Observational Systems for Integrated Meteorological Training Course
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WMO Bulletin, Volume XVI, No. 2: April 1969
WORLD METEOROLOGICAL ORGANIZATION APRIL 1969 VOL. XVIII No. 2 THE WORLD METEOROLOGICAL ORGANIZATION (WMO) is a specialized agency of the United N ations. WMO was created: to faci litate international co-operation in the establi shment of networks or sta tions and centres to provide meteorological services and observations, to promote· the establishment a nd maintenance of systems for the rapid exchange of meteorological information, to promote standardization of meteorological observations and ensure the uniform publication of observations and statistics, to further the application of meteorology to aviation, shipping, water problems, agriculture and other human activities, to encourage research a nd training in meteorology. T he World Meteorological Co ngress is the supreme body of the Organization. lt brings together the delegates or a ll Members once every fo ur years to determine general policies for the fulfilment or the purposes of the Organization. ' The Executive Committee is composed of 24 directors of national Meteorological Services serving in an individual capacity; it meets at least once a year to supervise the programmes a pproved by Congress. Six Regional Associations are each composed of Members whose task is to co-ordinate meteorological activities within their respective regions. Eight Technical Commissions composed of experts designated by Members, are responsible for studying the special technical branches relating to meteorological observation, analysis, forecasting, research and the applications of meteorology. EXECUTIVE COMMITTEE President: A. NYBERG (Sweden) First Vice-President: W. J . GIBBS (Australia) Second Vice-President: E. K. FEDOROV (U .S.S.R.) Third Vice-President: N. A . AKINGBEHIN (Nigeria) Regional Association presidents Africa (1): M . -
Watching the Weather Since 1885: the History and Climate Record of the Blue Hill Meteorological Observatory
Watching the Weather Since 1885: The History and Climate Record of the Blue Hill Meteorological Observatory Michael J. Iacono Atmospheric and Environmental Research, Blue Hill Meteorological Observatory Massachusetts Watchmakers and Clockmakers Association 19 November 2019 Outline • Long View of Climate Change • Observatory History • Traditional Instruments • Blue Hill Climate bluehill.org/observatory BHO Mission: ”To foster public understanding of and appreciation for atmospheric science, while continuing to maintain a meticulous record of weather observations for the long-term study of climate.” Climate Change: What’s the Big Picture? • 5-10 degrees F colder during last Ice Age (20,000 yrs ago) • 10-20 degrees F warmer during Jurassic Period (65 Mya) • Stable climate for the last 10,000 years very unusual Climate Change: What’s the Big Picture? • Large climate changes have occurred regularly in Earth’s history due to natural factors: • Orbital variations (change incoming solar energy) • Volcanic eruptions (vent greenhouse gases: CO2) • Asteroid impacts (eject material that obscures sun) • Continental drift (alters air and ocean circulation) • Currently in inter-glacial period with some ice cover • Human Factor: Fossil fuel use has increased carbon dioxide to highest level in 3 million years (up from 280 to 415 ppm in 150 years) Climate Change: Role of Orbital Variations • Changes in Earth’s movement affect climate • Can think of Earth and Sun as precise time pieces • Earth’s Axis Tilt (23.5 degrees; affects change of seasons) • Controls -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Simple Weather Measurements at School Or at Home
SIMPLE WEATHER MEASUREMENTS AT SCHOOL OR AT HOME Geoff Jenkins 6th Edition ROYAL METEOROLOGICAL SOCIETY 104 OXFORD ROAD READING BERKSHIRE RG1 7LL Telephone: +44 (0)118 956 8500 Fax: +44 (0)118 956 8571 E-mail: [email protected] WWW: http://www.royalmetsoc.org/ Registered Charity Number 208222 Copyright © 1999 Royal Meteorological Society Reprinted November 2000 ISBN 0 948 090 13 8 SIMPLE WEATHER MEASUREMENTS AT SCHOOL OR AT HOME INTRODUCTION Making observations is an essential part of learning about the weather. This has been recognised by many teachers for years and is now enshrined in British National Curricula. In Geography Programmes of Study, for example, children aged 7 to 11 are required to undertake fieldwork and to carry out investigations that involve the use of instruments to make measurements. In the experimental and investigative parts of Science Programmes of Study, too, weather measurements help provide insight into concepts being taught. This booklet looks at ways in which simple weather measurements can be made with a minimum of cost or fuss. It has been written primarily as guidance for schoolteachers, particularly those in junior and middle schools. Hence, there are many references to educational aspects and considerations. However, many of the ideas will also be of interest to amateurs thinking of setting up a weather station at home. Suggestions are given as to suitable instruments and methods for taking crude but effective weather records, when it does not really matter if the temperature is a degree or two in error, or the rain-gauge does not have the ideal exposure to catch all the rain properly. -
Study on Local Cloud Coverage Using Ground-Based Measurement of Solar Radiation
Study on Local Cloud Coverage Using Ground-Based Measurement of Solar Radiation Sweata Sijapati Study on Local Cloud Coverage Using Ground-Based Measurement of Solar Radiation Dissertation Submitted to the Faculty of Civil and Environmental Engineering In Partial Fulfillment of the Requirements for the Degree of Doctor at Ehime University By Sweata Sijapati June 2016 Advisor: Professor Ryo Moriwaki Dedicated to my parents It’s your support and motivation that has made me stronger CERTIFICATION This is to certify that the dissertation entitled, “Study on Local Cloud Coverage Using Ground-Based Measurement of Solar Radiation” presented by Ms. Sijapati Sweata in partial fulfillment of the academic requirement of the degree of doctor has been examined and accepted by the evaluation committee at Graduate School of Science and Engineering of Ehime University. …………………………………. Ryo Moriwaki Professor of Civil and Environmental Engineering Thesis Advisor / Examiner 1 …………………………………. ……………. of Civil and Environmental Engineering Examiner 2 …………………………………. ……………. of Civil and Environmental Engineering Examiner 3 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... IX LIST OF TABLES ............................................................................................................ XV LIST OF ABBREVIATION .......................................................................................... XVI LIST OF SYMBOL .................................................................................................... -
Emergence, Attribution and Extremes Programme
Meteorological Society of New Zealand Annual Conference 2019 Wellington Monday 25th – Wednesday 27th November Presentation Abstracts Contents Our Sponsors ..................................................................................................................................... 3 Poster Presentation Abstracts .......................................................................................................... 4 Pecha Kucha Presentation Abstracts ............................................................................................. 24 Oral Presentation Abstracts ........................................................................................................... 41 Note: Abstracts are ordered alphabetically based on the presenting author’s surname. Victoria University of Wellington 2 Our Sponsors The Meteorological Society of New Zealand would like to acknowledge and thank the following two organisations for their support of our 2019 Annual Conference: 3 Poster Presentation Abstracts A machine learning approach to inferring the existence of extreme events in meteorological fields Leroy Bird1, Greg Bodeker1 and Jordis Tradowsky1 1Bodeker Scientific Automated detection of extreme weather events (EWEs) in meteorological fields is challenging for several reasons: (i) events of similar dynamical nature can have very different outcomes regarding extremes, (ii) some extremes result from features that are smaller than the spatial scale of the fields that are being analysed (e.g. thunderstorms), and (iii) the use of threshold -
Lecture Notes on Marine Meteorology
Lecture notes on Marine Meteorology By Shri S. P. Joshi Assistant. Meteorologist Office of DDGM (WF) India Meteorological Department Pune-5 Preface The aim of these lecture notes is to provide training to the marine observers in handling and maintenance of meteorological instruments and collect meteorological observations in the form of logbooks. The chapters included in these lecture notes are from the Basic and Intermediate training courses of the department. The present lecture notes are merely a collection of information available on Internet and are compiled from various WMO sites, freely available, keeping in view the up-and-coming trends and new technological advancements. This collection is for private circulation for trainees of Basic and Intermediate training courses of the department and the author do not intend to violate copyrights of anybody what so ever. Port Meteorological Officers in the immediate future have to deal with the modernization of the marine equipments and automation of Marine Data collection, its transmission and archival by observing minimum quality control through the in-built software like TURBOWIN. These lecture notes will also be useful to Port Meteorological Officers in understanding the nature of work of PMOs and will provide them the useful guidelines. A separate chapter on installation of Turbowin is also included in these notes. S. P. Joshi. 9th April 2005. Gudhi Padva Table of contents Chapter no Contents Page no. 1 WMO Voluntary Observing Ships’ Scheme 1 2 Meteorological Instrumentation on board ships 8 3 Port Meteorological Office ( PMO ) 15 4 The Ship Weather Code 19 5 Broadcast of weather bulletins for Merchant shipping 24 6 Broadcast of weather bulletins for Indian navy 28 7 Warnings to Ports and Storm Warning Signals 30 8 Broadcast of weather warnings for fishermen through 34 All India Radio. -
Ships Observing Marine Climate a Catalogue of the Voluntary
WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPIDC COMMISSION (Of UNESCO) MARINE METEOROLOGY AND RELATED OCEANOGRAPHIC ACTIVITIES REPORT NO. 25 SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA WMO/TD-No. 456 1991 NOTE The designations employed and the presentation of material in this publication do not imply the expression ofany opinion whatsoever on the part of the Secretariats of the World Meteorological Organization and the Intergovernmental Oceanographic Commission concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation ofits frontiers or boundaries. Editorial note: This publication is an offset reproduction of a typescript submitted by the authors and has been produced withoutadditional revision by the WMO and IOC Secretariats. SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA Elizabeth.C.Kent and Peter.K.Taylor .James .Rennell. centre for Ocean Circulation, Chilworth Research Park. Southampton. UK PREFACE Meteorological observations made onboard merchant vessels of the i'H) vollIDtary observing shipa (ves) scheme, when transmitted to shore in real-time:J are a substantial canponent of the Global Observing System of the World Weather Watch and are essential tc> the pr<>vision of marine lleteorological services ~ as well as tc> ID€:teorol.ogical analyses and forecasts generally. These observations are also recorded in ships r meteorological log1xx>ks:t for later exchange., archival and p:roc-essing -through the i'H) Marine CliJDa.tc>logical StlJllDa'ries Scheme, and as such. they conatitute an equally essential source of data for determining the cliJDa.tc>logy of the marineatlooaphere and ocean surface, and 'for OJIIIPUt.ing a variety of air-sea fluxes. -
Response to Comments the Authors Thank the Reviewers for Their
Response to comments The authors thank the reviewers for their constructive comments, which provide the basis to improve the quality of the manuscript and dataset. We address all points in detail and reply to all comments here below. We also updated SCDNA from V1 to V1.1 on Zenodo based on the reviewer’s comments. The modifications include adding station source flag, adding original files for location merged stations, and adding a quality control procedure based on the final SCDNA. SCDNA estimates are generally consistent between the two versions, with the total number of stations reduced from 27280 to 27276. Reviewer 1 General comment The manuscript presents and advertises a very interesting dataset of temperature and precipitation observation collected over several years in North America. The work is certainly well suited for the readership of ESSD and it is overall very important for the meteorological and climatological community. Furthermore, creation of quality controlled databases is an important contribution to the scientific community in the age of data science. I have a few points to consider before publication, which I recommend, listed below. 1. Measurement instruments: from my background, I am much closer to the instruments themselves (and their peculiarities and issues), as hardware tools. What I missed here was a description of the stations and their instruments. Questions like: which are the instruments deployed in the stations? How is precipitation measured (tipping buckets? buckets? Weighing gauges? Note for example that some instruments may have biases when measuring snowfall while others may not)? How is it temperature measured? How is this different from station to station in your database? Response: We have added the descriptions of measurement instruments in both the manuscript and dataset documentation. -
Creating an Atmosphere for STEM Literacy in the Rural South Through
JOURNAL OF GEOSCIENCE EDUCATION 63, 105–115 (2015) Creating an Atmosphere for STEM Literacy in the Rural South Through Student-Collected Weather Data Lynn Clark,1,a Saswati Majumdar,1 Joydeep Bhattacharjee,2 and Anne Case Hanks3 ABSTRACT This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations to better understand core disciplinary ideas connecting Life and Earth sciences. Using a curricular model that combines experiential and place-based educational approaches to create a rich and relevant atmosphere for STEM learning, the goal of the program was to empower teachers and their students to engage in ongoing data collection analysis that could contribute to greater understanding and ownership of the environment at the local and regional level. The program team used a mixed- methodological approach that examined implementation at the site level and student impact. Analysis of teacher and student surveys, teacher interviews and classroom observation data suggest that the level of implementation of the program related directly to the ways in which students were using the weather data to develop STEM literacy. In particular, making meaning out of the data by studying patterns, interpreting the numbers, and comparing with long-term data from other sites seemed to drive critical thinking and STEM literacy in those classrooms that fully implemented the program. Findings also suggest that the project has the potential to address the unique needs of traditionally underserved students in the rural south, most notably, those students in high-needs rural settings that rely on an agrarian economy. -
Meteorological Monitoring Guidance for Regulatory Modeling Applications
United States Office of Air Quality EPA-454/R-99-005 Environmental Protection Planning and Standards Agency Research Triangle Park, NC 27711 February 2000 Air EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications Air Q of ua ice li ff ty O Clean Air Pla s nn ard in nd g and Sta EPA-454/R-99-005 Meteorological Monitoring Guidance for Regulatory Modeling Applications U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 February 2000 DISCLAIMER This report has been reviewed by the U.S. Environmental Protection Agency (EPA) and has been approved for publication as an EPA document. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii PREFACE This document updates the June 1987 EPA document, "On-Site Meteorological Program Guidance for Regulatory Modeling Applications", EPA-450/4-87-013. The most significant change is the replacement of Section 9 with more comprehensive guidance on remote sensing and conventional radiosonde technologies for use in upper-air meteorological monitoring; previously this section provided guidance on the use of sodar technology. The other significant change is the addition to Section 8 (Quality Assurance) of material covering data validation for upper-air meteorological measurements. These changes incorporate guidance developed during the workshop on upper-air meteorological monitoring in July 1998. Editorial changes include the deletion of the “on-site” qualifier from the title and its selective replacement in the text with “site specific”; this provides consistency with recent changes in Appendix W to 40 CFR Part 51. -
Meteorological Equipment Data Sheets
TM 750-5-3 TECHNICAL MANUAL METEOROLOGICAL EQUIPMENT DATA SHEETS HEADQUARTERS, DEPARTMENT OF THE ARMY 30 APRIL 1973 *TM 750–5–3 TECHNICAL MANUAL HEADQUARTERS DEPARTMENT OF THE ARMY No. 750–5–3 WASHINGTON, D.C., 30 April 1973 METEOROLOGICAL EQUIPMENT DATA SHEETS Paragraph Page SECTION I. INTRODUCTION Scope _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 3 Purpose _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 3 Organization of content _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 3 3 US Army type classifications _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 3 Currency of information _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 4 Omitted data_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 4 II.