Computaional Modeling of Early Cleavage in Metazoans: the Case of the Spiral Pattern

Total Page:16

File Type:pdf, Size:1020Kb

Computaional Modeling of Early Cleavage in Metazoans: the Case of the Spiral Pattern ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Computaional modeling of early cleavage in metazoans: the case of the spiral pattern (Modelado computacional del clivaje temprano en metazoos: el caso del patrón espiral) – DOCTORAL THESIS -- Memoria para optar al grado de Doctor por la Universitat Autònoma de Barcelona. Programa de Doctorado en Genética (Departament de Genètica i microbiologia. Grup de Genòmica, Bioinformàtica i evolució) Author: MIGUEL ANGEL BRUN USAN Director: Dr. Isaac Salazar Ciudad Bellaterra, de de 2016. Facultad de Biociències Departament de Genètica i de Microbiologia (Grup de Genòmica, Bioinformàtica i Evolució) Facultat de Biociències. Edifici C 08193 Bellaterra (Cerdanyola del Vallès) TEL +34 93 581 27 24 FAX +34 93 581 23 87 Dr. ISAAC SALAZAR CIUDAD, Profesor Contratado Doctor y director de la presente Tesis doctoral, HACE CONSTAR QUE: La Tesis escrita por Miguel Angel Brun Usan es apta para ser leída y defendida en público, puesto que reúne todos los requisitos propios de este tipo de trabajo: rigor científico, resultados originales y aplicación de una metodología adecuada. No menos importante, la linea de trabajo desarrollada en esta Tesis es fácilmente generalizable a otros grupos animales, abriendo nuevas vías de investigación futura. Además, el doctorando ha demostrado capacidad y autonomía a la hora de implementar las diferentes lineas de investigación. La presente Tesis cumple con creces los objetivos planteados en el proyecto inicial. Desde el principio, se propuso crear un modelo computacional capaz de reproducir los diferentes patrones de clivaje observados durante el desarrollo temprano de diferentes animales. Dicho modelo permitiría arrojar luz sobre los diferentes procesos celulares que dan lugar a los diferentes patrones de clivaje, así como sobre los factores que median en las transiciones evolutivas entre esos patrones. Además, contando con un modelo suficientemente realista, los resultados obtenidos podrían compararse cuantitativamente con embriones reales. La complejidad técnica del proyecto exigió un planteamiento secuencial en la ejecución del mismo: 1) Con el objetivo de introducir al doctorando en la modelizacion bioinformática, se elaboró un modelo computacional (toy-model) sobre la evolución adaptativa de fenotipos complejos. 2) Se desarrolló un modelo matemático general de desarrollo embrionario capaz de simular el desarrollo de cualquier tipo de órgano o tejido. El doctorando, utilizando las habilidades informáticas adquiridas en el punto (1), participó desarrollando partes relevantes que permitirían mas tarde el modelado de los patrones de clivaje. 3) Se llevó a cabo un trabajo de revisión bibliografica que resume el conocimiento actual en el desarrollo temprano de todos los grupos animales, haciendo hicapié en los mecanismos celulares implicados en los diferentes patrones de clivaje. 4) Con el modelo desarrollado en el punto (2) y el conocimiento adquirido en el punto (3), se elaboró un modelo de clivaje espiral. El patrón de clivaje espiral es un tipo de clivaje representativo y extendido entre los metazoos y del que se dispone de abundante bibliografía al respecto. Ademas, la elección del patrón espiral permitió contar con embriones reales que comparar con los resultados. Cabe destacar que cada fase del proyecto ha dado lugar a un artículo científico en publicaciones de prestigio internacional y considerable impacto (Journal of Evolutionary Biology (1), Bioinformatics (2), Development (4)) (A fecha de depósito de Tesis, 27 de Septiembre de 2016, la última se halla aceptada pero pendiente de publicación) Los resultados presentados en esta tesis contribuyen de manera significativa al avance del campo de la biología evolutiva y de la biología del desarrollo. Por un lado, los experimentos in silico realizados con el modelo de desarrollo temprano han arrojado luz sobre el largamente debatido origen del patron de clivaje espiral, y han permitido rechazar algunas teorías preexistentes al respecto. Por otro lado, las nuevas técnicas informáticas y de morfología cuantitativa desarrolladas en la presente tesis son de amplia aplicabilidad dentro del campo del desarrollo temprano, por lo que otros grupos de investigación podrían beneficiarse de las mismas. En general, la calidad de esta tesis es alta, tanto en lo referente al número de publicaciones como a la calidad de éstas. Durante la elaboración de esta tesis, el doctorando ha demostrado una comprensión profunda en el campo de la biología evolutiva y de la biología del desarrollo, así como una capacidad de sintetizar dicha comprensión en modelos matemáticos que a buen seguro tendrán un impacto duradero en el campo. Dr. Isaac Salazar Ciudad. En Barcelona, a de de 2016 FUNDING: During most of time (year 2011 to 2015), this Thesis was funded by the Spanish Ministry of Science and Innovation by means of the Grant (BES2011-046641), framed within the project (BFU2010-17044: “Modelos de redes genéticas y celulares en el desarrollo embrionario animal y la evolución”). In 2016, it was partially funded by the the Finnish Academy (WBS 1250271) and partially by the Spanish INEM. To all people who have taught me new things (A todos los que me han enseñado cosas nuevas) ACKNOWLEDGEMENTS: I thank my supervisor Isaac Salazar-Ciudad for his advice and training, and for allowing me to enter in the world of science. Other scientists have been fundamental during the development of this Thesis: Dr. Jukka Jernvall, from Helsinki University in Finland, Dr. Stuart A. Newman, from the New-York Medical College in USA and Dra. Cristina Grande, from the CBMSO, in Madrid. Thank you. I also thank my Lab colleagues and coworkers: Miquel Marin-Riera, Irepan Salvador- Martinez, Roland Zimm, Tommi Välikangas, Anton Chernenko, Fernando Urbano, Pascal Hagolani, Alexis Matamoro and Mona Christensen for their helpful comments, fruitful discussions, manuscript reviews and for creating a friendly and peaceful working environment. I would like also thank the teachers and researchers of the Departament de Genetica i microbiologia in Barcelona, who share with me their pasion for evolutionary biology. Special mention to Dr. Antonio Barbadilla and Dr. Alfredo Ruiz for their wise advices. I also thank the members of the Thesis Monitoring Committee, Dra. Alba Hernandez, Dr. Ricard Marcos and Dr. Alfredo Ruiz for their advices and guidance. I am also very thankful to the Thesis Tribunal, and to all the presents for your assistance. In addition, I would like also mention some people who, not strictly belonging to the academic area in which this Thesis has been developed, have been fundamental in order for it to be carried out. I would like to thank them. My parents, for the freedom of choice they offered me and their unconditional support. My brother, for becoming an example of personal overcoming. To my uncle Jose Luis Usan and my grandfather Jose Usan, since they let me know the pleasure of the knowledge of nature. To my grandmother, for her long-distance support. Also to my uncle Jaime Brun for his “inverse motivation” (he told me during my childhood I will never become a biologist). To Cris, who endures the science as my other love, and keeps me firmly attached to the solid ground of tangible things. Thanks. During my learning stage of life (which lasts until now), many people have influenced me to be a biologist, and this I would like to thank them. They are the irreplaceable friends from my village (especially those belonging to the biological association SAB); my “grandfiend” Malocha, authodidact naturalist; and the adventurers Jesus and Lucía, who taught me that knowledge does not finish just in books. Some wonderful teachers I have had in the public Spanish education and academic system also deserve a place in this list: Ruben Peña, Jesus Molledo, Carmelo, Manuel Hernandez, Patricio Dominguez … and DonGuillermo (written that way), whose lessons were well beyond the scope of primary school. Many biologists and scientists have also contributed to sculpt my passion for biology and science in general, and thus have played a role in this thesis, as large-effect motivational agents: Mario, Isaac, Irene, Agus, Freiji, Ali, Pantxo, Yulan, Gabi, Gise, Luz, Carmen, Wessos, Paula, Joaquin, Ruben, Whyshu, Marco, the physicists Ruben and Daniela … (the list is open ended and always growing). Thank you all for your almost infinite talks about evolution, cosmology, nature, ethology, sociology, physic, maths …. and all those marvelous topics contained within this Universe. Despite the fact I do not know them personally (some of them rest at just one node far away in the dense network of human and academic relationships), some people have influenced my scientific thought such a way I feel obligated to include them in this acknowledgment list: the more prominent are Isaac Asimov, Carl Sagan, Stephen Jay Gould, Clifford Pickover, Gerald Durrell, David Attenborough, Stuart Kauffman, Brian Goodwin and Lynn Margulis.
Recommended publications
  • New Records of 13 Rotifers Including Bryceella Perpusilla Wilts Et Al., 2010 and Philodina Lepta Wulfert, 1951 from Korea
    Journal26 of Species Research 6(Special Edition):26-37,JOURNAL 2017 OF SPECIES RESEARCH Vol. 6, Special Edition New records of 13 rotifers including Bryceella perpusilla Wilts et al., 2010 and Philodina lepta Wulfert, 1951 from Korea Min Ok Song* Department of Biology, Gangneung-Wonju National University, Gangwon-do 25457, Republic of Korea *Correspondent: [email protected], [email protected] Rotifers collected from various terrestrial and aquatic habitats such as mosses on trees or rocks, tree barks, wet mosses and wet leaf litter at streams, and dry leaf litter at four different locations in Korea, were investigated. Thirteen species belonging to nine genera in five families of monogonont and bdelloid rotifers were identified: Bryceella perpusilla Wilts, Martinez Arbizu and Ahlrichs, 2010, Collotheca ornata (Ehrenberg, 1830), Habrotrocha flava Bryce, 1915, H. pusilla (Bryce, 1893), Macrotrachela aculeata Milne, 1886, M. plicata (Bryce, 1892), Mniobia montium Murray, 1911, M. tentans Donner, 1949, Notommata cyrtopus Gosse, 1886, Philodina lepta Wulfert, 1951, P. tranquilla Wulfert, 1942, Pleuretra hystrix Bartoš, 1950 and Proalinopsis caudatus (Collins, 1873). All these rotifers are new to Korea, and B. perpusilla, H. flava, M. montium, P. caudatus, P. hystrix and P. lepta are new to Asia as well. Of interest, the present study is the first to record B. perpusilla outside its type locality. In addition, P. lepta has previously been recorded from only three European countries. Keywords: Korea, new records, rotifera, taxonomy, terrestrial habitats Ⓒ 2017 National Institute of Biological Resources DOI:10.12651/JSR.2017.6(S).037 INTRODUCTION (Donner, 1965). The present study is the first record of Philodina lepta outside Europe as well as the fourth A taxonomic study of rotifers collected from various overall.
    [Show full text]
  • Invertebrate Fauna of Korea of Fauna Invertebrate
    Invertebrate Fauna of Korea Fauna Invertebrate Invertebrate Fauna of Korea Volume 10, Number 1 Rotifera: Eurotatoria: Bdelloidea: Philodinida: Habrotrochidae, Philodinidae Rotifera I Vol. 10, 10, Vol. No. 1 Rotifera I Flora and Fauna of Korea National Institute of Biological Resources NIBR Ministry of Environment Invertebrate Fauna of Korea Volume 10, Number 1 Rotifera: Eurotatoria: Bdelloidea: Philodinida: Habrotrochidae, Philodinidae Rotifera I 2015 National Institute of Biological Resources Ministry of Environment Invertebrate Fauna of Korea Volume 10, Number 1 Rotifera: Eurotatoria: Bdelloidea: Philodinida: Habrotrochidae, Philodinidae Rotifera I Min Ok Song Gangneung-Wonju National University Invertebrate Fauna of Korea Volume 10, Number 1 Rotifera: Eurotatoria: Bdelloidea: Philodinida: Habrotrochidae, Philodinidae Rotifera I Copyright ⓒ 2015 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon 22689, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788968112065-96470 Government Publications Registration Number 11-1480592-000989-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Kim, Sang-Bae Author : Min Ok Song Project Staff : Joo-Lae Cho, Jumin Jun and Jin Han Kim Published on November 30, 2015 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo.
    [Show full text]
  • Antarctic Bdelloid Rotifers: Diversity, Endemism and Evolution
    1 Antarctic bdelloid rotifers: diversity, endemism and evolution 2 3 Introduction 4 5 Antarctica’s ecosystems are characterized by the challenges of extreme environmental 6 stresses, including low temperatures, desiccation and high levels of solar radiation, all of 7 which have led to the evolution and expression of well-developed stress tolerance features in 8 the native terrestrial biota (Convey, 1996; Peck et al., 2006). The availability of liquid water, 9 and its predictability, is considered to be the most important driver of biological and 10 biodiversity processes in the terrestrial environments of Antarctica (Block et al., 2009; 11 Convey et al., 2014). Antarctica’s extreme conditions and isolation combined with the over- 12 running of many, but importantly not all, terrestrial and freshwater habitats by ice during 13 glacial cycles, underlie the low overall levels of diversity that characterize the contemporary 14 faunal, floral and microbial communities of the continent (Convey, 2013). Nevertheless, in 15 recent years it has become increasingly clear that these communities contain many, if not a 16 majority, of species that have survived multiple glacial cycles over many millions of years 17 and undergone evolutionary radiation on the continent itself rather than recolonizing from 18 extra-continental refugia (Convey & Stevens, 2007; Convey et al., 2008; Fraser et al., 2014). 19 With this background, high levels of endemism characterize the majority of groups that 20 dominate the Antarctic terrestrial fauna, including in particular Acari, Collembola, Nematoda 21 and Tardigrada (Pugh & Convey, 2008; Convey et al., 2012). 22 The continent of Antarctica is ice-bound, and surrounded and isolated from the other 23 Southern Hemisphere landmasses by the vastness of the Southern Ocean.
    [Show full text]
  • Livestock Pest Management: a Training Manual for Commercial Pesticide Applicators (Category 1D)
    Livestock Pest Management: A Training Manual for Commercial Pesticide Applicators (Category 1D) Edward D. Walker Julie A. Stachecki 1 Preface This manual is intended to prepare pesticide Materials from several sources were used to com- applicators in category 1D, livestock pest man- pile this information with input from North Car- agement, for certification under the Act 451, Nat- olina Extension, Key to Insect and Mites; Fly ural Resources and Environmental Protection Act, Control in Confined Livestock and Poultry Pro- Part 83, Pesticide Control, Sections 8301 to 8336. duction, Ciba-Geigy Agricultural Division, Read the introduction to this manual to under- Greensboro, NC; Managing Insect Problems on stand your responsibilities for obtaining the Beef Cattle, Kansas State University, Manhattan, appropriate credentials to apply pesticides and KS; Poultry Pest Management for Pennsylvania how to use this manual. and the Northeast, The Pennsylvania State Uni- versity, Extension Service, College of Agriculture, Acknowledgements University Park, PA; Pest Management Principles for the Commercial Applicator: Animal Pest Con- This manual, “Livestock Pest Management: A trol, University of Wisconsin Extension, Madison, Training Manual for Commercial Pesticide Appli- WI; and External Parasites of Poultry, Purdue cators (Category 1D),” was produced by Michi- University Extension, West Lafayette, IN, pho- gan State University, Pesticide Education tographs from Harlan Ritchie, Michigan State Program in conjunction with the Michigan University, East Lansing, MI, Ned Walker, Michi- Department of Agriculture. The following people gan State University, East Lansing, MI, Vocational are recognized for their reviews, suggestions and Education Publications, California Polytechnic contributions to this manual: State University San Luis Obispo, CA, Ralph Cle- George Atkeson, Ionia county agriculture agent, venger, Santa Rosa, CA, and Lepp and Associates, Michigan State University Extension, Ionia, MI Los Osis, CA.
    [Show full text]
  • Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
    EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group.
    [Show full text]
  • Type Specimens of Gordioids (Nematoida: Nematomorpha) in the National Museum, Prague1
    Journal of the National Museum (Prague), Natural History Series Vol. 181 (): ..-..; published on ... November 2012 ISSN 1802-6842 (print), 1802-6850 (electronic) Copyright © Národní muzeum, Praha, 2012 Type specimens of gordioids (Nematoida: Nematomorpha) in the National Museum, Prague1 Petr Dolejš Department of Zoology, National Museum, Cirkusová 1740, CZ-193 00 Praha 9 – Horní Počernice, Czech Republic; e-mail: [email protected] Abstract. The National Museum, Prague, Czech Republic, possesses type specimens of three species and one subspecies of horsehair worms: Gordionus formidatus Havlík, 1954 (Chordodidae), Gordionus scaber hykai Havlík, 1947 (Chordodidae), Gordius sinareolatus Havlík, 1949 (Gordiidae), and Paragordionus bohemicus Havlík, 1947 (Chordodidae). Key words: horsehair worms, Gordioida, type specimens, Otto Havlík, Czech Republic, Slovakia. INTRODUCTION Gordioids belongs to the phylum Nematomorpha (the so-called horsehair worms) which forms with the phylum Nematoda a monophyletic clade Nematoida (Schmidt-Rhaesa 1998) belonging to Ecdysozoa (Edgecombe et al. 2011). There are about 360 species of horsehair worms described so far (Schmidt-Rhaesa 2010). The most important part of the gordioid collection in the National Museum, Prague, Czech Republic (NMP) is the Havlík Collection, which contains all type specimens of gordioids possessed by the NMP; they are listed below. Dr. Otto Havlík (1923-1960; Fig. 1) was a renowned parasitologist, with special in- terest in gordioid systematics (Jírovec 1961). He described four new species and one new subspecies of gordioids (Havlík 1947, 1949c, 1954b) from specimens collected in the former Czechoslovakia (Bezděk 2011). All these taxa are currently considered valid (Schmidt-Rhaesa 2010, Bezděk 2011). In addition, he published the first description of a male of Gordius perronciti Camerano, 1887 (Havlík 1954b) and improved the descrip- tion of several more European species (Havlík 1949b).
    [Show full text]
  • Animal Phylogeny and Its Evolutionary Implications∗
    Animal Phylogeny and Its Evolutionary Implications∗ Casey W. Dunn,1 Gonzalo Giribet,2 Gregory D. Edgecombe,3 and Andreas Hejnol4 1Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912; email: [email protected] 2Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] 3Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; email: [email protected] 4 /13/14. For personal use only. use personal For /13/14. Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway; email: [email protected] aded from www.annualreviews.org from aded Annu. Rev. Ecol. Evol. Syst. 2014. 45:371–95 Keywords First published online as a Review in Advance on Metazoa, morphology, evolutionary developmental biology, fossils, September 29, 2014 anatomy The Annual Review of Ecology, Evolution, and Systematics is online at ecolsys.annualreviews.org Abstract This article’s doi: In recent years, scientists have made remarkable progress reconstructing the 10.1146/annurev-ecolsys-120213-091627 animal phylogeny. There is broad agreement regarding many deep animal Copyright c 2014 by Annual Reviews. relationships, including the monophyly of animals, Bilateria, Protostomia, All rights reserved Ecdysozoa, and Spiralia. This stability now allows researchers to articulate Access provided by Ben Gurion University Library on 12 on Library University Gurion Ben by provided Access ∗ Annu. Rev. Ecol. Evol. Syst. 2014.45:371-395. Downlo 2014.45:371-395. Syst. Evol. Ecol. Rev. Annu. This paper was authored by an employee of the the diminishing number of remaining questions in terms of well-defined al- British Government as part of his official duties and is therefore subject to Crown Copyright.
    [Show full text]
  • Ecdysozoan Phylogeny and Bayesian Inference: First Use of Nearly Complete 28S and 18S Rrna Gene Sequences to Classify the Arthro
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 31 (2004) 178–191 www.elsevier.com/locate/ympev Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kinq Jon M. Mallatt,a,* James R. Garey,b and Jeffrey W. Shultzc a School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA b Department of Biology, University of South Florida, 4202 East Fowler Ave. SCA110, Tampa, FL 33620, USA c Department of Entomology, University of Maryland, College Park, MD 20742, USA Received 4 March 2003; revised 18 July 2003 Abstract Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S + 18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-trans- formed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of estab- lished taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by ne- matomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods—hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)—formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and ÔChelicerata + MyriapodaÕ (a clade that we name ÔParadoxopodaÕ).
    [Show full text]
  • New Products and Industries from Biodiversity
    Chapter 10 New Products and Industries from Biodiversity Coordinating Lead Author: Andrew J. Beattie Lead Authors: Wilhelm Barthlott, Elaine Elisabetsky, Roberta Farrel, Chua Teck Kheng, Iain Prance Contributing Authors: Joshua Rosenthal, David Simpson, Roger Leakey, Maureen Wolfson, Kerry ten Kate Review Editor: Sarah Laird Main Messages . ............................................ 273 10.1 Introduction ........................................... 273 10.2 Overview of Industries Involved in Bioprospecting .............. 274 10.2.1 Pharmaceutical Bioprospecting 10.2.2 Ethnobotanical Bioprospecting 10.2.3 The Botanical Medicine Industry 10.2.4 The Personal Care and Cosmetics Industries 10.2.5 Biological Control and Crop Protection 10.2.6 Biomimetics 10.2.7 Biomonitoring 10.2.8 Horticulture and Agricultural Seeds 10.2.9 Bioremediation 10.2.10 Ecological Restoration 10.2.11 Ecotourism 10.2.12 Other Biodiversity-based Industries and Products 10.3 Distribution and Value of the Resource ....................... 283 10.4 Recent Industry Trends . ................................ 285 10.5 Benefit-sharing and Partnerships ........................... 285 10.5.1 Examples of National and International Agreements and Partnerships on Ethnobotanical Bioprospecting 10.5.2 Equity Considerations 10.6 The Legal Environment .................................. 289 10.6.1 Intergovernmental Agreements 10.6.2 Intellectual Property Rights 10.6.3 National Laws on Access to Genetic Resources and Traditional Knowledge 10.6.4 Indigenous Peoples’ Declarations, Codes,
    [Show full text]
  • Phylum Rotifera, Species-Group Names Established Before 1 January 2000
    List of Available Names in Zoology, Candidate Part Phylum Rotifera, species-group names established before 1 January 2000 1) Completely defined names (A-list) compiled by Christian D. Jersabek Willem H. De Smet Claus Hinz Diego Fontaneto Charles G. Hussey Evangelia Michaloudi Robert L. Wallace Hendrik Segers Final version, 11 April 2018 Acronym Repository with name-bearing rotifer types AM Australian Museum, Sydney, Australia AMNH American Museum of Natural History, New York, USA ANSP Academy of Natural Sciences of Drexel University, Philadelphia, USA BLND Biology Laboratory, Nihon Daigaku, Saitama, Japan BM Brunei Museum (Natural History Section), Darussalam, Brunei CHRIST Christ College, Irinjalakuda, Kerala, India CMN Canadian Museum of Nature, Ottawa, Canada CMNZ Canterbury Museum, Christchurch, New Zealand CPHERI Central Public Health Engineering Research Institute (Zoology Division), Nagpur, India CRUB Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina EAS-VLS Estonian Academy of Sciences, Vörtsjärv Limnological Station, Estonia ECOSUR El Colegio de la Frontera Sur, Chetumal, Quintana Roo State, Mexico FNU Fujian Normal University, Fuzhou, China HRBNU Harbin Normal University, Harbin, China IBVV Papanin Institute of the Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia IHB-CAS Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China IMC Indian Museum, Calcutta, India INALI Instituto National de Limnologia, Santo Tome, Argentina INPA Instituto Nacional de
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]