Acmc2015 - Make!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
James Clerk Maxwell
James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Electrophonic Musical Instruments
G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 . -
Harmonic Structures and Their Relation to Temporal Proportion in Two String Quartets of Béla Bartók
Harmonic structures and their relation to temporal proportion in two string quartets of Béla Bartók Item Type text; Thesis-Reproduction (electronic) Authors Kissler, John Michael Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 22:08:34 Link to Item http://hdl.handle.net/10150/557861 HARMONIC STRUCTURES AND THEIR RELATION TO TEMPORAL PROPORTION IN TWO STRING QUARTETS OF BELA BARTOK by John Michael Kissler A Thesis Submitted to the Faculty of the DEPARTMENT OF MUSIC In Partial Fulfillment of the Requirements For the Degree of . MASTER OF MUSIC In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 1 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript.in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. -
Orientalism As Represented in the Selected Piano Works by Claude Debussy
Chapter 4 ORIENTALISM AS REPRESENTED IN THE SELECTED PIANO WORKS BY CLAUDE DEBUSSY A prominent English scholar of French music, Roy Howat, claimed that, out of the many composers who were attracted by the Orient as subject matter, “Debussy is the one who made much of it his own language, even identity.”55 Debussy and Hahn, despite being in the same social circle, never pursued an amicable relationship.56 Even while keeping their distance, both composers were somewhat aware of the other’s career. Hahn, in a public statement from 1890, praised highly Debussy’s musical artistry in L'Apres- midi d'un faune.57 Debussy’s Exposure to Oriental Cultures Debussy’s first exposure to oriental art and philosophy began at Mallarmé’s Symbolist gatherings he frequented in 1887 upon his return to Paris from Rome.58 At the Universal Exposition of 1889, he had his first experience in the theater of Annam (Vietnam) and the Javanese Gamelan orchestra (Indonesia), which is said to be a catalyst 55Roy Howat, The Art of French Piano Music: Debussy, Ravel, Fauré, Chabrier (New Haven, Conn.: Yale University Press, 2009), 110 56Gavoty, 142. 57Ibid., 146. 58François Lesure and Roy Howat. "Debussy, Claude." In Grove Music Online. Oxford Music Online, http://www.oxfordmusiconline.com/subscriber/article/grove/music/07353 (accessed April 4, 2011). 33 34 in his artistic direction. 59 In 1890, Debussy was acquainted with Edmond Bailly, esoteric and oriental scholar, who took part in publishing and selling some of Debussy’s music at his bookstore L’Art Indépendeant. 60 In 1902, Debussy met Louis Laloy, an ethnomusicologist and music critic who eventually became Debussy’s most trusted friend and encouraged his use of Oriental themes.61 After the Universal Exposition in 1889, Debussy had another opportunity to listen to a Gamelan orchestra 11 years later in 1900. -
A Major International Visual Arts Event in Western Australia
A MAJOR INTERNATIONAL VISUAL ARTS EVENT IN WESTERN AUSTRALIA FEASIBILITY STUDY 2014 PREPARED BY INSIDE LANE CONTENTS EXECUTIVE SUMMARY ...................................................................... 4 SECTION ONE - PROCESS .................................................................... 9 Feasibility Process ............................................................................. 9 Audit ............................................................................................ 12 Analysis ........................................................................................ 29 SECTION TWO - ABORIGINAL VISUAL ARTS .......................................... 63 SECTION THREE - INDIAN OCEAN RIM ................................................ 92 SECTION FOUR - EXPERIMENTAL ARTS .............................................. 125 SECTION FIVE - THE BIG IDEA .......................................................... 136 SECTION SIX - EDUCATION .............................................................. 140 SECTION SEVEN - DIGITAL STRATEGY .................................................144 SECTION EIGHT - MARKETING ......................................................... 147 SECTION NINE - CORPORATE STRUCTURE .......................................... 150 SECTION TEN - PUBLIC PROGRAMMING ............................................. 151 SECTION ELEVEN - ABORIGINAL ART CENTRE DIGITAL RESIDENCY .......... 156 SECTION TWELVE - EVENT CREATION ................................................ 158 SECTION THIRTEEN - RECOMMENDATIONS -
Andrián Pertout
Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure -
Technical Analysis on HW Ernst's Six Etudes for Solo Violin in Multiple
Technical Analysis on Heinrich Wilhelm Ernst’s Six Etudes for Solo Violin in Multiple Voices In partial fulfillment of the requirements for the degree of DOCTOR OF MUSICAL ARTS in the Performance Studies Division of the College-Conservatory of Music Violin by Shang Jung Lin M.M. The Boston Conservatory November 2019 Committee Chair: Won-Bin Yim, D.M.A. Abstract Heinrich Wilhelm Ernst was a Moravian violinist and composer who lived between 1814-1865. He was a friend of Brahms, collaborator with Mendelssohn, and was admired by Berlioz and Joachim. He was known as a violin virtuoso and composed many virtuosic works including an arrangement of Schubert’s Erlkönig for solo violin. The focus of this document will be on his Six Etudes for Solo Violin in Multiple Voices (also known as the Six Polyphonic Etudes). These pieces were published without opus number around 1862-1864. The etudes combine many different technical challenges with musical sensitivity. They were so difficult that the composer never gave a public performance of them. No. 6 is the most famous of the set, and has been performed by soloists in recent years. Ernst takes the difficulty level to the extreme and combines different layers of techniques within one hand. For example, the second etude has a passage that combines chords and left-hand pizzicato, and the sixth etude has a passage that combines harmonics with double stops. Etudes from other composers might contain these techniques but not simultaneously. The polyphonic nature allows for this layering of difficulties in Ernst’s Six Polyphonic Etudes. -
Musical Elements in the Discrete-Time Representation of Sound
0 Musical elements in the discrete-time representation of sound RENATO FABBRI, University of Sao˜ Paulo VILSON VIEIRA DA SILVA JUNIOR, Cod.ai ANTONIOˆ CARLOS SILVANO PESSOTTI, Universidade Metodista de Piracicaba DEBORA´ CRISTINA CORREA,ˆ University of Western Australia OSVALDO N. OLIVEIRA JR., University of Sao˜ Paulo e representation of basic elements of music in terms of discrete audio signals is oen used in soware for musical creation and design. Nevertheless, there is no unied approach that relates these elements to the discrete samples of digitized sound. In this article, each musical element is related by equations and algorithms to the discrete-time samples of sounds, and each of these relations are implemented in scripts within a soware toolbox, referred to as MASS (Music and Audio in Sample Sequences). e fundamental element, the musical note with duration, volume, pitch and timbre, is related quantitatively to characteristics of the digital signal. Internal variations of a note, such as tremolos, vibratos and spectral uctuations, are also considered, which enables the synthesis of notes inspired by real instruments and new sonorities. With this representation of notes, resources are provided for the generation of higher scale musical structures, such as rhythmic meter, pitch intervals and cycles. is framework enables precise and trustful scientic experiments, data sonication and is useful for education and art. e ecacy of MASS is conrmed by the synthesis of small musical pieces using basic notes, elaborated notes and notes in music, which reects the organization of the toolbox and thus of this article. It is possible to synthesize whole albums through collage of the scripts and seings specied by the user. -
In Search of the Perfect Musical Scale
In Search of the Perfect Musical Scale J. N. Hooker Carnegie Mellon University, Pittsburgh, USA [email protected] May 2017 Abstract We analyze results of a search for alternative musical scales that share the main advantages of classical scales: pitch frequencies that bear simple ratios to each other, and multiple keys based on an un- derlying chromatic scale with tempered tuning. The search is based on combinatorics and a constraint programming model that assigns frequency ratios to intervals. We find that certain 11-note scales on a 19-note chromatic stand out as superior to all others. These scales enjoy harmonic and structural possibilities that go significantly beyond what is available in classical scales and therefore provide a possible medium for innovative musical composition. 1 Introduction The classical major and minor scales of Western music have two attractive characteristics: pitch frequencies that bear simple ratios to each other, and multiple keys based on an underlying chromatic scale with tempered tuning. Simple ratios allow for rich and intelligible harmonies, while multiple keys greatly expand possibilities for complex musical structure. While these tra- ditional scales have provided the basis for a fabulous outpouring of musical creativity over several centuries, one might ask whether they provide the natural or inevitable framework for music. Perhaps there are alternative scales with the same favorable characteristics|simple ratios and multiple keys|that could unleash even greater creativity. This paper summarizes the results of a recent study [8] that undertook a systematic search for musically appealing alternative scales. The search 1 restricts itself to diatonic scales, whose adjacent notes are separated by a whole tone or semitone. -
Mto.95.1.4.Cuciurean
Volume 1, Number 4, July 1995 Copyright © 1995 Society for Music Theory John D. Cuciurean KEYWORDS: scale, interval, equal temperament, mean-tone temperament, Pythagorean tuning, group theory, diatonic scale, music cognition ABSTRACT: In Mathematical Models of Musical Scales, Mark Lindley and Ronald Turner-Smith attempt to model scales by rejecting traditional Pythagorean ideas and applying modern algebraic techniques of group theory. In a recent MTO collaboration, the same authors summarize their work with less emphasis on the mathematical apparatus. This review complements that article, discussing sections of the book the article ignores and examining unique aspects of their models. [1] From the earliest known music-theoretical writings of the ancient Greeks, mathematics has played a crucial role in the development of our understanding of the mechanics of music. Mathematics not only proves useful as a tool for defining the physical characteristics of sound, but abstractly underlies many of the current methods of analysis. Following Pythagorean models, theorists from the middle ages to the present day who are concerned with intonation and tuning use proportions and ratios as the primary language in their music-theoretic discourse. However, few theorists in dealing with scales have incorporated abstract algebraic concepts in as systematic a manner as the recent collaboration between music scholar Mark Lindley and mathematician Ronald Turner-Smith.(1) In their new treatise, Mathematical Models of Musical Scales: A New Approach, the authors “reject the ancient Pythagorean idea that music somehow &lsquois’ number, and . show how to design mathematical models for musical scales and systems according to some more modern principles” (7). -
Interval Cycles and the Emergence of Major-Minor Tonality
Empirical Musicology Review Vol. 5, No. 3, 2010 Modes on the Move: Interval Cycles and the Emergence of Major-Minor Tonality MATTHEW WOOLHOUSE Centre for Music and Science, Faculty of Music, University of Cambridge, United Kingdom ABSTRACT: The issue of the emergence of major-minor tonality is addressed by recourse to a novel pitch grouping process, referred to as interval cycle proximity (ICP). An interval cycle is the minimum number of (additive) iterations of an interval that are required for octave-related pitches to be re-stated, a property conjectured to be responsible for tonal attraction. It is hypothesised that the actuation of ICP in cognition, possibly in the latter part of the sixteenth century, led to a hierarchy of tonal attraction which favoured certain pitches over others, ostensibly the tonics of the modern major and minor system. An ICP model is described that calculates the level of tonal attraction between adjacent musical elements. The predictions of the model are shown to be consistent with music-theoretic accounts of common practice period tonality, including Piston’s Table of Usual Root Progressions. The development of tonality is illustrated with the historical quotations of commentators from the sixteenth to the eighteenth centuries, and can be characterised as follows. At the beginning of the seventeenth century multiple ‘finals’ were possible, each associated with a different interval configuration (mode). By the end of the seventeenth century, however, only two interval configurations were in regular use: those pertaining to the modern major- minor key system. The implications of this development are discussed with respect interval cycles and their hypothesised effect within music. -
A Natural System of Music
A Natural System of Music based on the Approximation of Nature by Augusto Novaro Mexico, DF 1927 Translated by M. Turner. San Francisco, 2003 Chapter I Music Music is a combination of art and science in which both complement each other in a marvelous fashion. Although it is true that a work of music performed or composed without the benefit of Art comes across as dry and expressionless, it is also true that a work of art cannot be considered as such without also satisfying the principles of science. Leaving behind for a moment the matters of harmony and the art of combining sounds, let us concentrate for the moment only on the central matter of the basis of music: The unity tone and it’s parts in vibrations, which can be divided into three groups: the physical, the mathematical and the physiological. The physical aspect describes for us how the sound is produced, the mathematical it’s numerical and geometrical relationships, the physiological being the study of the impressions that such a tone produces in our emotions.. Musical sounds are infinite. However we can break them down and classify them into seven degrees and denominations: Do Re Mi Fa So La Ti 1° 2° 3° 4° 5° 6° 7° Climbing to ‘Ti’ we reach the duplicate of ‘Do’, that is to say Do², the unity note of the previous series. Ascending in this same manner, we reach Do3, Do4, etc. We shall define the musical scale in seven steps, not because it invariably must be seven; we could also choose to use five or nine divisions, perhaps they would be more practical.