Alaska's Wildlife and Habitat

Total Page:16

File Type:pdf, Size:1020Kb

Alaska's Wildlife and Habitat Alaska’s Wildlife and Habitat Alaska Department of Fish and Game JANUARY, 1973 Funded by Federal Aid in Wildlife Restoration Funds PRICE: $15 STATE OF ALASKA William A. Egan GOVERNOR James W. Brooks Frank F. Jones COMMISSIONER DIRECTOR DIRECTOR ALASKA DEPARTMENT OF FISH AND GAME GAME DIVISION STUDY TEAM Ronald J. Somerville COCHAIRMEN Richard H. Bishop MEMBERS Walt L. Cunningham Robert A. Rausch John S. Vania Harry R. Merriam Robert E. LeResche EDITORS Robert A. Hinman CARTOGRAPHY STAFF Billie Ruth Boring Timothy Jackinsky Eugene Lewis Stephen M. Brooks Larry L. Johnson Sheryl Ludwig Gary Faircrough Samuel Jones Frank D. Rosenberg PRINTER Van Cleve Printing, Anchorage, Alaska ACKNOWLEDGEMENTS Because this volume is a compilation of existing knowledge of selected Alaska wildlife species, much of which existed only in unwritten form among Department staff members, it could not have been completed without the cooperation of many. The study team would like to express its appreciation to the entire Departmental staff for their interest and support. We are particularly indebted to the following members of the Game Division: Melvin Buchholz, John J. Burns, Phillip D. Havens, James E. Hemming, Larry Jennings, Jack W. Lentfer, Carl W. McIl- roy, Lyman Nichols, Gerene R. Olson, Robert E. Pegau, Colleen Rhody, Karl B. Schneider, Peter E. K. Shepherd, Arthur C. Smith III, Roger B. Smith, Bonnie M. Snyder, Daniel E. Timm, and Dolores R. Weister. We also gratefully acknowledge contributions by: our sister Divisions of Sport Fish and Commercial Fisheries; the Habitat Section of the Department of Fish and Game; the Alaska Department of Public Safety; the Bureau of Sport Fisheries and Wildlife; the U. S. Forest Service; the Bureau of Land Management; the U. S. National Park Service; the U. S Geological Survey; the Department of Regional Economic Expansion, Canada; the Depart- ment of Agriculture, Province of British Columbia, Canada; Renewable Resources Consulting Services, Ltd.; and numerous members of the public who offered their assistance. Base maps were provided by the U. S. Geological Survey. WILLIAM A. EGAN, GOVERNOR DEPARTMENT OF FISH AND GAME OFFICE OF THE COMMISSIONER Support Building Juneau 99801 February 6, 1973 Honorable William A. Egan Governor State Capitol Building Juneau, Alaska 99801 Dear Governor Egan: It gives me much pleasure to furnish you with a report entitled Alaska’s Wildlife and Its Habitat prepared by the Department of Fish and Game. This publication provides factual and reasonably detailed information about Alaska’s great and varied wildlife resources during a critical transition period for our State. The volume is large, but excusably so, for it treats a large subject with a thoroughness never before achieved in the presentation of current information about wildlife in a vast region. As a reference source for individuals or agencies involved in land use or resources planning, the volume should prove invaluable. But it likewise offers a wealth of information to all people who have their own special concern or interest in wildlife resources. Policies, management practices, game population levels, habitat characteristics and relative values are all dy- namic in nature, and this publication is designed to accommodate change. Pages may be printed in the future to reflect significant changes and these pages can be inserted to keep the volume accurate and up to date. In pro- ducing this publication, I believe that the Department of Fish and Game has made a major contribution toward assuring that Alaska’s wildlife will receive proper and enlightened consideration through the coming years of land and resource development. Sincerely yours. James W. Brooks Commissioner Contents FOREWORD 5 GENERAL GAME MANAGEMENT POLICY 6 Introduction 7 ANIMAL REFERENCE LIST 8 PART I: PHYSIOGRAPHY OF ALASKA 13 PART II: WILDLIFE SPECIES ACCOUNTS 20 CARNIVORES 20 UNGULATES 27 MARINE MAMMALS 40 WATERFOWL AND SEABIRDS 47 PART III: WILDLIFE DISTRIBUTION MAPS 75 SPECIES MAPPING CATEGORIES 75 Part IV: GAME MANAGEMENT UNIT ACCOUNTS 89 GAME MANAGEMENT UNIT 1 89 GAME MANAGEMENT UNIT 2 96 GAME MANAGEMENT UNIT 3 99 GAME MANAGEMENT UNIT 4 101 GAME MANAGEMENT UNIT 5 104 GAME MANAGEMENT UNIT 6 107 GAME MANAGEMENT UNIT 7 114 GAME MANAGEMENT UNIT 8 120 GAME MANAGEMENT UNIT 9 130 GAME MANAGEMENT UNIT 10 142 GAME MANAGEMENT UNIT 11 151 GAME MANAGEMENT UNIT 12 156 GAME MANAGEMENT UNIT 13 162 GAME MANAGEMENT UNIT 14 170 GAME MANAGEMENT UNIT 15 176 GAME MANAGEMENT UNIT 16 182 GAME MANAGEMENT UNIT 17 187 GAME MANAGEMENT UNIT 18 190 GAME MANAGEMENT UNIT 19 194 GAME MANAGEMENT UNIT 20 198 GAME MANAGEMENT UNIT 21 208 GAME MANAGEMENT UNIT 22 212 GAME MANAGEMENT UNIT 23 222 GAME MANAGEMENT UNIT 24 225 GAME MANAGEMENT UNIT 25 228 GAME MANAGEMENT UNIT 26 232 SELECTED REFERENCES 240 FOREWORD Alaska’s Wildlife and Habitat represents many years of data gathering by wildlife biologists and interested citi- zens of Alaska. This effort to bring together an overview of big game, marine mammal, waterfowl and seabird distributions and habitats in Alaska is a landmark in development of game management and land-use planning programs. With the advent of statehood in 1959, the Alaska Department of Fish and Game was formed and charged with the responsibility of managing the fish and game of the state. The Game Division immediately launched expand- ed programs to develop the knowledge needed to fulfill this responsibility. It was clear that knowledge of wildlife in the state must be accumulated more rapidly than it had been under the constraints of limited manpower and money in territorial days. Thus for the first few years heavy emphasis was laid on acquiring biological facts and figures with one hand, and applying them to the most immediately pressing management needs with the other. The need to expand and refine present knowledge continues, just as change in the scope and nature of wildlife management continues. In the past year, however, we have reached a stage where we can profitably assemble what we have learned in a form that provides positive, broadly applicable guidelines for wildlife management and wildlife-oriented land-use planning. At the same time, we have accumulated a wealth of data concerning the distribution and general habitat requirements of wildlife in Alaska, and feel a pressing need to make these data available in a comprehensive form to planners, hunters, recreationists and others concerned with wildlife. The Division of Game’s General Game Management Policy (reproduced below) with its corollary species manage- ment policies, and Alaska’s Wildlife and Habitat are the results. The reasons for publishing these data are at least twofold. First, it was clear that to implement our management policies through explicit plans we should reassess what we know about wildlife populations in specific areas of the state. To create management plans that would provide the variety of recreational opportunities outlined in the Policy, we needed a review of habitat requirements and seasonal use patterns. This inventory serves as an internal status report-an aid in planning for present and future recreational needs. More importantly, it became abundantly clear with passage of the Native Claims Act of 1972, completion of land selection by the state under the Alaska Statehood Act, consideration of “four-systems” and “public interest” lands by the federal government, and acceleration of exploitation of petroleum and other nonrenewable resources, that a great deal of information about all of Alaska’s resources is needed as a basis for logical, factual land-use deci- sions. Since the Department of Fish and Game is responsible for preserving and managing Alaska’s wildlife, it is imperative that we provide a ready source of information on wildlife habitat, the key to our renowned wildlife populations, for use by resource management agencies, native corporations, private industry, and interested citizens. If Alaska’s unique wildlife is to be maintained in its present variety and abundance, the integrity of wildlife habi- tat must be maintained. A number of wild species are sufficiently adaptable to adjust to most of man’s activities, but many species require some specialized or critical habitat at some stage of their annual cycle. This inventory provides a visual and written representation of many of these critical areas. The existing gaps in the information will be filled as time passes. The distribution of, and critical habitat for, many other species of Alaskan wildlife remain to be described. A second volume of Alaska’s Wildlife and Habitat is anticipated to fill this need. Our earnest wish is that this first volume will contribute greatly to the development of a comprehensive land-use plan for Alaska, where there is still a chance to plan wisely. 5 GENERAL GAME MANAGEMENT POLICY The Alaska Department of Fish and Game recognizes the Constitutional mandate of the State of Alaska to man- age all species on the sustained yield principle for the benefit of the resource and the people of the state, and also recognizes that national and international interests must be considered. The Department recognizes the singular importance of maintaining suitable habitat for all wildlife species, and advocates the development and implementation of comprehensive resource use planning. The Department recognizes that there are many uses of wildlife, that present priorities may not be the priorities of the future, and that management plans must consider all uses. The Department recognizes that responsible
Recommended publications
  • Glacial Change on Baranof Island: Quantifying Local-Level Impact of Climate Change
    Glacial Change on Baranof Island: Quantifying Local-level Impact of Climate Change Jonathan Kreiss-Tomkins, Chandler Kemp, Eli Bildner Overview The glaciers of Baranof Island – the only glaciated island in Southeast Alaska – are small, disparate, and sensitive to climatic change due to the temperate climate in which they are situated. We propose to quantify the change in area of a selection of Baranof Island glaciers over recent history by gathering geospatial data, calculating the perimeter and surface area of the glaciers, using a model to estimate glacial volume, and then comparing our findings against the historical record – historical USGS field measurements, historical aerial photographs, tree core data, and geomorphological indicators such as terminal moraines and trim lines. We will then quantify historical change of surface area and perimeter, and if sufficient historical data points are available, we will also calculate a rate of change (both for surface area and extent of the terminus) and predict future glacial advance or retreat. Methodology Targeted Glaciers We will gather data for two subsets of glaciers, one subset from mid-Baranof Island, one subset from the South Baranof Wilderness Area. The first subset of glaciers will consist of two glaciers from mid-Baranof Island, both on or near the Cross-Baranof Island Trail and well known by users of the Sitka Community Use Area. These glaciers are indicated in map attachment 1 – a small valley glacier north of Glacier Lake and a modest icefield north of the Baranof River valley. The second subset of glaciers will consist of three smaller hanging and cirque glaciers from the South Baranof Wilderness Area (see map attachment 2).
    [Show full text]
  • Bibliography of Alaskan Geology
    BIBLIOGRAPHY OF ALASKAN GEOLOGY , ,. SPECIAL REPORT 22 ..... Compiled by: CRAWFORD E. FRITTS and MILDRED E. BROWN State of Alaska Department of Hat ural Resources OIVISIOH OF GEOLOGICAL SURVEY College, Alaska 187 1 STATE OF ALASKA William A. Egan - Governor DEPARTMENT OF NATURAL RESOURCES Charles F. Herbert - Commissioner DIVISION OF GEOLOGICAL SURVEY William C. Fackler - Assistant Commissioner for Minerals BIBLIOGWHY OF ALASKAN GEOLOGY, 1919-1949 Compiled by Crawford E. Fritrs and Mildred E. Brown College, Alaska 1971 CONTENTS Page Introduction ................................ 1 Purpose. source and format .......,............... 1 Serial publications ........................... 2 Other publishing media .........................ll Miscellaneous abbreviations ....................... 13 Bibliography ................................ 15 Index .................. Arealgeology ............. Earthquakes .............. Economic geology ........... Engineering geology .......... General subjects ........... Geomorphology [or physiography] .... Geophysical surveys .......... Glacial geology ............ Historical geology .......... Maps. geologic ............ Mineralogy .............. Paleoclimatology ........... Paleontology ............. Petrology ............... Physical geology ........... Sedimentation or sedimentary petrology Stratigraphy ............. Structural geology .......... Volcanism and volcanology ....... ILLUSTRATIONS Figure 1 . Quadrangles and major geographic divisions of Alaska referred to in this report .......................
    [Show full text]
  • Robert C. Rhew Dept
    Curriculum vitae: June, 2016 Robert Rhew, UC Berkeley Robert C. Rhew Dept. of Geography / Dept. of Environmental Science, Policy and Management Lab: (510) 643-6984 University of California, Berkeley Facsimile: (510) 642-3370 Berkeley, CA 94720-4740 E-mail: [email protected] EDUCATION 1992 B.A. Earth & Planetary Sciences (Atmospheres and Oceans) Harvard University Magna cum laUde with highest honors Cambridge, MA 1994 Graduate Diploma. Resource & Env’t Management Australian National University Diploma with Distinction Canberra, ACT 2001 Ph.D. Earth Sciences (Geochemistry) Scripps Institution of Oceanography, UCSD Thesis title: Production and Consumption of Methyl Bromide and Methyl La Jolla, CA Chloride by the Terrestrial Biosphere ACADEMIC EMPLOYMENT 2012 – present Associate Professor, Dept. Envt. Science, Policy & Mgt. University of California, Berkeley 2009 – present Associate Professor, Department of Geography University of California, Berkeley 2006 – present Geological Scientist Faculty, Earth Sciences Division Lawrence Berkeley National Labs, CA 2013 – 2014 Visiting Faculty Fellow, National Center for Atmospheric Research NCAR, Boulder, CO 2013 – 2014 CIRES Visiting Fellow, NOAA/ CIRES University of Colorado, Boulder 2003 – 2009 Assistant Professor, Department of Geography University of California, Berkeley 2001 – 2003 Postdoctoral Researcher, Earth System Science University of California, Irvine UCAR/NOAA Climate and Global Change Postdoctoral Fellowship, Host: Prof. Eric Saltzman Other appointments: Affiliate faculty in Energy
    [Show full text]
  • Characterization of Moose Movement Patterns and Movement of Black Bears in Relation to Anthropogenic Food Sources on Joint Basse
    Form Approved REPORT DOCUMENTATION PAGE OMB No. 074-0188 AD_________________ (Leave blank) Award Number(s): W81XWH-08-2-0179-0002 W912DY-09-2-0011 W9126G-10-2-0042 TITLE: Characterization of moose movement patterns and movement of black bears in relation to anthropogenic food sources on Joint Base Elmendorf- Richardson, Alaska PRINCIPAL INVESTIGATOR: (Enter the name and degree of Principal Investigator and any Associates) Sean D. Farley,Ph.D.; Perry Barboza, Ph.D ; Herman Griese, MS; Christopher Garner, BS CONTRACTING ORGANIZATION: 673d Civil Engineering Squadron 724 Quartermaster Drive Joint Base Elmendorf Richardson, Alaska 99505-8860 REPORT DATE: Sept 2014 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 (W81XWH-08-2-0179-0002) Army Corps of Engineers U.S. Army Engineering and Support Center Huntsville, Alabama 35816-1822 (W912DY-09-2-0011) Army Corps of Engineers U.S. Army Engineering and Support Center Fort Worth, Texas 76102-0300 (W9126G-10-2-0042) DISTRIBUTION STATEMENT: (Check one) X Approved for public release; distribution unlimited Distribution limited to U.S. Government agencies only; report contains proprietary information The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. 1 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information.
    [Show full text]
  • Wildlife Protection Guidelines for Alaska
    Wildlife Protection Guidelines for Alaska Alaska Regional Response Team, Wildlife Protection Committee Revision 5 – August 2012 2018 Administrative Update Revision 5 – August 2012 Administrative Update: March 2018 1 Table of Contents I. Introduction ........................................................................................................................... G-5 A. Background G-5 B. Objectives ........................................................................................................................... G-5 C. Scope of Wildlife Protection Guidelines for Alaska ............................................................... G-6 1. Geographic Area ............................................................................................................. G-6 2. Wildlife Resources .......................................................................................................... G-8 3. Wildlife Resource Agencies ............................................................................................. G-8 D. Committee Organization and Development of Guidelines ................................................... G-8 1. Committee Organization ................................................................................................. G-8 2. Development of Guidelines ............................................................................................ G-9 E. Relationship to National Planning Requirements and Guidance .......................................... G-9 F. Procedures for Revisions and
    [Show full text]
  • Biological Monitoring at Aiktak Island, Alaska in 2016
    AMNWR 2017/02 BIOLOGICAL MONITORING AT AIKTAK ISLAND, ALASKA IN 2016 Sarah M. Youngren, Daniel C. Rapp, and Nora A. Rojek Key words: Aiktak Island, Alaska, Aleutian Islands, ancient murrelet, Cepphus columba, common murre, double-crested cormorant, fork-tailed storm-petrel, Fratercula cirrhata, Fratercula corniculata, glaucous-winged gull, horned puffin, Larus glaucescens, Leach’s storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax auritus, Phalacrocorax pelagicus, Phalacrocorax urile, pigeon guillemot, population trends, productivity, red-faced cormorant, Synthliboramphus antiquus, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia. U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, AK 99603 January 2017 Cite as: Youngren, S. M., D. C. Rapp, and N. A. Rojek. 2017. Biological monitoring at Aiktak Island, Alaska in 2016. U.S. Fish and Wildl. Serv. Rep., AMNWR 2017/02. Homer, Alaska. Tufted puffins flying along the southern coast of Aiktak Island, Alaska. TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 1 METHODS ...................................................................................................................................................
    [Show full text]
  • Moose Hunters in - Southwest Alaska a Better Opportunity to Evaluate Antlers
    280 AN EVALUATION OF TROPHY MOOSE MANAGEMENT ON THE ALASKA PENINSULA Christian A. Smith, Alaska Dept. of Fish and Game, King Salmon, Alaska James B. Faro, Alaska Dept. of Fish and Game, Anchorage, Alaska Nicholas C. Steen, Alaska Dept. of Fish and Game, King Salmon, Alaska '" Abstract: an experimental trophy management program was initiated on the Alaska Peninsula in 1976 with the imple­ mentation of a regulation requiring that all harvested bull moose (AZaes aZaes gigas) have antlers with at least a 50 inch spread. The regulation was designed to protect bulls under 5 years of age, to test the capability of hunters to comply with minimum size requirements, and to determine the potential for maintaining trophy class bulls in the population through this approach. The first two objectives have been accomplished. Nearly 70 - percent of the harvested bulls have been 5 or more years old and only 4 percent of the bulls taken were illegal. Adequate survey data are not available to determine current proportions of trophy bulls in the herd. In view of the declining nature of the population and increasing frequency - of 5 year olds in the kill, however, it seems likely that current harvests may be curtailing recruitment beyond age 5. Although this may not further affect average trophy size, availability of trophy class animals could eventually be - limited to the size of the 5 year old cohort. The moose population of the central Alaska Peninsula, Game Management - Unit 9E, appears to have established via i11111igration southwest from the Naknek River drainage in the early 1930's (Faro 1969).
    [Show full text]
  • Introduction
    AMNWR 08/13 BIOLOGICAL MONITORING AT AIKTAK ISLAND, ALASKA IN 2008: SUMMARY APPENDICES Brie A. Drummond Key words: Aiktak Island, Alaska, Aleutian Islands, ancient murrelet, Cepphus columba, common murre, double-crested cormorant, fork-tailed storm-petrel, Fratercula cirrhata, Fratercula corniculata, glaucous-winged gull, horned puffin, Larus glaucescens, Leach’s storm-petrel, Oceanodroma leucorhoa, Oceanodroma furcata, pelagic cormorant, Phalacrocorax auritus, Phalacrocorax pelagicus, Phalacrocorax urile, pigeon guillemot, population trends, productivity, red-faced cormorant, Synthliboramphus antiquus, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge Aleutian Islands Unit 95 Sterling Hwy, Suite 1 Homer, Alaska 99603 September 2008 Cite as: Drummond, B. A. Biological monitoring at Aiktak Island, Alaska in 2008: summary appendices. U.S. Fish and Wildl. Serv. Rep., AMNWR 08/13. Homer, Alaska. 139 pp. Southern coast of Aiktak Island, Alaska, in early June. TABLE OF CONTENTS PAGE INTRODUCTION.......................................................................................................................................... 1 STUDY AREA............................................................................................................................................. ..1 METHODS.................................................................................................................................................. ..2 INTERESTING OBSERVATIONS..............................................................................................................
    [Show full text]
  • NSF 03-021, Arctic Research in the United States
    This document has been archived. Home is Where the Habitat is An Ecosystem Foundation for Wildlife Distribution and Behavior This article was prepared The lands and near-shore waters of Alaska remaining from recent geomorphic activities such by Page Spencer, stretch from 48° to 68° north latitude and from 130° as glaciers, floods, and volcanic eruptions.* National Park Service, west to 175° east longitude. The immense size of Ecosystems in Alaska are spread out along Anchorage, Alaska; Alaska is frequently portrayed through its super- three major bioclimatic gradients, represented by Gregory Nowacki, USDA Forest Service; Michael imposition on the continental U.S., stretching from the factors of climate (temperature and precipita- Fleming, U.S. Geological Georgia to California and from Minnesota to tion), vegetation (forested to non-forested), and Survey; Terry Brock, Texas. Within Alaska’s broad geographic extent disturbance regime. When the 32 ecoregions are USDA Forest Service there are widely diverse ecosystems, including arrayed along these gradients, eight large group- (retired); and Torre Arctic deserts, rainforests, boreal forests, alpine ings, or ecological divisions, emerge. In this paper Jorgenson, ABR, Inc. tundra, and impenetrable shrub thickets. This land we describe the eight ecological divisions, with is shaped by storms and waves driven across 8000 details from their component ecoregions and rep- miles of the Pacific Ocean, by huge river systems, resentative photos. by wildfire and permafrost, by volcanoes in the Ecosystem structures and environmental Ring of Fire where the Pacific plate dives beneath processes largely dictate the distribution and the North American plate, by frequent earth- behavior of wildlife species.
    [Show full text]
  • Alaska Range
    Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range.
    [Show full text]
  • Aberrant Plumages in Grebes Podicipedidae
    André Konter Aberrant plumages in grebes Podicipedidae An analysis of albinism, leucism, brown and other aberrations in all grebe species worldwide Aberrant plumages in grebes Podicipedidae in grebes plumages Aberrant Ferrantia André Konter Travaux scientifiques du Musée national d'histoire naturelle Luxembourg www.mnhn.lu 72 2015 Ferrantia 72 2015 2015 72 Ferrantia est une revue publiée à intervalles non réguliers par le Musée national d’histoire naturelle à Luxembourg. Elle fait suite, avec la même tomaison, aux TRAVAUX SCIENTIFIQUES DU MUSÉE NATIONAL D’HISTOIRE NATURELLE DE LUXEMBOURG parus entre 1981 et 1999. Comité de rédaction: Eric Buttini Guy Colling Edmée Engel Thierry Helminger Mise en page: Romain Bei Design: Thierry Helminger Prix du volume: 15 € Rédaction: Échange: Musée national d’histoire naturelle Exchange MNHN Rédaction Ferrantia c/o Musée national d’histoire naturelle 25, rue Münster 25, rue Münster L-2160 Luxembourg L-2160 Luxembourg Tél +352 46 22 33 - 1 Tél +352 46 22 33 - 1 Fax +352 46 38 48 Fax +352 46 38 48 Internet: http://www.mnhn.lu/ferrantia/ Internet: http://www.mnhn.lu/ferrantia/exchange email: [email protected] email: [email protected] Page de couverture: 1. Great Crested Grebe, Lake IJssel, Netherlands, April 2002 (PCRcr200303303), photo A. Konter. 2. Red-necked Grebe, Tunkwa Lake, British Columbia, Canada, 2006 (PGRho200501022), photo K. T. Karlson. 3. Great Crested Grebe, Rotterdam-IJsselmonde, Netherlands, August 2006 (PCRcr200602012), photo C. van Rijswik. Citation: André Konter 2015. - Aberrant plumages in grebes Podicipedidae - An analysis of albinism, leucism, brown and other aberrations in all grebe species worldwide. Ferrantia 72, Musée national d’histoire naturelle, Luxembourg, 206 p.
    [Show full text]
  • Recent Changes in the Zooplankton Communities of Arctic Tundra
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2019-01-01 Recent Changes In The Zooplankton Communities Of Arctic Tundra Ponds In Response To Warmer Temperatures And Nutrient Enrichment Mariana Vargas Medrano University of Texas at El Paso Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biology Commons Recommended Citation Vargas Medrano, Mariana, "Recent Changes In The Zooplankton Communities Of Arctic Tundra Ponds In Response To Warmer Temperatures And Nutrient Enrichment" (2019). Open Access Theses & Dissertations. 2018. https://digitalcommons.utep.edu/open_etd/2018 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. RECENT CHANGES IN THE ZOOPLANKTON COMMUNITIES OF ARCTIC TUNDRA PONDS IN RESPONSE TO WARMER TEMPERATURES AND NUTRIENT ENRICHMENT MARIANA VARGAS MEDRANO Doctoral Program in Ecology and Evolutionary Biology APPROVED: Vanessa L. Lougheed, Ph.D., Chair Craig Tweedie, Ph.D. Wen-Yen Lee, Ph.D. Elizabeth J.Walsh, Ph.D. Stephen L. Crites, Jr., Ph.D. Dean of the Graduate School Copyright © by Mariana Vargas Medrano 2019 Dedication This dissertation is dedicated to all my incredible family for all the love and support. RECENT CHANGES IN THE ZOOPLANKTON COMMUNITIES OF ARCTIC TUNDRA PONDS IN RESPONSE TO WARMER TEMPERATURES AND NUTRIENT ENRICHMENT by MARIANA VARGAS MEDRANO, B.S., M.S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES THE UNIVERSITY OF TEXAS AT EL PASO AUGUST 2019 Acknowledgments This study was funded by NSF Polar Programs (ARC-0909502).
    [Show full text]