circulating monocytes, increases markedly upon their differentiation to tissue macrophages, and subsequently diminishes during macrophage activation. (F) Lymphocyte ecto-5'NT activity, a plasma membrane marker of cell maturation, is generally low in immunodeficiency states, and undergoes characteristic changes in patients with certain lymphomas and leukemias. Introduction ribonucleosides and inorganic phos­ phate.
    [Show full text]
  • Fluid Biomarkers in Frontotemporal Dementia: Past, Present and Future
    Neurodegeneration J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-323520 on 13 November 2020. Downloaded from Review Fluid biomarkers in frontotemporal dementia: past, present and future Imogen Joanna Swift ,1 Aitana Sogorb- Esteve,1,2 Carolin Heller ,1 Matthis Synofzik,3,4 Markus Otto ,5 Caroline Graff,6,7 Daniela Galimberti ,8,9 Emily Todd,2 Amanda J Heslegrave,1 Emma Louise van der Ende ,10 John Cornelis Van Swieten ,10 Henrik Zetterberg,1,11 Jonathan Daniel Rohrer 2 ► Additional material is ABSTRACT into a behavioural form (behavioural variant fron- published online only. To view, The frontotemporal dementia (FTD) spectrum of totemporal dementia (bvFTD)), a language variant please visit the journal online (primary progressive aphasia (PPA)) and a motor (http:// dx. doi. org/ 10. 1136/ neurodegenerative disorders includes a heterogeneous jnnp- 2020- 323520). group of conditions. However, following on from a series presentation (either FTD with amyotrophic lateral of important molecular studies in the early 2000s, major sclerosis (FTD- ALS) or an atypical parkinsonian For numbered affiliations see advances have now been made in the understanding disorder). Neuroanatomically, the FTD spectrum end of article. of the pathological and genetic underpinnings of the is characteristically associated with dysfunction and disease. In turn, alongside the development of novel neuronal loss in the frontal and temporal lobes, but Correspondence to more widespread cortical, subcortical, cerebellar Dr Jonathan Daniel Rohrer, methodologies for measuring proteins and other Dementia Research molecules in biological fluids, the last 10 years have and brainstem involvement is now recognised. Centre, Department of seen a huge increase in biomarker studies within FTD.
    [Show full text]
  • An Underappreciated Yet Critical Hurdle for Successful Cancer Immunotherapy Robert Sackstein1,2,3,4, Tobias Schatton1,3,5,6 and Steven R Barthel1,3,5
    Laboratory Investigation (2017) 97, 669–697 © 2017 USCAP, Inc All rights reserved 0023-6837/17 $32.00 PATHOBIOLOGY IN FOCUS T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy Robert Sackstein1,2,3,4, Tobias Schatton1,3,5,6 and Steven R Barthel1,3,5 Advances in cancer immunotherapy have offered new hope for patients with metastatic disease. This unfolding success story has been exemplified by a growing arsenal of novel immunotherapeutics, including blocking antibodies targeting immune checkpoint pathways, cancer vaccines, and adoptive cell therapy (ACT). Nonetheless, clinical benefit remains highly variable and patient-specific, in part, because all immunotherapeutic regimens vitally hinge on the capacity of endogenous and/or adoptively transferred T-effector (Teff) cells, including chimeric antigen receptor (CAR) T cells, to home efficiently into tumor target tissue. Thus, defects intrinsic to the multi-step T-cell homing cascade have become an obvious, though significantly underappreciated contributor to immunotherapy resistance. Conspicuous have been low intralesional frequencies of tumor-infiltrating T-lymphocytes (TILs) below clinically beneficial threshold levels, and peripheral rather than deep lesional TIL infiltration. Therefore, a Teff cell ‘homing deficit’ may arguably represent a dominant factor responsible for ineffective immunotherapeutic outcomes, as tumors resistant to immune-targeted killing thrive in such permissive, immune-vacuous microenvironments. Fortunately, emerging
    [Show full text]
  • Poly (I)-Poly (C)/Oligo (Dt)-Cellulosei... Sidney Pestka, James Mcinnes
    Contents Vol. 72, No. 10 October 1975 INFORMATION TO CONTRIBUTORS ..............................iv...........................I..................... i-i AUTfHOR INDEX ................................................................................................. 4190 Physical Sciences APPLIED Adiabatic evolution of plasma equilibrium (bifurcation/isolation/weak solution/generalized differential MATHEMATICS equation/Tokamak) ............................................ H. Grad, P.N. Hu, and D. C. Stevens 3789-3793 CHEMISTRY Theoretical studies of metal-phosphate interactions: Interaction of Li+, Na+, K+, Be++, Mg++, and Ca++ with H2PO4- and (CH30)2PO2-: Implications for nucleic acid solvation (metal binding/phos- phate complexes/molecular orbital theory) ................Dennis S. Marynick and Henry F. Schaefer III 3794-3798 Maximum-valence radii of transition metals (covalent radii/enneacovalence) ............... Linus Pauling 3799-3801 Model of protein folding: Inclusion of short-, medium-, and long-range interactions (mechanism offolding/ contact free energies/range of interactions/Monte Carlo) ........... Seiji Tanaka and HaroldA. Scheraga 3802-3806 Matrix method for fhActuations and noise in kinetic systems (cross correlation function/noise power spectrum matrix/relaxation matrix/biochemical reaction kinetics/muscle contraction) .Yi-der Chen 3807-3811 MATHEMATICS Point estimates for probability moments (approximate methods/finite differences/numerical methods/prob- abilities) .......................... - ;Emilio Rosenblueth 3812-3814
    [Show full text]