Lyme Borreliosis Biology, Epidemiology and Control

Total Page:16

File Type:pdf, Size:1020Kb

Lyme Borreliosis Biology, Epidemiology and Control Lyme Borreliosis Biology, Epidemiology and Control Lyme Borreliosis Biology, Epidemiology and Control Edited by J. Gray Department of Environmental Resource Management University College Dublin Republic of Ireland O. Kahl Institut für Angewandte Zoologie Freie Universität Berlin Germany R.S. Lane Department of Environmental Science, Policy and Management University of California at Berkeley USA and G. Stanek Institute of Hygiene University of Vienna Austria CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org © CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. A catalogue record for this book is available from the Library of Congress, Washington DC, USA. ISBN 0 85199 632 9 Typeset by Wyvern 21 Ltd, Bristol Printed and bound in the UK by Cromwell Press, Trowbridge Contents Contributors vii Preface ix 1. History and Characteristics of Lyme Borreliosis 1 G. Stanek, F. Strle, J. Gray and G.P. Wormser 2. Ecological Research on Borrelia burgdorferi sensu lato: Terminology and Some Methodological Pitfalls 29 O. Kahl, L. Gern, L. Eisen and R.S. Lane 3. Molecular and Cellular Biology of Borrelia burgdorferi sensu lato 47 S. Bergström, L. Noppa, Å. Gylfe and Y. Östberg 4. Vectors of Borrelia burgdorferi sensu lato 91 L. Eisen and R.S. Lane 5. Borrelia burgdorferi sensu lato in the Vertebrate Host 117 K. Kurtenbach, S.M. Schäfer, S. de Michelis, S. Etti and H.-S. Sewell 6. Ecology of Borrelia burgdorferi sensu lato in Europe 149 L. Gern and P.-F. Humair 7. Ecology of Borrelia burgdorferi sensu lato in Russia 175 E.I. Korenberg, N.B. Gorelova and Y.V. Kovalevskii v vi Contents 8. Ecology of Borrelia burgdorferi sensu lato in Japan and East Asia 201 K. Miyamoto and T. Masuzawa 9. Ecology of Borrelia burgdorferi sensu lato in North America 223 J. Piesman 10. Epidemiology of Lyme Borreliosis 251 D.T. Dennis and E.B. Hayes 11. Vaccination against Lyme Borreliosis 281 E.B. Hayes and M.E. Schriefer 12. Environmental Management for Lyme Borreliosis Control 301 K.C. Stafford and U. Kitron Index 335 Contributors S. Bergström, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden. D.T. Dennis, Division of Vector-borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA. L. Eisen, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA. S. Etti, Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary’s Campus, Norfolk Place, London W2 1PG, UK. L. Gern, Institut de Zoologie, University of Neuchâtel, Rue Emile-Argand 11, Case Postale 2, CH 2007 Neuchâtel 7, Switzerland. N.B. Gorelova, Gamaleya Research Institute for Epidemiology and Microbiology, Russian Academy of Medical Sciences, 18 Gamaleya Street, Moscow, 123098 Russia. J. Gray, Department of Environmental Resource Management, University College Dublin, Ireland. Å. Gylfe, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden. E.B. Hayes, Division of Vector-borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA. P.-F. Humair, Institute of Zoology, University of Neuchâtel, Chantemerle 22, 2000 Neuchâtel, Switzerland. O. Kahl, Institute of Applied Zoology/Animal Ecology, Free University of Berlin, 12163 Berlin, Germany. Present address: Blackwell Verlag, Kurfürstendamm 57, 10707 Berlin, Germany. U. Kitron, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802, USA. vii viii Contributors E.I. Korenberg, Gamaleya Research Institute for Epidemiology and Microbiology, Russian Academy of Medical Sciences, 18 Gamaleya Street, Moscow, 123098 Russia. Y.V. Kovalevskii, Gamaleya Research Institute for Epidemiology and Microbiology, Russian Academy of Medical Sciences, 18 Gamaleya Street, Moscow, 123098 Russia. K. Kurtenbach, Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary’s Campus, Norfolk Place, London W2 1PG, UK. R.S. Lane, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA. T. Masuzawa, Department of Microbiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan. S. de Michelis, Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary’s Campus, Norfolk Place, London W2 1PG, UK. K. Miyamoto, Department of Parasitology, Asahikawa Medical College, Asahikawa, 078- 8510, Japan. L. Noppa, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden. Y. Östberg, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden. J. Piesman, Division of Vector-borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA. S.M. Schäfer, Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary’s Campus, Norfolk Place, London W2 1PG, UK. M.E. Schriefer, Division of Vector-borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA. H.-S. Sewell, Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, St Mary’s Campus, Norfolk Place, London W2 1PG, UK. K.C. Stafford, Connecticut Agricultural Experiment Station, PO Box 1106, New Haven, CT 06540, USA. G. Stanek, Clinical Institute of Hygiene and Medical Microbiology, University of Vienna, Austria. F. Strle, Department of Infectious Diseases, University Medical Centre, Ljubljana, Slovenia. G.P. Wormser, Division of Infectious Diseases, Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, New York, USA. Preface Lyme borreliosis, often referred to as Lyme disease, emerged during the mid- 1970s when an unusual form of juvenile arthritis was observed in the small town of Lyme, Connecticut, USA. Since then a wealth of literature on the subject has been published and eight international conferences as well as several smaller- scale specialist or local meetings have taken place. Most publications, including several textbooks, have concentrated on clinical aspects, which reflects the impor- tance of the disease in addition to the well-documented difficulties associated with diagnosis and treatment. The complex ecology of the causative agent, Borrelia burgdorferi, has also attract- ed much attention. Awareness of this complexity increased markedly when it became evident during the early 1990s that B. burgdorferi occurs as several dis- tinct genospecies, referred to collectively as B. burgdorferi sensu lato, with appar- ently differing host preferences and pathological significance. In fact, most recent advances in our knowledge of Lyme borreliosis have concerned aspects of the basic biology and ecology of the causative spirochaetes and their tick vectors, leading to the development of vaccines and ecological preventive measures. However, the literature on these topics is widely scattered in research papers, reviews and meeting proceedings, and there is now a need for such information to be made available in book form. In this book, the first chapter outlines historical and clinical aspects including descriptions of the disease in humans and domestic animals, and of diagnosis and treatment. The second chapter deals with ecological methods and termi- nology and Chapters 3–5 describe the biology of the spirochaetes and their behaviour in vectors and vertebrates. The next four chapters (6–9) concern the ecology of B. burgdorferi s.l. in Europe, Russia, Southeast Asia and North America, and the last three chapters (10–12) deal with the application of the biological ix x Preface and ecological attributes of the pathogens to disease epidemiology, vaccine devel- opment and the ecological management of Lyme borreliosis. The intended readership includes microbiologists, immunologists, zoologists, ecologists, epidemiologists, specialist clinicians, public health workers, specialist veterinarians, teachers, research students and all those interested in zoonotic or vector-borne infectious diseases. It is intended that the book will not only inform but will also stimulate much needed further research on the complex biology of B. burgdorferi s.l. Acknowledgements We are especially grateful to Janet Robertson for her editorial assistance. Thanks are also due to the following authorities in the subject
Recommended publications
  • Genetic and Antigenic Characterization of Borrelia Coriaceae, Putative Agent of Epizootic Bovine Abortion RANCE B
    JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 1989, p. 389-393 Vol. 27, No. 3 0095-1137/89/030389-05$02.00/0 Copyright © 1989, American Society for Microbiology Genetic and Antigenic Characterization of Borrelia coriaceae, Putative Agent of Epizootic Bovine Abortion RANCE B. LEFEBVRE* AND GUEY-CHUEN PERNG Department of Veterinary Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616 Received 15 August 1988/Accepted 7 November 1988 Borrelia coriaceae was characterized genetically and antigenically by utilizing the following techniques: restriction endonuclease analysis, Southern blotting and genomic hybridization, pulsed-field electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting. The B. coriaceae genome revealed unique and characteristic banding patterns both by agarose gel electrophoresis and by hybridization when compared with several Borrelia burgdorferi isolates. Pulsed-field gel electrophoresis demonstrated several linear plasmids ranging from 65 to 30 kilobase pairs. Cross-reaction with B. burgdorferi antigens ranging from 21 to 26 kilodaltons were demonstrated by immunoblotting with rabbit anti-B. coriaceae antiserum. However, most B. coriaceae antigens were quite distinct when compared with B. burgdorferi and Leptospira interrogans antigens. Borrelia coriaceae was isolated from the soft-bodied tick specifications. The restriction fragments were separated by Ornithodoros coriaceus in 1985 (16). It was classified as a gel electrophoresis in a 0.7% agarose gel at 60 V for 15.5 h. new species ofBorrelia in 1987 (12). It has been described as The gel was then stained with ethidium bromide, illuminated the putative agent of epizootic bovine abortion (12, 16, 20, with UV irradiation, and photographed. The DNA in the gel 21), although conclusive evidence of the role of the spiro- was then transferred to a nylon membrane by the method of chete as a pathogen is still lacking.
    [Show full text]
  • (Acari: Argasidae) Ticks on Socotra Cormorant Colony in the United Arab Emirates and Presence of Three Important Pathogenic Groups in Them Raheel Nasser Alkayyoomi
    United Arab Emirates University Scholarworks@UAEU Biology Theses Biology 4-2018 Metagenomic Profile of the Bacterial Communities Associated With Ornithodoros Muesebecki (Acari: Argasidae) Ticks On Socotra Cormorant Colony in the United Arab Emirates and Presence of Three Important Pathogenic Groups in Them Raheel Nasser Alkayyoomi Follow this and additional works at: https://scholarworks.uaeu.ac.ae/bio_theses Part of the Environmental Sciences Commons Recommended Citation Alkayyoomi, Raheel Nasser, "Metagenomic Profile of the Bacterial Communities Associated With Ornithodoros Muesebecki (Acari: Argasidae) Ticks On Socotra Cormorant Colony in the United Arab Emirates and Presence of Three Important Pathogenic Groups in Them" (2018). Biology Theses. 5. https://scholarworks.uaeu.ac.ae/bio_theses/5 This Thesis is brought to you for free and open access by the Biology at Scholarworks@UAEU. It has been accepted for inclusion in Biology Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected]. If ! )) o:ui.a.JpU IG...u I u I La!JI Ci5t.o b UJ\EU '\J United AT�b EmiTat�s U�iveTsity United Arab Emirates University College of Science Depaliment of Biology METAGENOMIC PROFILE OF THE BACTERIAL COMMUNITIES ASSOCIATED WITH ORNITHODOROS MUESEBECKI(ACARI: ARGASIDAE) TICKS ON SOCOTRA CORMORANT COLONY IN THE UNITED ARAB EMIRATES AND PRESENCE OF THREE IMPORTANT PATHOGENIC GROUPS IN THEM Raheel asser Mohammed Hmoud Alkayyoomi This thesis is submitted in partial fulfilment of the requirements fo
    [Show full text]
  • Serological Prevalence and Risk Factors of Borrelia Burgdorferi in Water Buffaloes (Bubalus Bubalis, Linnaeus, 1758) on Marajó Island, Northern Region of Brazil
    Rev. Salud Anim. Vol. 36 No. 3 (2014): 147-151 ORIGINAL ARTICLE Serological prevalence and risk factors of Borrelia burgdorferi in water buffaloes (Bubalus bubalis, Linnaeus, 1758) on Marajó Island, northern region of Brazil Jenevaldo Barbosa da SilvaI*, Bruna de A. BaêtaII, Cinthia T. A. LopesIII, Bruna Sampaio Martins Land ManierII, Gustavo Nunes Santana de CastroII, Priscilla Nunes dos SantosII, Adivaldo Henrique da FonsecaII, José Diomedes BarbosaIII IFaculdade de Ciências Agrárias e Veterinárias - UNESP, Rod. Carlos Tonanni, km 05, 14870-000, Jaboticabal, São Paulo, Brazil. E-mail: [email protected]. IIUniversidade Federal Rural do Rio de Janeiro - UFRRJ, BR465, Km 07, 23890-000, Seropédica, Rio de Janeiro, Brazil. E-mail: [email protected]. IIIUniversidade Federal do Pará, Centro Agropecuário, Departamento de Ciência Animal. Rua Maximino Porpino da Silva, 1000, Centro Castanhal, PA, Brazil. 68748-080. E-mail: [email protected]. ABSTRACT: Sera samples were collected from 330 water buffaloes on Marajó Island, state of Pará, Brazil, to assess the presence of antibodies against Borrelia burgdorferi by indirect Enzyme Linked Immunosorbent Assay. Approximately 45% of the animals had antibodies against B. burgdoferi. The prevalence of seropositive buffaloes, 72% (85/118), was statistically higher in the city of Soure than in the other municipalities tested. Murrah breed animals were significantly more seropositive (Prevalence Ratio (PR) = 1.84, p = 0.000) than those of the Mediterranean breed. Among the animals diagnosed positive for tuberculosis, 33% (4/12), were also seropositive for B. burgdoferi. Animals positive for tuberculosis had a significantly lower level of B. burgdorferi seropositivity (PR = 1.36, p = 0.0017) than negative animals.
    [Show full text]
  • Molecular Characterization of 'Candidatus
    NOTE Loh et al., Int J Syst Evol Microbiol 2017;67:1075–1080 DOI 10.1099/ijsem.0.001929 Molecular characterization of ‘Candidatus Borrelia tachyglossi’ (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor Siew-May Loh,1 Amber Gillett,2 Una Ryan,1 Peter Irwin1 and Charlotte Oskam1,* Abstract Recently, a novel species of the genus Borreliawas identified in Bothriocroton concolor and Ixodes holocyclus ticks from echidnas. Analyses of 16S rRNA and flaB genes identified three closely related genotypes of this bacterium (Borrelia sp. Aus A-C) that were unique and distinct from previously described borreliae. Phylogenetic analyses of flaB (763 bp), groEL (1537 bp), gyrB (1702 bp) and glpQ (874 bp) gene sequences and concatenated sequences (3585 bp) of three gene loci (16S rRNA, flaB and gyrB) were consistent with previous findings and confirm that this novel species of the genus Borrelia is more closely related to, yet distinct from, the Reptile-associated (REP) and Relapsing Fever (RF) groups. At the flaB locus, genotypes A, B and C shared the highest percentage sequence similarities (87.9, 88 and 87.9 %, respectively) with B.orrelia turcica (REP), whereas at the groEL and gyrB loci, these genotypes were most similar (88.2–89.4 %) to B.orrelia hermsii (RF). At the glpQ locus, genotypes A and B were most similar (85.7 and 85.4 % respectively) to Borrelia sp. Tortoise14H1 (REP). The presence of the glpQ gene, which is absent in the Lyme Borreliosis group spirochaetes, further emphasises that the novel species of the genus Borrelia characterized in the present study does not belong to this group.
    [Show full text]
  • Pathogenesis of Relapsing Fever
    Curr. Issues Mol. Biol. 42: 519-550. caister.com/cimb Pathogenesis of Relapsing Fever Job Lopez1, Joppe W. Hovius2 and Sven Bergström3 1Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA 2Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands 3Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.042.519 Abstract outbreaks of RF. One of the best recorded Relapsing fever (RF) is caused by several species of descriptions of RF came from the physician John Borrelia; all, except two species, are transmitted to Rutty, who kept a detailed diary during his time in humans by soft (argasid) ticks. The species B. Dublin, where he described the weather and illnesses recurrentis is transmitted from one human to another in the area during the mid-1700’s (Rutty, 1770). by the body louse, while B. miyamotoi is vectored by Interestingly, the fatality rate was very low and most hard-bodied ixodid tick species. RF Borrelia have of the affected people did recover after two or three several pathogenic features that facilitate invasion relapses. and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and RF symptoms also were described in detail by field subsequent transmission of RF Borrelia to their medics during the 1788 Swedish-Russian war. The vertebrate hosts. We also review taxonomic Swedish navy conquered the Russian 74-cannon challenges for RF Borrelia as new species have been battleship Vladimir and its 783 men crew at a battle in isolated throughout the globe.
    [Show full text]
  • The Genus Borrelia Reloaded
    RESEARCH ARTICLE The genus Borrelia reloaded 1☯ 2☯ 3 1 Gabriele MargosID *, Alex Gofton , Daniel Wibberg , Alexandra Dangel , 1 2 2 1 Durdica Marosevic , Siew-May Loh , Charlotte OskamID , Volker Fingerle 1 Bavarian Health and Food Safety Authority and National Reference Center for Borrelia, Oberschleissheim, Germany, 2 Vector & Waterborne Pathogens Research Group, School of Veterinary & Life Sciences, Murdoch University, South St, Murdoch, Australia, 3 Cebitec, University of Bielefeld, Bielefeld, Germany ☯ These authors contributed equally to this work. * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 The genus Borrelia, originally described by Swellengrebel in 1907, contains tick- or louse- a1111111111 transmitted spirochetes belonging to the relapsing fever (RF) group of spirochetes, the Lyme borreliosis (LB) group of spirochetes and spirochetes that form intermittent clades. In 2014 it was proposed that the genus Borrelia should be separated into two genera; Borrelia Swellengrebel 1907 emend. Adeolu and Gupta 2014 containing RF spirochetes and Borre- OPEN ACCESS liella Adeolu and Gupta 2014 containing LB group of spirochetes. In this study we conducted Citation: Margos G, Gofton A, Wibberg D, Dangel an analysis based on a method that is suitable for bacterial genus demarcation, the percent- A, Marosevic D, Loh S-M, et al. (2018) The genus Borrelia reloaded. PLoS ONE 13(12): e0208432. age of conserved proteins (POCP). We included RF group species, LB group species and https://doi.org/10.1371/journal.pone.0208432 two species belonging to intermittent clades, Borrelia turcica GuÈner et al. 2004 and Candida- Editor: Sven BergstroÈm, Umeå University, tus Borrelia tachyglossi Loh et al. 2017. These analyses convincingly showed that all groups SWEDEN of spirochetes belong into one genus and we propose to emend, and re-unite all groups in, Received: May 4, 2018 the genus Borrelia.
    [Show full text]
  • Serological Prevalence and Risk Factors of Borrelia Burgdorferi in Water Buffaloes (Bubalus Bubalis, Linnaeus, 1758) on Marajó Island, Northern Region of Brazil
    Rev. Salud Anim. Vol. 36 No. 3 (2014): 147-151 ORIGINAL ARTICLE Serological prevalence and risk factors of Borrelia burgdorferi in water buffaloes (Bubalus bubalis, Linnaeus, 1758) on Marajó Island, northern region of Brazil Jenevaldo Barbosa da SilvaI*, Bruna de A. BaêtaII, Cinthia T. A. LopesIII, Bruna Sampaio Martins Land ManierII, Gustavo Nunes Santana de CastroII, Priscilla Nunes dos SantosII, Adivaldo Henrique da FonsecaII, José Diomedes BarbosaIII IFaculdade de Ciências Agrárias e Veterinárias - UNESP, Rod. Carlos Tonanni, km 05, 14870-000, Jaboticabal, São Paulo, Brazil. E-mail: [email protected]. IIUniversidade Federal Rural do Rio de Janeiro - UFRRJ, BR465, Km 07, 23890-000, Seropédica, Rio de Janeiro, Brazil. E-mail: [email protected]. IIIUniversidade Federal do Pará, Centro Agropecuário, Departamento de Ciência Animal. Rua Maximino Porpino da Silva, 1000, Centro Castanhal, PA, Brazil. 68748-080. E-mail: [email protected]. ABSTRACT: Sera samples were collected from 330 water buffaloes on Marajó Island, state of Pará, Brazil, to assess the presence of antibodies against Borrelia burgdorferi by indirect Enzyme Linked Immunosorbent Assay. Approximately 45% of the animals had antibodies against B. burgdoferi. The prevalence of seropositive buffaloes, 72% (85/118), was statistically higher in the city of Soure than in the other municipalities tested. Murrah breed animals were significantly more seropositive (Prevalence Ratio (PR) = 1.84, p = 0.000) than those of the Mediterranean breed. Among the animals diagnosed positive for tuberculosis, 33% (4/12), were also seropositive for B. burgdoferi. Animals positive for tuberculosis had a significantly lower level of B. burgdorferi seropositivity (PR = 1.36, p = 0.0017) than negative animals.
    [Show full text]
  • Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective Publication: Gupta, Mahmood and Adeolu 2015, 15), Emend
    Bergey’s Manual of Systematics of Archaea and Bacteria Family Spirochaetes/Spirochaetia/Spirochaetales Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective publication: Gupta, Mahmood and Adeolu 2015, 15), emend. Adeolu and Gupta 2014, 1064 Alan G. Barbour Departments of Microbiology and Molecular Genetics, Medicine, and Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, U.S.A. Bor.rel.i.a'ce.ae. N.L. fem. n. Borrelia type genus of the family; suff. -aceae ending to denote a family; N.L. fem. pl. n. Borreliaceae, the family of Borrelia. Cells are helical with regular or irregular coils. 0.2-0.3 µm in diameter and 10-40 µm in length. Cells do not have hooked ends. Motile. Inner and outer membrane with periplasmic flagella with 7 to 20 subterminal insertion points. Aniline-stain-positive. Microaerophilic. Most members of the family cultivable in complex media that includes N-acetylglucosamine. Optimum growth between 33 and 38° C. Diamino acid of peptidoglycan is ornithine. Lacks a lipopolysaccharide. Linear chromosome and plasmids with hairpin telomeres. The family currently accommodates the genera Borrelia and Borreliella. Members of the family are host-associated organisms that are transmitted between vertebrate reservoirs by a hematophagous arthropod, in all but one case, a tick. Members include the agents of relapsing fever, Lyme disease, and avian spirochetosis. DNA G+C content (mol%): 26-30 Type genus: Borrelia Swellengrebel 1907, 562AL ............................................................................................................................................................ Cells are helical, 0.2–0.3 µm in diameter and 10–40 µm in length. The coils, which usually are observed as flat waves, vary in amplitude and are either regular or irregular in spacing, depending on phase of growth and environment.
    [Show full text]
  • Identification and Molecular Survey of Borrelia
    Acta Tropica 166 (2017) 54–57 Contents lists available at ScienceDirect Acta Tropica jo urnal homepage: www.elsevier.com/locate/actatropica Identification and molecular survey of Borrelia burgdorferi sensu lato in sika deer (Cervus nippon) from Jilin Province, north-eastern China a,b b,∗∗ b b b b,c Bintao Zhai , Qingli Niu , Jifei Yang , Zhijie Liu , Junlong Liu , Hong Yin , a,∗ Qiaoying Zeng a The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China b State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, PR China c Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China a r t i c l e i n f o a b s t r a c t Article history: Lyme disease caused by Borrelia burgdorferi sensu lato (s.l.) is a common disease of domestic animals and Received 19 September 2016 wildlife worldwide. Sika deer is first-grade state-protected wildlife animals in China and have economic Received in revised form 17 October 2016 consequences for humans. It is reported that sika deer may serve as an important reservoir host for several Accepted 1 November 2016 species of B. burgdorferi s.l. and may transmit these species to humans and animals. However, little is Available online 3 November 2016 known about the presence of Borrelia pathogens in sika deer in China. In this study, the existence and prevalence of Borrelia sp.
    [Show full text]
  • Perpetuation of Borreliae
    Curr. Issues Mol. Biol. 42: 267-306. caister.com/cimb Perpetuation of Borreliae Sam R. Telford III* and Heidi K. Goethert Dept of Infectious Disease and Global Health, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.042.267 Abstract distinct pieces. Are there many different themes With one exception (epidemic relapsing fever), (Beethoven’s oeuvre) or simply variations on a few borreliae are obligately maintained in nature by ticks. themes (kazoo vs. orchestral interpretations of the 5th Although some Borrelia spp. may be vertically Symphony)? Are the local vector-pathogen-host transmitted to subsequent generations of ticks, most systems unique, or are they simply local variations? require amplification by a vertebrate host because In what follows, we attempt to identify the main inheritance is not stable. Enzootic cycles of borreliae contributors to the perpetuation of the borreliae, with have been found globally; those receiving the most the aim of analyzing the factors that serve as the attention from researchers are those whose vectors basis for their distribution and abundance. This is not have some degree of anthropophily and, thus, cause a comprehensive review, nor do we recapitulate other zoonoses such as Lyme disease or relapsing fever. reviews on the subject, but rather emphasize specific To some extent, our views on the synecology of the primary literature that make points that we consider borreliae has been dominated by an applied focus, to be critical to advancing the field. The perpetuation viz., analyses that seek to understand the elements of borreliae, of course, depends on that of their of human risk for borreliosis.
    [Show full text]
  • A Patient Perspective
    A patient perspective Submission to the Senate Inquiry on the Growing Evidence of an emerging tick-borne disease that causes a Lyme-like illness for many Australian patients Lyme Disease Association of Australia March 2016 “In the fullness of time, the mainstream handling of chronic Lyme disease will be viewed as one of the most shameful episodes in the history of medicine because elements of academic medicine, elements of government and virtually the entire insurance industry have colluded to deny a disease. This has resulted in needless suffering of many individuals who deteriorate and sometimes die for lack of timely application of treatment or denial of treatment beyond some arbitrary duration”. Dr Kenneth B. Leigner Table of Contents Background ................................................................................................................................. 4 Introduction ................................................................................................................................ 4 What’s in a name? .............................................................................................................................. 5 Executive summary ...................................................................................................................... 6 Recommendations .............................................................................................................................. 8 (A) ToR the prevalence and geographic distribution of Lyme-like illness in Australia ...................
    [Show full text]
  • A STING from a Tick: Epidemiology, Ecology and Clinical Aspects Of
    Linköping University Medical Dissertation No. 1385 A STING from a Tick: Epidemiology, Ecology and Clinical Aspects of Lyme Borreliosis Peter Wilhelmsson Divisions of Medical Microbiology, Clinical Immunology, and Infectious Diseases Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University SE-581 85 Linköping, Sweden Linköping 2014 © Peter Wilhelmsson, 2014 Cover page: Painting by Elfriede Raffetseder Printed in Sweden by LiU-Tryck, Linköping 2014 ISBN 978-91-7519-460-8 ISSN 0345-0082 Table of contents Abstract ............................................................................................ 1 Swedish summary ............................................................................. 3 List of papers .................................................................................... 7 Abbreviations ................................................................................... 8 Background ....................................................................................... 9 Short review of the long history of Lyme borreliosis .......................... 9 The tick .............................................................................................. 12 Geographical distribution .......................................................... 13 Life of a tick ............................................................................... 15 Temporal host-seeking behavior............................................... 18 Spatial host-seeking behavior ..................................................
    [Show full text]