Number Theory Course Notes for MA 341, Spring 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer). -
Lecture 3: Chinese Remainder Theorem 25/07/08 to Further
Department of Mathematics MATHS 714 Number Theory: Lecture 3: Chinese Remainder Theorem 25/07/08 To further reduce the amount of computations in solving congruences it is important to realise that if m = m1m2 ...ms where the mi are pairwise coprime, then a ≡ b (mod m) if and only if a ≡ b (mod mi) for every i, 1 ≤ i ≤ s. This leads to the question of simultaneous solution of a system of congruences. Theorem 1 (Chinese Remainder Theorem). Let m1,m2,...,ms be pairwise coprime integers ≥ 2, and b1, b2,...,bs arbitrary integers. Then, the s congruences x ≡ bi (mod mi) have a simultaneous solution that is unique modulo m = m1m2 ...ms. Proof. Let ni = m/mi; note that (mi, ni) = 1. Every ni has an inversen ¯i mod mi (lecture 2). We show that x0 = P1≤j≤s nj n¯j bj is a solution of our system of s congruences. Since mi divides each nj except for ni, we have x0 = P1≤j≤s njn¯j bj ≡ nin¯ibj (mod mi) ≡ bi (mod mi). Uniqueness: If x is any solution of the system, then x − x0 ≡ 0 (mod mi) for all i. This implies that m|(x − x0) i.e. x ≡ x0 (mod m). Exercise 1. Find all solutions of the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11). Exercise 2. Using the Chinese Remainder Theorem (CRT), solve 3x ≡ 11 (mod 2275). Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and Euclid’s algorithm (EA) with the Chinese Remainder Theorem (CRT). -
Gaussian Prime Labeling of Super Subdivision of Star Graphs
of Math al em rn a u ti o c J s l A a Int. J. Math. And Appl., 8(4)(2020), 35{39 n n d o i i t t a s n A ISSN: 2347-1557 r e p t p n l I i c • Available Online: http://ijmaa.in/ a t 7 i o 5 n 5 • s 1 - 7 4 I 3 S 2 S : N International Journal of Mathematics And its Applications Gaussian Prime Labeling of Super Subdivision of Star Graphs T. J. Rajesh Kumar1,∗ and Antony Sanoj Jerome2 1 Department of Mathematics, T.K.M College of Engineering, Kollam, Kerala, India. 2 Research Scholar, University College, Thiruvananthapuram, Kerala, India. Abstract: Gaussian integers are the complex numbers of the form a + bi where a; b 2 Z and i2 = −1 and it is denoted by Z[i]. A Gaussian prime labeling on G is a bijection from the vertices of G to [ n], the set of the first n Gaussian integers in the spiral ordering such that if uv 2 E(G), then (u) and (v) are relatively prime. Using the order on the Gaussian integers, we discuss the Gaussian prime labeling of super subdivision of star graphs. MSC: 05C78. Keywords: Gaussian Integers, Gaussian Prime Labeling, Super Subdivision of Graphs. © JS Publication. 1. Introduction The graphs considered in this paper are finite and simple. The terms which are not defined here can be referred from Gallian [1] and West [2]. A labeling or valuation of a graph G is an assignment f of labels to the vertices of G that induces for each edge xy, a label depending upon the vertex labels f(x) and f(y). -
Sequences of Primes Obtained by the Method of Concatenation
SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd -
Introduction to Number Theory CS1800 Discrete Math; Notes by Virgil Pavlu; Updated November 5, 2018
Introduction to Number Theory CS1800 Discrete Math; notes by Virgil Pavlu; updated November 5, 2018 1 modulo arithmetic All numbers here are integers. The integer division of a at n > 1 means finding the unique quotient q and remainder r 2 Zn such that a = nq + r where Zn is the set of all possible remainders at n : Zn = f0; 1; 2; 3; :::; n−1g. \mod n" = remainder at division with n for n > 1 (n it has to be at least 2) \a mod n = r" means mathematically all of the following : · r is the remainder of integer division a to n · a = n ∗ q + r for some integer q · a; r have same remainder when divided by n · a − r = nq is a multiple of n · n j a − r, a.k.a n divides a − r EXAMPLES 21 mod 5 = 1, because 21 = 5*4 +1 same as saying 5 j (21 − 1) 24 = 10 = 3 = -39 mod 7 , because 24 = 7*3 +3; 10=7*1+3; 3=7*0 +3; -39=7*(-6)+3. Same as saying 7 j (24 − 10) or 7 j (3 − 10) or 7 j (10 − (−39)) etc LEMMA two numbers a; b have the same remainder mod n if and only if n divides their difference. We can write this in several equivalent ways: · a mod n = b mod n, saying a; b have the same remainder (or modulo) · a = b( mod n) · n j a − b saying n divides a − b · a − b = nk saying a − b is a multiple of n (k is integer but its value doesnt matter) 1 EXAMPLES 21 = 11 (mod 5) = 1 , 5 j (21 − 11) , 21 mod 5 = 11 mod 5 86 mod 10 = 1126 mod 10 , 10 j (86 − 1126) , 86 − 1126 = 10k proof: EXERCISE. -
On Sets of Coprime Integers in Intervals Paul Erdös, András Sárközy
On sets of coprime integers in intervals Paul Erdös, András Sárközy To cite this version: Paul Erdös, András Sárközy. On sets of coprime integers in intervals. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1993, 16, pp.1 - 20. hal-01108688 HAL Id: hal-01108688 https://hal.archives-ouvertes.fr/hal-01108688 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Hardy-Ramanujan Joumal Vol.l6 (1993) 1-20 On sets of coprime integers in intervals P. Erdos and Sarkozy 1 1. Throughout this paper we use the following notations : ~ denotes the set of the integers. N denotes the set of the positive integers. For A C N,m E N,u E ~we write .A(m,u) ={f.£; a E A, a= u(mod m)}. IP(n) denotes Euler';; function. Pk dznotcs the kth prime: P1 = 2,p2 = 3,· ··and k we put Pk = IJP•· If k E N and k ~ 2, then .PA:(A) denotes the number of i=l the k-tuples (at,···, ak) such that at E A,·· · , ak E A,ai < a2 < · · · < ak and (at,aj = 1) for 1::; i < j::; k. -
THE GAUSSIAN INTEGERS Since the Work of Gauss, Number Theorists
THE GAUSSIAN INTEGERS KEITH CONRAD Since the work of Gauss, number theorists have been interested in analogues of Z where concepts from arithmetic can also be developed. The example we will look at in this handout is the Gaussian integers: Z[i] = fa + bi : a; b 2 Zg: Excluding the last two sections of the handout, the topics we will study are extensions of common properties of the integers. Here is what we will cover in each section: (1) the norm on Z[i] (2) divisibility in Z[i] (3) the division theorem in Z[i] (4) the Euclidean algorithm Z[i] (5) Bezout's theorem in Z[i] (6) unique factorization in Z[i] (7) modular arithmetic in Z[i] (8) applications of Z[i] to the arithmetic of Z (9) primes in Z[i] 1. The Norm In Z, size is measured by the absolute value. In Z[i], we use the norm. Definition 1.1. For α = a + bi 2 Z[i], its norm is the product N(α) = αα = (a + bi)(a − bi) = a2 + b2: For example, N(2 + 7i) = 22 + 72 = 53. For m 2 Z, N(m) = m2. In particular, N(1) = 1. Thinking about a + bi as a complex number, its norm is the square of its usual absolute value: p ja + bij = a2 + b2; N(a + bi) = a2 + b2 = ja + bij2: The reason we prefer to deal with norms on Z[i] instead of absolute values on Z[i] is that norms are integers (rather than square roots), and the divisibility properties of norms in Z will provide important information about divisibility properties in Z[i]. -
Intersections of Deleted Digits Cantor Sets with Gaussian Integer Bases
INTERSECTIONS OF DELETED DIGITS CANTOR SETS WITH GAUSSIAN INTEGER BASES Athesissubmittedinpartialfulfillment of the requirements for the degree of Master of Science By VINCENT T. SHAW B.S., Wright State University, 2017 2020 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES May 1, 2020 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Vincent T. Shaw ENTITLED Intersections of Deleted Digits Cantor Sets with Gaussian Integer Bases BE ACCEPTED IN PARTIAL FULFILLMENT OF THE RE- QUIREMENTS FOR THE DEGREE OF Master of Science. ____________________ Steen Pedersen, Ph.D. Thesis Director ____________________ Ayse Sahin, Ph.D. Department Chair Committee on Final Examination ____________________ Steen Pedersen, Ph.D. ____________________ Qingbo Huang, Ph.D. ____________________ Anthony Evans, Ph.D. ____________________ Barry Milligan, Ph.D. Interim Dean, School of Graduate Studies Abstract Shaw, Vincent T. M.S., Department of Mathematics and Statistics, Wright State University, 2020. Intersections of Deleted Digits Cantor Sets with Gaussian Integer Bases. In this paper, the intersections of deleted digits Cantor sets and their fractal dimensions were analyzed. Previously, it had been shown that for any dimension between 0 and the dimension of the given deleted digits Cantor set of the real number line, a translate of the set could be constructed such that the intersection of the set with the translate would have this dimension. Here, we consider deleted digits Cantor sets of the complex plane with Gaussian integer bases and show that the result still holds. iii Contents 1 Introduction 1 1.1 WhystudyintersectionsofCantorsets? . 1 1.2 Prior work on this problem . 1 2 Negative Base Representations 5 2.1 IntegerRepresentations ............................. -
Gaussian Integers
Gaussian integers 1 Units in Z[i] An element x = a + bi 2 Z[i]; a; b 2 Z is a unit if there exists y = c + di 2 Z[i] such that xy = 1: This implies 1 = jxj2jyj2 = (a2 + b2)(c2 + d2) But a2; b2; c2; d2 are non-negative integers, so we must have 1 = a2 + b2 = c2 + d2: This can happen only if a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1. In the first case we obtain a = ±1; b = 0; thus x = ±1: In the second case, we have a = 0; b = ±1; this yields x = ±i: Since all these four elements are indeed invertible we have proved that U(Z[i]) = {±1; ±ig: 2 Primes in Z[i] An element x 2 Z[i] is prime if it generates a prime ideal, or equivalently, if whenever we can write it as a product x = yz of elements y; z 2 Z[i]; one of them has to be a unit, i.e. y 2 U(Z[i]) or z 2 U(Z[i]): 2.1 Rational primes p in Z[i] If we want to identify which elements of Z[i] are prime, it is natural to start looking at primes p 2 Z and ask if they remain prime when we view them as elements of Z[i]: If p = xy with x = a + bi; y = c + di 2 Z[i] then p2 = jxj2jyj2 = (a2 + b2)(c2 + d2): Like before, a2 + b2 and c2 + d2 are non-negative integers. Since p is prime, the integers that divide p2 are 1; p; p2: Thus there are three possibilities for jxj2 and jyj2 : 1. -
Fermat Test with Gaussian Base and Gaussian Pseudoprimes
Czechoslovak Mathematical Journal, 65 (140) (2015), 969–982 FERMAT TEST WITH GAUSSIAN BASE AND GAUSSIAN PSEUDOPRIMES José María Grau, Gijón, Antonio M. Oller-Marcén, Zaragoza, Manuel Rodríguez, Lugo, Daniel Sadornil, Santander (Received September 22, 2014) Abstract. The structure of the group (Z/nZ)⋆ and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Eu- ler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider 2 2 the underlying group Gn := {a + bi ∈ Z[i]/nZ[i]: a + b ≡ 1 (mod n)}. In particular, we characterize Gaussian Carmichael numbers via a Korselt’s criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers n ≡ 3 (mod 4). There are also 18 no known composite numbers less than 10 in this family that are both pseudoprime to base 1 + 2i and 2-pseudoprime. Keywords: Gaussian integer; Fermat test; pseudoprime MSC 2010 : 11A25, 11A51, 11D45 1. Introduction Most of the classical primality tests are based on Fermat’s little theorem: let p be a prime number and let a be an integer such that p ∤ a, then ap−1 ≡ 1 (mod p). This theorem offers a possible way to detect non-primes: if for a certain a coprime to n, an−1 6≡ 1 (mod n), then n is not prime. -
Introduction to Abstract Algebra “Rings First”
Introduction to Abstract Algebra \Rings First" Bruno Benedetti University of Miami January 2020 Abstract The main purpose of these notes is to understand what Z; Q; R; C are, as well as their polynomial rings. Contents 0 Preliminaries 4 0.1 Injective and Surjective Functions..........................4 0.2 Natural numbers, induction, and Euclid's theorem.................6 0.3 The Euclidean Algorithm and Diophantine Equations............... 12 0.4 From Z and Q to R: The need for geometry..................... 18 0.5 Modular Arithmetics and Divisibility Criteria.................... 23 0.6 *Fermat's little theorem and decimal representation................ 28 0.7 Exercises........................................ 31 1 C-Rings, Fields and Domains 33 1.1 Invertible elements and Fields............................. 34 1.2 Zerodivisors and Domains............................... 36 1.3 Nilpotent elements and reduced C-rings....................... 39 1.4 *Gaussian Integers................................... 39 1.5 Exercises........................................ 41 2 Polynomials 43 2.1 Degree of a polynomial................................. 44 2.2 Euclidean division................................... 46 2.3 Complex conjugation.................................. 50 2.4 Symmetric Polynomials................................ 52 2.5 Exercises........................................ 56 3 Subrings, Homomorphisms, Ideals 57 3.1 Subrings......................................... 57 3.2 Homomorphisms.................................... 58 3.3 Ideals......................................... -
Number-Theoretic Transforms Using Cyclotomic Polynomials
MATHEMATICS OF COMPUTATION VOLUME 52, NUMBER 185 JANUARY 1989, PAGES 189-200 Parameter Determination for Complex Number-Theoretic Transforms Using Cyclotomic Polynomials By R. Creutzburg and M. Tasche Abstract. Some new results for finding all convenient moduli m for a complex number- theoretic transform with given transform length n and given primitive rath root of unity modulo m are presented. The main result is based on the prime factorization for values of cyclotomic polynomials in the ring of Gaussian integers. 1. Introduction. With the rapid advances in large-scale integration, a growing number of digital signal processing applications becomes attractive. The number- theoretic transform (NTT) was introduced as a generalization of the discrete Fourier transform (DFT) over residue class rings of integers in order to perform fast cyclic convolutions without roundoff errors [7, pp. 158-167], [10, pp. 211-216], [3]. The main drawback of the NTT is the rigid relationship between obtainable transform length and possible computer word length. In a recent paper [4], the authors have discussed this important problem of parameter determination for NTT's in the ring of integers by studying cyclotomic polynomials. The advantage of the later introduced (see [7, pp. 210-216], [9], [10, pp. 236-239], [5]) complex number-theoretic transforms (CNT) over the corresponding rational transforms is that the transform length is larger for the same modulus. In this note, we consider the problem of parameter determination for CNT, and we extend the results of [4] to the ring of Gaussian integers. 2. Primitive Roots of Unity Modulo m. By Z and I[i] we denote the ring of integers and the ring of Gaussian integers, respectively.