Sequences of Primes Obtained by the Method of Concatenation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer). -
Lecture 3: Chinese Remainder Theorem 25/07/08 to Further
Department of Mathematics MATHS 714 Number Theory: Lecture 3: Chinese Remainder Theorem 25/07/08 To further reduce the amount of computations in solving congruences it is important to realise that if m = m1m2 ...ms where the mi are pairwise coprime, then a ≡ b (mod m) if and only if a ≡ b (mod mi) for every i, 1 ≤ i ≤ s. This leads to the question of simultaneous solution of a system of congruences. Theorem 1 (Chinese Remainder Theorem). Let m1,m2,...,ms be pairwise coprime integers ≥ 2, and b1, b2,...,bs arbitrary integers. Then, the s congruences x ≡ bi (mod mi) have a simultaneous solution that is unique modulo m = m1m2 ...ms. Proof. Let ni = m/mi; note that (mi, ni) = 1. Every ni has an inversen ¯i mod mi (lecture 2). We show that x0 = P1≤j≤s nj n¯j bj is a solution of our system of s congruences. Since mi divides each nj except for ni, we have x0 = P1≤j≤s njn¯j bj ≡ nin¯ibj (mod mi) ≡ bi (mod mi). Uniqueness: If x is any solution of the system, then x − x0 ≡ 0 (mod mi) for all i. This implies that m|(x − x0) i.e. x ≡ x0 (mod m). Exercise 1. Find all solutions of the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11). Exercise 2. Using the Chinese Remainder Theorem (CRT), solve 3x ≡ 11 (mod 2275). Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and Euclid’s algorithm (EA) with the Chinese Remainder Theorem (CRT). -
Number 73 Is the 37Th Odd Number
73 Seventy-Three LXXIII i ii iii iiiiiiiiii iiiiiiiii iiiiiiii iiiiiii iiiiiiii iiiiiiiii iiiiiiiiii iii ii i Analogous ordinal: seventy-third. The number 73 is the 37th odd number. Note the reversal here. The number 73 is the twenty-first prime number. The number 73 is the fifty-sixth deficient number. The number 73 is in the eighth twin-prime pair 71, 73. This is the last of the twin primes less than 100. No one knows if the list of twin primes ever ends. As a sum of four or fewer squares: 73 = 32 + 82 = 12 + 62 + 62 = 12 + 22 + 22 + 82 = 22 + 22 + 42 + 72 = 42 + 42 + 42 + 52. As a sum of nine or fewer cubes: 73 = 3 13 + 2 23 + 2 33 = 13 + 23 + 43. · · · As a difference of two squares: 73 = 372 362. The number 73 appears in two Pythagorean triples: [48, 55, 73] and [73, 2664, 2665]. Both are primitive, of course. As a sum of three odd primes: 73 = 3 + 3 + 67 = 3 + 11 + 59 = 3 + 17 + 53 = 3 + 23 + 47 = 3 + 29 + 41 = 5 + 7 + 61 = 5 + 31 + 37 = 7 + 7 + 59 = 7 + 13 + 53 = 7 + 19 + 47 = 7 + 23 + 43 = 7 + 29 + 37 = 11 + 19 + 43 = 11 + 31 + 31 = 13 + 13 + 47 = 13 + 17 + 43 = 13 + 19 + 41 = 13 + 23 + 37 = 13 + 29 + 31 = 17 + 19 + 37 = 19 + 23 + 31. The number 73 is the 21st prime number. It’s reversal, 37, is the 12th prime number. Notice that if you strip off the six triangular points from the 73-circle hexagram pictured above, you are left with a hexagon of 37 circles. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
A Clasification of Known Root Prime-Generating
Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS). -
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n. -
Number Theory Course Notes for MA 341, Spring 2018
Number Theory Course notes for MA 341, Spring 2018 Jared Weinstein May 2, 2018 Contents 1 Basic properties of the integers 3 1.1 Definitions: Z and Q .......................3 1.2 The well-ordering principle . .5 1.3 The division algorithm . .5 1.4 Running times . .6 1.5 The Euclidean algorithm . .8 1.6 The extended Euclidean algorithm . 10 1.7 Exercises due February 2. 11 2 The unique factorization theorem 12 2.1 Factorization into primes . 12 2.2 The proof that prime factorization is unique . 13 2.3 Valuations . 13 2.4 The rational root theorem . 15 2.5 Pythagorean triples . 16 2.6 Exercises due February 9 . 17 3 Congruences 17 3.1 Definition and basic properties . 17 3.2 Solving Linear Congruences . 18 3.3 The Chinese Remainder Theorem . 19 3.4 Modular Exponentiation . 20 3.5 Exercises due February 16 . 21 1 4 Units modulo m: Fermat's theorem and Euler's theorem 22 4.1 Units . 22 4.2 Powers modulo m ......................... 23 4.3 Fermat's theorem . 24 4.4 The φ function . 25 4.5 Euler's theorem . 26 4.6 Exercises due February 23 . 27 5 Orders and primitive elements 27 5.1 Basic properties of the function ordm .............. 27 5.2 Primitive roots . 28 5.3 The discrete logarithm . 30 5.4 Existence of primitive roots for a prime modulus . 30 5.5 Exercises due March 2 . 32 6 Some cryptographic applications 33 6.1 The basic problem of cryptography . 33 6.2 Ciphers, keys, and one-time pads . -
Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected]
Transformations Volume 2 Article 5 Issue 2 Winter 2016 12-27-2016 Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected] Denise Gates Janice Haramis Farrah Bell Claude Manigat See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Curriculum and Instruction Commons, Science and Mathematics Education Commons, Special Education and Teaching Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Hui Fang Huang; Gates, Denise; Haramis, Janice; Bell, Farrah; Manigat, Claude; Hierpe, Kristin; and Da Silva, Lourivaldo (2016) "Number Pattern," Transformations: Vol. 2 : Iss. 2 , Article 5. Available at: https://nsuworks.nova.edu/transformations/vol2/iss2/5 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Number Pattern Cover Page Footnote This article is the result of the MAT students' collaborative research work in the Pre-Algebra course. The research was under the direction of their professor, Dr. Hui Fang Su. The ap per was organized by Team Leader Denise Gates. Authors Hui Fang Huang Su, Denise Gates, Janice Haramis, Farrah Bell, Claude Manigat, Kristin Hierpe, and Lourivaldo Da Silva This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol2/iss2/5 Number Patterns Abstract In this manuscript, we study the purpose of number patterns, a brief history of number patterns, and classroom uses for number patterns and magic squares. -
Introduction to Number Theory CS1800 Discrete Math; Notes by Virgil Pavlu; Updated November 5, 2018
Introduction to Number Theory CS1800 Discrete Math; notes by Virgil Pavlu; updated November 5, 2018 1 modulo arithmetic All numbers here are integers. The integer division of a at n > 1 means finding the unique quotient q and remainder r 2 Zn such that a = nq + r where Zn is the set of all possible remainders at n : Zn = f0; 1; 2; 3; :::; n−1g. \mod n" = remainder at division with n for n > 1 (n it has to be at least 2) \a mod n = r" means mathematically all of the following : · r is the remainder of integer division a to n · a = n ∗ q + r for some integer q · a; r have same remainder when divided by n · a − r = nq is a multiple of n · n j a − r, a.k.a n divides a − r EXAMPLES 21 mod 5 = 1, because 21 = 5*4 +1 same as saying 5 j (21 − 1) 24 = 10 = 3 = -39 mod 7 , because 24 = 7*3 +3; 10=7*1+3; 3=7*0 +3; -39=7*(-6)+3. Same as saying 7 j (24 − 10) or 7 j (3 − 10) or 7 j (10 − (−39)) etc LEMMA two numbers a; b have the same remainder mod n if and only if n divides their difference. We can write this in several equivalent ways: · a mod n = b mod n, saying a; b have the same remainder (or modulo) · a = b( mod n) · n j a − b saying n divides a − b · a − b = nk saying a − b is a multiple of n (k is integer but its value doesnt matter) 1 EXAMPLES 21 = 11 (mod 5) = 1 , 5 j (21 − 11) , 21 mod 5 = 11 mod 5 86 mod 10 = 1126 mod 10 , 10 j (86 − 1126) , 86 − 1126 = 10k proof: EXERCISE. -
Conjecture of Twin Primes (Still Unsolved Problem in Number Theory) an Expository Essay
Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 229 { 252 CONJECTURE OF TWIN PRIMES (STILL UNSOLVED PROBLEM IN NUMBER THEORY) AN EXPOSITORY ESSAY Hayat Rezgui Abstract. The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers) called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900) which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover. Petronas towers (Twin towers) Kuala Lumpur, Malaysia 2010 Mathematics Subject Classification: 11A41; 97Fxx; 11Yxx. Keywords: Twin primes; Brun's constant; Zhang's discovery; Polymath project. ****************************************************************************** http://www.utgjiu.ro/math/sma 230 H. Rezgui Contents 1 Introduction 230 2 History and some interesting deep results 231 2.1 Yitang Zhang's discovery (April 17, 2013)............... 236 2.2 "Polymath project"........................... 236 2.2.1 Computational successes (June 4, July 27, 2013)....... 237 2.2.2 Spectacular progress (November 19, 2013)........... 237 3 Some of largest (titanic & gigantic) known twin primes 238 4 Properties 240 5 First twin primes less than 3002 241 6 Rarefaction of twin prime numbers 244 7 Conclusion 246 1 Introduction The prime numbers's study is the foundation and basic part of the oldest branches of mathematics so called "Arithmetic" which supposes the establishment of theorems. -
On Sets of Coprime Integers in Intervals Paul Erdös, András Sárközy
On sets of coprime integers in intervals Paul Erdös, András Sárközy To cite this version: Paul Erdös, András Sárközy. On sets of coprime integers in intervals. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1993, 16, pp.1 - 20. hal-01108688 HAL Id: hal-01108688 https://hal.archives-ouvertes.fr/hal-01108688 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Hardy-Ramanujan Joumal Vol.l6 (1993) 1-20 On sets of coprime integers in intervals P. Erdos and Sarkozy 1 1. Throughout this paper we use the following notations : ~ denotes the set of the integers. N denotes the set of the positive integers. For A C N,m E N,u E ~we write .A(m,u) ={f.£; a E A, a= u(mod m)}. IP(n) denotes Euler';; function. Pk dznotcs the kth prime: P1 = 2,p2 = 3,· ··and k we put Pk = IJP•· If k E N and k ~ 2, then .PA:(A) denotes the number of i=l the k-tuples (at,···, ak) such that at E A,·· · , ak E A,ai < a2 < · · · < ak and (at,aj = 1) for 1::; i < j::; k. -
Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].