Elements of Vedic Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Elements of Vedic Mathematics UDAYAN S. PATANKAR & SUNIL M. PATANKAR Elements of Vedic Mathematics Tallinn 2018 1 Cover design, Layout and Setup by Parimal Kshama Sunil Patankar Copyright Udayan S. Patankar, 2018 ISBN 978-9949-83-215-6 (publication) ISBN 978-9949-83-216-3 (pdf) 2 3 4 SWAMI BHARATI KRISHANA TIRTH (1884 – 1960) (PIONEER OF VEDIC MATHEMATICS) Swami Bharati Krishana Tirth was the author of the first available book “Vedic Mathematics”. He was Jagadguru Shankaracharya of Govardhan Peeth, Puri (Odhisha). He was highly a learned person both in philosophy and in the field of science. He delivered many lectures and demonstrations on Vedic Maths in America and United Kingdom. He appeared at the M.A. examination of the American College of sciences, Rochester, New York, from Bombay Centre in 1903. He passed M.A. examination in seven subjects simultaneously securing highest honours in all, which is perhaps the all time world record of academic excellence and brilliance. His subjects included Sanskrit, Philosophy, English, Mathematics and Science. During 1919 – 1927 he developed deep into Vedas and other scriptures. During this period, by meditating and by intuition, Swamiji formulated a concept of Vedic Maths. He postulated sixteen sutra of Vedic Mathematics. These sutras are easy to understand, apply and remember as well as the entire work can be summarized in one word as “MENTAL”. Swamiji had written in all sixteen volumes on Vedic Mathematics but at present only one introductory volume is available. Although he intended to rewrite all the previous volumes but his health did not permit it. A spiritual seer of highest order, Swami Bharati Krishana Tirth was also a philosopher, great mathematician and a scientist. His work on Vedic Mathematics is a gem of gift to the world of mathematics and to the entire mankind. 5 PREFACE Om Gurudevay Namha, I Am Thankful To God for Giving Me This Opportunity. I felt Mathematics like a GOD, No one has seen it, but it is there in everything. Being an Electronic Engineer I felt that Mathematics is the base of all sciences but thought to be a hard nut to crack by many students because of the monotonous, lengthy methods of conventional mathematics. We have witnessed that Vedic mathematics is already started gaining its spin in digital electronics. Now a days many researchers are working on how to use Vedic mathematic terms in different calculations, Computer Programs, Digital Designs etc. I had come across many interesting projects Like ALU based on Vedic Mathematics, which has given a very good possibilities of utilizing Vedic mathematics into various digital operations, securities etc. Our great ancestors had a great knowledge about it and developed many easiest n simplest ways of doing it. So I felt necessity to have a single book for Vedic Mathematics which covers all the topics of three subjects- Vedic Arithmetic, Vedic Algebra and Vedic Geometry. While performing various critical operations I always thought to make it interesting. Vedic Maths encourages student’s creativity. The element of choice and flexibility at each stage keeps his mind alert and lively. In this way holistic development of human brain automatically occurs. Vedic Mathematics will help slow learners to know the basic concepts while inducing creativity amongst intelligent. Vedic Mathematics is a uniquely modern and extremely user friendly system. These Vedic Mathematics methods will be helpful in developing not only an insight into mathematics but also helpful to work in different subject. These methods are based on the scientific footings and practically ease the work without sacrificing anything. The credit to create utmost interest in mathematics goes to Swamiji Bharati Krishan Tirth – Shankaracharya of Govardhan Peeth (Puri). His blessings are always with us for learning Vedic Mathematics. During my study I came across various personalities starting from my home my Mother, Father and Big Brother. They always supported me to explore new things. My Mentors from sports to study, Dr. Vilas Nitnaware, Prof. Toomas Rang, Dr. Ants Koel and many more who has taught me many things about how to keep myself motivated and focused. I am thankful for their valuable guidance and support. Let us enjoy! Udayan Sunil Patankar 6 PREFACE I am glad to present this text book “Elements of Vedic Mathematics” for certificate course in Vedic Mathematics affiliated to KAVIKULAGURU KALIDAS SANSKRIT VISHWAVIDYALAYA, RAMTEK (NAGPUR). I felt necessity to have a single book for certificate course in Vedic Mathematics which covers all the topics of three subjects- Vedic Arithmetic, Vedic Algebra and Vedic Geometry. Regarding Vedic Mathematics Bharati Krishana Tirtha Shankaracharya Swamiji has said “It is magic until you understand it and mathematics thereafter”. Mathematics is the base of all sciences but thought to be a hard nut to crack by many students because of unwillingness attitude to change the monotonous, lengthy methods of conventional mathematics. Vedic Maths encourages student’s creativity. The element of choice and flexibility at each stage keeps his mind alert and lively. In this way holistic development of human brain automatically occurs. Mathematics will be popular as an interesting subject to majority students by including easiest and quick methods of Vedic Mathematics in the syllabus from primary level itself. Vedic Mathematics will help slow learners to know the basic concepts while inducing creativity amongst intelligent. Vedic Mathematics is a uniquely modern and extremely user friendly system. These Vedic Mathematics methods will be helpful in developing an insight into mathematics first and other subjects thereafter. These methods will not only provide quicker calculation but also increase the creativity of mind, develop the brain and will provide the eagerness to learn more and more about mathematics. These methods are based on the scientific footings and practically ease the work without sacrificing anything. The credit to create utmost interest in mathematics goes to Swamiji Bharati Krishan Tirth – Shankaracharya of Govardhan Peeth (Puri). His blessings are always with us for learning Vedic Mathematics. During my study towards Vedic Mathematics I came across various personalities in this field- Dr.A.W.Vyawahare (Nagpur), Dr.S.D. Mohogaonkar (Nagpur), Dr.Kailash Vishwakarma (Rath), V.G.Unkalkar (Bengaluru), M.Sitaramarao (Hydrabad), Shriram Chouthaiwale (Akola), Prof. Bachchubhai Rawal (Ahamadabad). I am thankful for their valuable guidance. I am thankful to Mrs.Maya Madhukar Kondalwadikar for performing laborious proof reading task of the notes. I am thankful to Mrs.Maya Madhukar Kondalwadikar and Shri Umesh – K - Bhonsule for their valuable guidance and assistance in preparation of this book. Definitely, Vedic Mathematics methods will be a boon for various competitive examinations to save time, space and energy. Let us enjoy! Sunil Manohar Patankar 7 Special Thanks for Family, Guru’s and Friends For their Strong belief, Guidance and Blessings. This milestone is the beginning of New Journey. 8 DON’T FEAR JUST DO THE DARE GOD IS HERE TO TAKE CARE… - UDAYAN S. PATANKAR 9 10 Contents CHAPTER ONE: ADDITION AND SUBTRACTION .............................................................15 CHAPTER TWO: VINCULUM NUMBER ...........................................................................20 CHAPTER THREE: MULTIPLICATION ...............................................................................27 CHAPETER FOUR: DIVISION ...........................................................................................64 CHAPTER FIVE: HCF OR GCD ..........................................................................................79 CHAPTER SIX: DIVISIBILITY .............................................................................................85 CHAPTER SEVEN: AWARENESS OF 1 – 5 VEDIC SUTRA ................................................107 CHAPTER EIGHT: CONTRIBUTION OF ANCIENT INDIAN MATHEMATICIANS IN ARITHMETIC .................................................................................................................140 CHAPTER NINE: ALGEBRIC MULTIPLICATION ..............................................................155 CHAPTER TEN: ALGEBRAIC DIVISION ...........................................................................158 CHAPTER ELEVEN: ALGEBRIC GCD OR HCF ..................................................................161 CHAPTER TWELVE: FACTORISATION ...........................................................................165 CHAPTER THIRTEEN: PARTIAL FRACTION ....................................................................174 CHAPTER FOURTEEN: DETERMINANT .........................................................................181 CHAPTER FIFTEEN: MATRICES .....................................................................................190 CHAPTER SIXTEEN: SIMULTANEOUS EQUATION WITH 3 VARIABLES ..........................197 CHAPTER SEVENTEEN: MERU – PRASTAR ...................................................................203 CHAPTER EIGHTEEN: AWARENESS OF 6-11 VEDIC SUTRA ..........................................217 CHAPTER NINTEEN: CONTRIBUTION OF ANCIENT INDIAN MATHEMATICIANS IN ALGEBRA ......................................................................................................................231 CHAPTER TWENTY: BODHAYAN GEOMETRY ...............................................................237 CHAPTER TWENTY ONE: COMPLEX NUMBER..............................................................263
Recommended publications
  • Mathematics INSA, New Delhi CLASS NO
    Mathematics INSA, New Delhi CLASS NO. WISE CHECK LIST Page : 1 ------------------------- Date : 5/06/2012 ------------------------------------------------------------------------- Accn No. T i t l e / A u t h o r Copies ------------------------------------------------------------------------- 18748 Physicalism in mathematics / Irvine, A.D. 340. 1 : Kluwer Academic, 1990 51.001.1 IRV 16606 Wittgenstein's philosophy of mathematics / Klenk, V.H. 1 : Martinus Nijhoff, 1976 51.001.1 KLE 18031 Mathematics in philosophy : Selected essay / Parsons, 1 Charles. : Cornell University Press, 1983 51.001.1 PAR HS 2259 Introduction to mathematical philosophy / Russell, Bertrand. : George Allen & Unwin, 1975 51.001.1 RUS 17664 Nature mathematized : Historical and philosophical 1 case studies in classical modern natural philosophy : Proceedings / Shea, William R. 340. : D. Reidel 51.001.1 SHE 18910 Mathematical intuition: phenomenology and mathematical 1 knowledge / Tieszen, Richard L. : Kluwer Academic Publishing, 1989 51.001.1 TIE 15502 Remarks on the foundations of mathematics 1 / Wittgenstein, Ludwig. : Basil Black Will, 1967 51.001.1 WIT 5607 Foundations of mathematics : Study in the philosophy 1 of science / Beth, Evert W. : North-Holland Publishing , 1959 51.001.3:16 BET 16621 Developing mathematics in third world countries : 1 Proceedings / Elton, M.E.A. 340. : North-Holland, 1979 51.001.6(061.3) ELT 15888 Optimal control theory / Berkovitz, L.D. : Springer- 1 Verlag, 1974 51:007 BER file:///C|/Documents%20and%20Settings/Abhishek%20Sinha/Desktop/Mathematics.txt[7/20/2012 5:09:31 PM] 29 Mathematics as a cultural clue : And other essays 1 / Keyser, Cassius Jackson. : Yeshiva University, 1947 51:008 KEY 9914 Foundations of mathematical logic / Curry, Haskell B.
    [Show full text]
  • Book of Abstracts
    IIT Gandhinagar, 16-17 March 2013 Workshop on Promoting History of Science in India ABSTRACTS Prof. Roddam Narasimha Barbarous Algebra, Inferred Axioms: Eastern Modes in the Rise of Western Science A proper assessment of classical Indic science demands greater understanding of the roots of the European scientific miracle that occurred between the late 16th and early 18th centuries. It is here proposed that, in the exact sciences, this European miracle can be traced to the advent of ‘barbarous’ (i.e. foreign) algebra, as Descartes called it, and to a new epistemology based on ‘inferred’ axioms as advocated by Francis Bacon and brilliantly implemented by Isaac Newton. Both of these developments can be seen as representing a calculated European departure from Hellenist philosophies, accompanied by a creative Europeanization of Indic modes of scientific thinking. Prof. Roddam Narasimha, an eminent scientist and the chairman of Engineering Mechanics Unit at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, has made contributions to the epistemology of Indian science. He was awarded Padma Vishushan this year. Email: [email protected] Prof. R.N. Iyengar Astronomy in Vedic Times: Indian Astronomy before the Common Era Astronomy popularly means knowledge about stars, planets, sun, moon, eclipses, comets and the recent news makers namely, asteroids and meteorites. Ancient people certainly knew something about all of the above though not in the same form or detail as we know now. The question remains what did they know and when. To a large extent for the Siddhāntic period (roughly starting with the Common Era CE) the above questions have been well investigated.
    [Show full text]
  • A Clasification of Known Root Prime-Generating
    Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS).
    [Show full text]
  • Sequences of Primes Obtained by the Method of Concatenation
    SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd
    [Show full text]
  • Monthly Science and Maths Magazine 01
    1 GYAN BHARATI SCHOOL QUEST….. Monthly Science and Mathematics magazine Edition: DECEMBER,2019 COMPILED BY DR. KIRAN VARSHA AND MR. SUDHIR SAXENA 2 IDENTIFY THE SCIENTIST She was an English chemist and X-ray crystallographer who made contributions to the understanding of the molecular structures of DNA , RNA, viruses, coal, and graphite. She was never nominated for a Nobel Prize. Her work was a crucial part in the discovery of DNA, for which Francis Crick, James Watson, and Maurice Wilkins were awarded a Nobel Prize in 1962. She died in 1958, and during her lifetime the DNA structure was not considered as fully proven. It took Wilkins and his colleagues about seven years to collect enough data to prove and refine the proposed DNA structure. RIDDLE TIME You measure my life in hours and I serve you by expiring. I’m quick when I’m thin and slow when I’m fat. The wind is my enemy. Hard riddles want to trip you up, and this one works by hitting you with details from every angle. The big hint comes at the end with the wind. What does wind threaten most? I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? This riddle aims to confuse you and get you to focus on the things that are missing: the houses, trees, and fish. 3 WHY ARE AEROPLANES USUALLY WHITE? The Aeroplanes might be having different logos and decorations. But the colour of the aeroplane is usually white.Painting the aeroplane white is most practical and economical.
    [Show full text]
  • Conjecture of Twin Primes (Still Unsolved Problem in Number Theory) an Expository Essay
    Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 229 { 252 CONJECTURE OF TWIN PRIMES (STILL UNSOLVED PROBLEM IN NUMBER THEORY) AN EXPOSITORY ESSAY Hayat Rezgui Abstract. The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers) called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900) which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover. Petronas towers (Twin towers) Kuala Lumpur, Malaysia 2010 Mathematics Subject Classification: 11A41; 97Fxx; 11Yxx. Keywords: Twin primes; Brun's constant; Zhang's discovery; Polymath project. ****************************************************************************** http://www.utgjiu.ro/math/sma 230 H. Rezgui Contents 1 Introduction 230 2 History and some interesting deep results 231 2.1 Yitang Zhang's discovery (April 17, 2013)............... 236 2.2 "Polymath project"........................... 236 2.2.1 Computational successes (June 4, July 27, 2013)....... 237 2.2.2 Spectacular progress (November 19, 2013)........... 237 3 Some of largest (titanic & gigantic) known twin primes 238 4 Properties 240 5 First twin primes less than 3002 241 6 Rarefaction of twin prime numbers 244 7 Conclusion 246 1 Introduction The prime numbers's study is the foundation and basic part of the oldest branches of mathematics so called "Arithmetic" which supposes the establishment of theorems.
    [Show full text]
  • Aryabhatiya with English Commentary
    ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11.
    [Show full text]
  • Logo Competition HISTORY and PEDAGOGY of MATHEMATICS
    International Study Group on the Relations Between HISTORY and PEDAGOGY of MATHEMATICS NEWSLETTER An Affiliate of the International Commission on Mathematical Instruction No. 49 March 2002 HPM Advisory Board: Fulvia Furinghetti, Chairperson Dipartimento di Matematica (Università di Genova), via Dodecaneso 35, 16146 Genova, Italy Peter Ransom, Editor ([email protected]), The Mountbatten School and Language College, Romsey, SO51 5SY, UK Jan van Maanen, The Netherlands, (former chair); Florence Fasanelli, USA, (former chair); Ubiratan D’Ambrosio, Brazil, (former chair) occasions for meetings to replace the European Message from our Chairperson Summer University that was not possible to organise. The proceedings of all these conferences will offer a document on how To the members of HPM, research in our field is proceeding. I hope that our Newsletter is reaching all the people involved and/or interested in the subject of • The Newsletter is not enough to make strong HPM and also that it answers your expectations. and fruitful contacts among researchers. We are We have now new regional contacts: thanks to all working to have our own site. I heartily thank of them. Karen Dee Michalowicz who managed to host us in the HPM America web site, which is now I’m looking back to the first issue and I’m again alive. checking which of the promises I wrote in my address have been kept. Things have changed a • I would like to have a logo for our Group; thus bit because I miss the wise presence of John and I I launch among the readers a logo competition. now have new responsibilities in my academic It has to be simple enough for the computer to work, nevertheless I would like to look at the cope.
    [Show full text]
  • Number Theory Boring? Nein!
    Running head: PATTERNS IN NINE 1 Number Theory Boring? Nein! Discerning Patterns in Multiples of Nine Gina Higgins Mathematical Evolutions Jenny McCarthy, Jonathan Phillips Summer Ventures in Science and Mathematics The University of North Carolina at Charlotte PATTERNS IN NINE 2 Abstract This is the process Gina Higgins went through in order to prove that the digital sum of a whole, natural number multiplied by nine would always equal nine. This paper gives a brief history on the number nine and gives a color coded, three-hundred row chart of multiplies of nine as an example and reference. Basic number theory principles were applied with Mathematical Implementation to successfully create a method that confirmed the hypothesis that the digital root of every product of nine equals nine. From this method could evolve into possible future attempts to prove why the digital root anomaly occurred. PATTERNS IN NINE 3 The number nine is the largest digit in a based ten number (decimal) system. In many ancient cultures such as China, India and Egypt, the number nine was a symbol of strength representing royalty, religion or powerful enemies (Mackenzie, 2005). The symbol for the number nine used most commonly today developed from the Hindu-Arabic System written in the third century. Those symbols developed from the Brahmi numerals found as far back as 300 BC. (Ifrah, 1981) Figure 1 Number theory is a branch of mathematics dealing specifically with patterns and sequences found in whole numbers. It was long considered the purest form of mathematics because there was not a practical application until the 20th century when the computer was invented.
    [Show full text]
  • INDEX to ANSWERS Issue Page Number Symmetryplus 60 2
    INDEX TO ANSWERS Issue Page number SYMmetryplus 60 2 SYMmetryplus 61 4 SYMmetryplus 62 5 SYMmetryplus 63 8 SYMmetryplus 64 9 SYMmetryplus 65 10 SYMmetryplus 66 13 SYMmetryplus 67 15 SYMmetryplus 68 17 SYMmetryplus 69 21 SYMmetryplus 70 25 SYMmetryplus 71 29 SYMmetryplus 72 33 SYMmetryplus 73 37 SYMmetryplus 74 44 1 ANSWERS FROM ISSUE 60 SOME TRIANGLE NUMBERS – 2 Many thanks to Andrew Palfreyman who found five, not four solutions! 7 7 7 7 7 1 0 5 3 0 0 4 0 6 9 0 3 9 4 6 3 3 3 3 1 Grid A 6 6 1 3 2 6 2 0 1 6 0 0 Grid B CROSSNUMBER Many thanks again to Andrew Palfreyman who pointed out that 1 Down and 8 Across do not give unique answers so there are four possible solutions. 1 2 1 2 1 2 1 2 1 4 4 8 1 4 4 8 1 4 4 8 1 4 4 8 3 3 3 3 3 9 1 9 8 9 1 9 3 9 1 9 8 9 1 9 4 5 4 5 4 5 4 5 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 6 7 6 7 6 7 6 7 1 0 9 8 1 0 9 8 1 0 9 8 1 0 9 8 8 9 8 9 8 9 8 9 3 6 1 0 3 6 1 0 9 6 1 0 9 6 1 0 10 10 10 10 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 TREASURE HUNTS 12, 13 12 This is a rostral column in St Petersburg, Russia.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • From Vortex Mathematics to Smith Numbers: Demystifying Number Structures and Establishing Sieves Using Digital Root
    SCITECH Volume 15, Issue 3 RESEARCH ORGANISATION Published online: November 21, 2019| Journal of Progressive Research in Mathematics www.scitecresearch.com/journals From Vortex Mathematics to Smith Numbers: Demystifying Number Structures and Establishing Sieves Using Digital Root Iman C Chahine1 and Ahmad Morowah2 1College of Education, University of Massachusetts Lowell, MA 01854, USA 2Retired Mathematics Teacher, Beirut, Lebanon Corresponding author email: [email protected] Abstract: Proficiency in number structures depends on a continuous development and blending of intricate combinations of different types of numbers and its related characteristics. The purpose of this paper is to unpack the mechanisms and underlying notions that elucidate the potential process of number construction and its inherent structures. By employing the concept of digital root, we show how juxtaposed assumptions can play in delineating generalized models of number structures bridging the abstract, the numerical, and the physical worlds. While there are numerous proposed ways of constructing Smith numbers, developing a generalized algorithm could help provide a unified approach to generating number structures with inherent commonalities. In this paper, we devise a sieve for all Smith numbers as well as other related numbers. The sieve works on the principle of digital roots of both Sd(N), the sum of the digits of a number N and that of Sp(N), the sum of the digits of the extended prime divisors of N. Starting with Sp(N) = Sp(p.q.r…), where p,q,r,…, are the prime divisors whose product yields N and whose digital root (n) equals to that of Sd(N) thus Sd(N) = n + 9x; x є N.
    [Show full text]