Guide Wave Analysis and Forecasting

Total Page:16

File Type:pdf, Size:1020Kb

Guide Wave Analysis and Forecasting WORLD METEOROLOGICAL ORGANIZATION GUIDE TO WAVE ANALYSIS AND FORECASTING 1998 (second edition) WMO-No. 702 WORLD METEOROLOGICAL ORGANIZATION GUIDE TO WAVE ANALYSIS AND FORECASTING 1998 (second edition) WMO-No. 702 Secretariat of the World Meteorological Organization – Geneva – Switzerland 1998 © 1998, World Meteorological Organization ISBN 92-63-12702-6 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities or concerning the delimitation of its fontiers or boundaries. CONTENTS Page FOREWORD . V ACKNOWLEDGEMENTS . VI INTRODUCTION . VII Chapter 1 – AN INTRODUCTION TO OCEAN WAVES 1.1 Introduction . 1 1.2 The simple linear wave . 1 1.3 Wave fields on the ocean . 6 Chapter 2 – OCEAN SURFACE WINDS 2.1 Introduction . 15 2.2 Sources of marine data . 16 2.3 Large-scale meteorological factors affecting ocean surface winds . 21 2.4 A marine boundary-layer parameterization . 27 2.5 Statistical methods . 32 Chapter 3 – WAVE GENERATION AND DECAY 3.1 Introduction . 35 3.2 Wind-wave growth . 35 3.3 Wave propagation . .36 3.4 Dissipation . 39 3.5 Non-linear interactions . .40 3.6 General notes on application . 41 Chapter 4 – WAVE FORECASTING BY MANUAL METHODS 4.1 Introduction . 43 4.2 Some empirical working procedures . 45 4.3 Computation of wind waves . 45 4.4 Computation of swell . 47 4.5 Manual computation of shallow-water effects . 52 Chapter 5 – INTRODUCTION TO NUMERICAL WAVE MODELLING 5.1 Introduction . 57 5.2 Basic concepts . 57 5.3 The wave energy-balance equation . 58 5.4 Elements of wave modelling . 58 5.5 Model classes . 62 Chapter 6 – OPERATIONAL WAVE MODELS 6.1 Introductory remarks . .67 6.2 Wave charts . 69 6.3 Coded wave products . 69 6.4 Verification of wave models . 70 6.5 Wave model hindcasts . 75 6.6 New developments . 80 IV CONTENTS Page Chapter 7 – WAVES IN SHALLOW WATER 7.1 Introduction . 81 7.2 Shoaling . 81 7.3 Refraction . 82 7.4 Diffraction . 84 7.5 Wave growth in shallow waters . 85 7.6 Bottom friction . 86 7.7 Wave breaking in the surf zone . 87 7.8 Currents, set-up and set-down . 88 Chapter 8 – WAVE DATA, OBSERVED, MEASURED AND HINDCAST 8.1 Introduction . 89 8.2 Differences between visual and instrumental data . 89 8.3 Visual observations . 89 8.4 Instruments for wave measurements . 91 8.5 Remote sensing from large distances . 93 8.6 Wave data in numerical models . 98 8.7 Analysis of wave records . 98 8.8 Sources of wave data . 100 Chapter 9 – WAVE CLIMATE STATISTICS 9.1 Introduction . 101 9.2 Definitions . 101 9.3 Presentation of data and wave climate statistics . 103 9.4 Estimating return values of wave height . 105 9.5 Further reading . 109 9.6 Wave climatologies . 109 ANNEXES I ABBREVIATIONS AND KEY TO SYMBOLS . 119 II FM 65-IX WAVEOB – REPORT OF SPECTRAL WAVE INFORMATION FROM A SEA STATION OR FROM A REMOTE PLATFORM (AIRCRAFT OR SATELLITE) . 123 III PROBABILITY DISTRIBUTIONS FOR WAVE HEIGHTS . 133 IV THE PNJ (PIERSON-NEUMANN-JAMES, 1955) WAVE GROWTH CURVES. 139 REFERENCES AND SELECTED BIBLIOGRAPHY . 143 INDEX . 155 FOREWORD The national Meteorological Services of a large number of maritime countries have, for many years now, been engaged in the provision of ocean wave forecast and hindcast services in support of the requirements of users in the whole range of maritime activities (shipping, fisheries, offshore mining, commerce, coastal engineering, construction, recreation, and so on). In recognition of this, and of the relative lack of easily accessible guidance material on wave forecasting method- ology suitable for use by national Meteorological Services in developing countries, the WMO Guide to wave analysis and forecasting was prepared by a group of experts and published in 1988.
Recommended publications
  • Coastal Processes and Longshore Sediment Transport Along Krui Coast, Pesisir Barat of Lampung
    ICOSITER 2018 Proceeding Journal of Science and Applicative Technology Coastal Processes and Longshore Sediment Transport along Krui Coast, Pesisir Barat of Lampung Trika Agnestasia Tarigan 1, Nanda Nurisman 1 1 Ocean Engineering Department, Institut Teknologi Sumatera, Lampung Selatan, Lampung Abstract. Longshore sediment transport is one of the main factors influencing coastal geomorphology along the Krui Coast, Pesisir Barat of Lampung. Longshore sediment transport is closely related to the longshore current that is generated when waves break obliquely to the coast. The growth of waves depends upon wind velocity, the duration of the wind, and the distance over which the wind blow called fetch. The daily data of wind speed and direction are forecast from European Centre for Medium-Range Weather Forecasts (ECMWF). This study examines for predicting longshore sediment transport rate using empirical method. The wave height and period were calculated using Shore Protection Manual (SPM) 1984 method and the longshore sediment transport estimation based on the CERC formula, which also includes the wave period, beach slope, sediment grain size, and breaking waves type. Based on the use CERC formula it is known that from the Southeast direction (Qlst(1) ) the sediment transport discharge is 2.394 m3/s, in 1 (one) year the amount of sediment transport reaches 75,495,718 m3/s. 3 Whereas from the northwest direction of (Qlst(2)) the sediment transport debit is 2.472 m /s, in 1 (one) year the amount of sediment transport reaches 77,951,925 m3/s. 1. Introduction The geographical condition of Krui Coast which is directly adjacent to the Indian Ocean makes this area get a direct influence from the physical parameters of the sea, which is the wave.
    [Show full text]
  • Wintertime Coastal Upwelling in Lake Geneva: an Efficient Transport
    RESEARCH ARTICLE Wintertime Coastal Upwelling in Lake Geneva: An 10.1029/2020JC016095 Efficient Transport Process for Deepwater Key Points: • Coastal upwelling during winter in a Renewal in a Large, Deep Lake large deep lake was investigated by Rafael S. Reiss1 , U. Lemmin1, A. A. Cimatoribus1 , and D. A. Barry1 field observations, 3‐D numerical modeling, and particle tracking 1Ecological Engineering Laboratory (ECOL), Faculty of Architecture, Civil and Environmental Engineering (ENAC), • Upwelled water masses originating from the deep hypolimnion spend Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland up to 5 days near the surface before descending back into that layer • Wintertime coastal upwelling is an Abstract Combining field measurements, 3‐D numerical modeling, and Lagrangian particle tracking, fi ef cient yet overlooked process for we investigated wind‐driven, Ekman‐type coastal upwelling during the weakly stratified winter period deepwater renewal in large deep lakes with favorable wind conditions 2017/2018 in Lake Geneva, Western Europe's largest lake (max. depth 309 m). Strong alongshore wind stress, persistent for more than 7 days, led to tilting and surfacing of the thermocline (initial depth Supporting Information: 75–100 m). Observed nearshore temperatures dropped by 1°C and remained low for 10 days, with the lowest • Supporting Information S1 temperatures corresponding to those of hypolimnetic waters originating from 200 m depth. Nearshore • Movie S1 current measurements at 30 m depth revealed dominant alongshore currents in the entire water column − (maximum current speed 25 cm s 1) with episodic upslope transport of cold hypolimnetic waters in the fi ‐ Correspondence to: lowest 10 m mainly during the rst 3 days.
    [Show full text]
  • Coastal Dynamics 2017 Paper No. 156 513 How Tides and Waves
    Coastal Dynamics 2017 Paper No. 156 How Tides and Waves Enhance Aeolian Sediment Transport at The Sand Motor Mega-nourishment , 1,2 1 1 Bas Hoonhout1 2, Arjen Luijendijk , Rufus Velhorst , Sierd de Vries and Dano Roelvink3 Abstract Expanding knowledge concerning the close entanglement between subtidal and subaerial processes in coastal environments initiated the development of the open-source Windsurf modeling framework that enables us to simulate multi-fraction sediment transport due to subtidal and subaerial processes simultaneously. The Windsurf framework couples separate model cores for subtidal morphodynamics related to waves and currents and storms and aeolian sediment transport. The Windsurf framework bridges three gaps in our ability to model long-term coastal morphodynamics: differences in time scales, land/water boundary and differences in meshes. The Windsurf framework is applied to the Sand Motor mega-nourishment. The Sand Motor is virtually permanently exposed to tides, waves and wind and is consequently highly dynamic. In order to understand the complex morphological behavior of the Sand Motor, it is vital to take both subtidal and subaerial processes into account. The ultimate aim of this study is to identify governing processes in aeolian sediment transport estimates in coastal environments and improve the accuracy of long-term coastal morphodynamic modeling. At the Sand Motor beach armoring occurs on the dry beach. In contrast to the dry beach, no armor layer can be established in the intertidal zone due to periodic flooding. Consequently, during low tide non-armored intertidal beaches are susceptible for wind erosion and, although moist, may provide a larger aeolian sediment supply than the vast dry beach areas.
    [Show full text]
  • Ships Observing Marine Climate a Catalogue of the Voluntary
    WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPIDC COMMISSION (Of UNESCO) MARINE METEOROLOGY AND RELATED OCEANOGRAPHIC ACTIVITIES REPORT NO. 25 SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA WMO/TD-No. 456 1991 NOTE The designations employed and the presentation of material in this publication do not imply the expression ofany opinion whatsoever on the part of the Secretariats of the World Meteorological Organization and the Intergovernmental Oceanographic Commission concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation ofits frontiers or boundaries. Editorial note: This publication is an offset reproduction of a typescript submitted by the authors and has been produced withoutadditional revision by the WMO and IOC Secretariats. SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA Elizabeth.C.Kent and Peter.K.Taylor .James .Rennell. centre for Ocean Circulation, Chilworth Research Park. Southampton. UK PREFACE Meteorological observations made onboard merchant vessels of the i'H) vollIDtary observing shipa (ves) scheme, when transmitted to shore in real-time:J are a substantial canponent of the Global Observing System of the World Weather Watch and are essential tc> the pr<>vision of marine lleteorological services ~ as well as tc> ID€:teorol.ogical analyses and forecasts generally. These observations are also recorded in ships r meteorological log1xx>ks:t for later exchange., archival and p:roc-essing -through the i'H) Marine CliJDa.tc>logical StlJllDa'ries Scheme, and as such. they conatitute an equally essential source of data for determining the cliJDa.tc>logy of the marineatlooaphere and ocean surface, and 'for OJIIIPUt.ing a variety of air-sea fluxes.
    [Show full text]
  • Evolution of Spectra for Mechanical and Wind Waves in a Large Tank
    V. Polnikov, F. Qiao, H. Ma, and S. Jiang EVOLUTION OF SPECTRA FOR MECHANICAL AND WIND WAVES IN A LARGE TANK Vladislav Polnikov1†1, Fangli Qiao2, 3, Hongyu Ma2, and Shumin Jiang2 1A.M. Obukhov Institute of Atmospheric Physics of RAS, Moscow, Russia 2First Institute of Oceanography of MNR, Qingdao, China 3Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China (Received xx; revised xx; accepted xx) Empirical spectra for mechanical and wind waves measured in a large tank of the First Institute of Oceanography of China are presented. Analysis for the first and the second type of waves is done separately. It is shown that, in the case of mechanical waves with a steepness more than 0.2, the frequency spectra of waves evolve to ones with the tail decay S() f f 4.2 0.1 , whilst the shape of spectra at large fetches is self-similar. Numerical solutions of the four-wave kinetic equation, written in the fetch-limited version, result in the same spectra. This allows treating the empirical observations for mechanical waves as the natural evolution of free nonlinear surface waves. In the case of wind waves, the wave spectra evolve to ones with the tail decay S() f f 4.0 0.05 at fetches X greater than 8 meters, under any applied winds. The well-known 3/2 Toba’s “three-second relation”, HT p , between the mean wave height, H, and the peak period, Tp, is well fulfilled. Though, the intensities of spectra tails do not follow the Toba’s ratio, 4 24p S()() f gu* f , rather they better correspond to the ratio S()(/)() f u** Xg gu f with p = 1/3.
    [Show full text]
  • 99 UPWELLING in the GULF of GUINEA Results of a Mathematical
    99 UPWELLING IN THE GULF OF GUINEA Results of a mathematical model 2 2 6 5 0 A. BAH Mécanique des Fluides géophysiques, Université de Liège, Liège (Belgium) ABSTRACT A numerical simulation of the oceanic response of an x-y-t two-layer model on the 3-plane to an increase of the wind stress is discussed in the case of the tro­ pical Atlantic Ocean. It is shown first that the method of mass transport is more suitable for the present study than the method of mean velocity, especially in the case of non-linearity. The results indicate that upwelling in the oceanic equatorial region is due to the eastward propagating equatorially trapped Kelvin wave, and that in the coastal region upwelling is due to the westward propagating reflected Rossby waves and to the poleward propagating Kelvin wave. The amplification due to non- linearity can be about 25 % in a month. The role of the non-rectilinear coast is clearly shown by the coastal upwelling which is more intense east than west of the three main capes of the Gulf of Guinea; furthermore, by day 90 after the wind's onset, the maximum of upwelling is located east of Cape Three Points, in good agree­ ment with observations. INTRODUCTION When they cross over the Gulf of Guinea, monsoonal winds take up humidity and subsequently discharge it over the African Continent in the form of precipitation (Fig. 1). The upwelling observed during the northern hemisphere summer along the coast of the Gulf of Guinea can reduce oceanic evaporation, and thereby affect the rainfall pattern in the SAHEL region.
    [Show full text]
  • Waves and Structures
    WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves.
    [Show full text]
  • Arxiv:1903.11909V1 [Physics.Flu-Dyn] 28 Mar 2019
    Exact solution for progressive gravity waves on the surface of a deep fluid Nail S. Ussembayev∗ Computer, Electrical, and Mathematical Sciences and Engineering Divison King Abdullah University of Science and Technology, Thuwal 23955-6900, KSA Gerstner or trochoidal wave is the only known exact solution of the Euler equations for periodic surface gravity waves on deep water. In this Letter we utilize Zakharov’s variational formulation of weakly nonlinear surface waves and, without truncating the Hamiltonian in its slope expansion, derive the equations of motion for unidirectional gravity waves propagating in a two-dimensional flow. We obtain an exact solution of the evolution equations in terms of the Lambert W -function. The associated flow field is irrotational. The maximum wave height occurs for a wave steepness of 0.2034 which compares to 0.3183 for the trochoidal wave and 0.1412 for the Stokes wave. Like in the case of Gerstner’s solution, the limiting wave of a new type has a cusp of zero angle at its crest. Background.—The water waves problem even in the tial evaluated on the free surface. The expansion coef- completely idealized setting of a perfect fluid is notori- ficients simplify remarkably for two-dimensional waves ously difficult from a mathematical point of view. This propagating in the same direction and the infinite series is one of the reasons we have very few explicit solutions can be summed in a closed form if the wave steepness to the fully nonlinear free-surface hydrodynamics equa- is small. From the stationary periodic solution of the tions despite extensive research over hundreds of years.
    [Show full text]
  • Response to Comments the Authors Thank the Reviewers for Their
    Response to comments The authors thank the reviewers for their constructive comments, which provide the basis to improve the quality of the manuscript and dataset. We address all points in detail and reply to all comments here below. We also updated SCDNA from V1 to V1.1 on Zenodo based on the reviewer’s comments. The modifications include adding station source flag, adding original files for location merged stations, and adding a quality control procedure based on the final SCDNA. SCDNA estimates are generally consistent between the two versions, with the total number of stations reduced from 27280 to 27276. Reviewer 1 General comment The manuscript presents and advertises a very interesting dataset of temperature and precipitation observation collected over several years in North America. The work is certainly well suited for the readership of ESSD and it is overall very important for the meteorological and climatological community. Furthermore, creation of quality controlled databases is an important contribution to the scientific community in the age of data science. I have a few points to consider before publication, which I recommend, listed below. 1. Measurement instruments: from my background, I am much closer to the instruments themselves (and their peculiarities and issues), as hardware tools. What I missed here was a description of the stations and their instruments. Questions like: which are the instruments deployed in the stations? How is precipitation measured (tipping buckets? buckets? Weighing gauges? Note for example that some instruments may have biases when measuring snowfall while others may not)? How is it temperature measured? How is this different from station to station in your database? Response: We have added the descriptions of measurement instruments in both the manuscript and dataset documentation.
    [Show full text]
  • Creating an Atmosphere for STEM Literacy in the Rural South Through
    JOURNAL OF GEOSCIENCE EDUCATION 63, 105–115 (2015) Creating an Atmosphere for STEM Literacy in the Rural South Through Student-Collected Weather Data Lynn Clark,1,a Saswati Majumdar,1 Joydeep Bhattacharjee,2 and Anne Case Hanks3 ABSTRACT This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations to better understand core disciplinary ideas connecting Life and Earth sciences. Using a curricular model that combines experiential and place-based educational approaches to create a rich and relevant atmosphere for STEM learning, the goal of the program was to empower teachers and their students to engage in ongoing data collection analysis that could contribute to greater understanding and ownership of the environment at the local and regional level. The program team used a mixed- methodological approach that examined implementation at the site level and student impact. Analysis of teacher and student surveys, teacher interviews and classroom observation data suggest that the level of implementation of the program related directly to the ways in which students were using the weather data to develop STEM literacy. In particular, making meaning out of the data by studying patterns, interpreting the numbers, and comparing with long-term data from other sites seemed to drive critical thinking and STEM literacy in those classrooms that fully implemented the program. Findings also suggest that the project has the potential to address the unique needs of traditionally underserved students in the rural south, most notably, those students in high-needs rural settings that rely on an agrarian economy.
    [Show full text]
  • Danish Meteorological Institute Ministry of Transport
    DANISH METEOROLOGICAL INSTITUTE MINISTRY OF TRANSPORT ——— TECHNICAL REPORT ——— 98-14 The Climate of The Faroe Islands - with Climatological Standard Normals, 1961-1990 John Cappelen and Ellen Vaarby Laursen COPENHAGEN 1998 Front cover picture Gásadalur located north west of Sørvágur on the western part of the island of Vágar. Heinanøv Fjeld, 813 m high can be seen in the north and Mykinesfjørdur in the west. The heliport is located to the right in the picture - near the river Dalsá. The photo was taken during a helicopter trip in May 1986. Photographer: Helge Faurby ISSN 0906-897X Contents 1. Introduction....................................................................................................3 2. Weather and climate in the Faroe Islands..................................................5 3. Observations and methods............................................................................9 3.1. General methods...................................................................9 3.2. Observations........................................................................9 4. Station history and metadata.......................................................................13 5. Standard Normal Homogeneity Test..........................................................15 5.1. Background.........................................................................15 5.2. Testing for homogeneity.....................................................15 6. Climatological normals.................................................................................17
    [Show full text]
  • Realistic Simulation of Ocean Surface Using Wave Spectra Jocelyn Fréchot
    Realistic simulation of ocean surface using wave spectra Jocelyn Fréchot To cite this version: Jocelyn Fréchot. Realistic simulation of ocean surface using wave spectra. Proceedings of the First International Conference on Computer Graphics Theory and Applications (GRAPP 2006), 2006, Por- tugal. pp.76–83. hal-00307938 HAL Id: hal-00307938 https://hal.archives-ouvertes.fr/hal-00307938 Submitted on 29 Jul 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REALISTIC SIMULATION OF OCEAN SURFACE USING WAVE SPECTRA Jocelyn Frechot´ LaBRI - Laboratoire bordelais de recherche en informatique Domaine universitaire, 351 cours de la Liber´ ation, 33405 Talence CEDEX, France [email protected] Keywords: Natural phenomena, realistic ocean waves, procedural animation, parametric energy spectra Abstract: We present a method to simulate ocean surfaces away from the coast, with correct statistical wave height and direction distributions. By using classical oceanographic parametric wave spectra, our results fit real world measurements, without depending on them. Since wave spectra are independent of the ocean model, Gerstner parametric equations and Fourier transform method can be used with them. Moreover, since they are simple to use and need very few parameters, they allow easy production of ocean surface animations usable in movies and games.
    [Show full text]