Vivado Design Suite User Guide: Logic Simulation (UG900)

Total Page:16

File Type:pdf, Size:1020Kb

Vivado Design Suite User Guide: Logic Simulation (UG900) Vivado Design Suite User Guide Logic Simulation UG900 (v2018.2) June 6, 2018 Revision History The following table shows the revision history for this document. Section Revision Summary 06/06/2018 Version 2018.2 Library Mapping File (xsim.ini) Added a note supporting two init files (xsim.ini and xsim_legacy.ini) from current release. export_simulation • Updated information in export_simulation Options table. • Added Riviera Pro and Active HDL for supported simulators • Updated the argument for -lib_map_path 04/04/2018 Version 2018.1 General Updates • Updated File and Tools menu commands • Added Cadence Xcelium Simulator support Information Subprogram Call-Stack Support Added Subprogram Call-Stack support feature Table D-3: Data Types Allowed on the Added SV open array support information for DPI C-SystemVerilog Boundary Table 7-2: xelab, xvhd, and xvlog Command Added Standalone support for Vivado Simulator in the -a Options command description as a note. Logic Simulation Send Feedback 2 UG900 (v2018.2) June 6, 2018 www.xilinx.com Table of Contents Revision History . 2 Chapter 1: Logic Simulation Overview Introduction . 7 Supported Simulators . 7 Simulation Flow . 8 Language and Encryption Support . 11 Chapter 2: Preparing for Simulation Overview . 12 Using Test Benches and Stimulus Files . 12 Pointing to the Simulator Install Location . 13 Compiling Simulation Libraries . 15 Using Xilinx Simulation Libraries. 19 Using Simulation Settings . 29 Adding or Creating Simulation Source Files . 34 Generating a Netlist. 36 Chapter 3: Simulating with Third-Party Simulators Introduction . 39 Running Simulation Using Third Party Simulators with Vivado IDE . 40 Dumping SAIF for Power Analysis. 43 Dumping VCD for Power Analysis. 44 Simulating IP. 46 Using a Custom DO File During an Integrated Simulation Run. 46 Running Third-Party Simulators in Batch Mode . 47 Chapter 4: Simulating with Vivado Simulator Introduction . 49 Running the Vivado Simulator . 49 Running Functional and Timing Simulation . 67 Saving Simulation Results . 71 Distinguishing Between Multiple Simulation Runs . 71 Logic Simulation Send Feedback 3 UG900 (v2018.2) June 6, 2018 www.xilinx.com Closing a Simulation. 71 Adding a Simulation Start-up Script File. 72 Viewing Simulation Messages. 73 Using the launch_simulation Command . 75 Re-running the Simulation After Design Changes (relaunch) . 76 Using the Saved Simulator User Interface Settings . 77 Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator Introduction . 79 Using Wave Configurations and Windows. 79 Opening a Previously Saved Simulation Run . 81 Understanding HDL Objects in Waveform Configurations . 82 Customizing the Waveform. 85 Controlling the Waveform Display . 92 Organizing Waveforms . 96 Analyzing Waveforms . 98 Chapter 6: Debugging a Design with Vivado Simulator Introduction . 103 Debugging at the Source Level . 103 Forcing Objects to Specific Values . 108 Power Analysis Using Vivado Simulator. 116 Using the report_drivers Tcl Command . 118 Using the Value Change Dump Feature . 119 Using the log_wave Tcl Command . 120 Cross Probing Signals in the Object, Wave, and Text Editor Windows . 121 Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator Introduction . 126 Exporting Simulation Files and Scripts . 126 Running the Vivado Simulator in Batch Mode. 132 Elaborating and Generating a Design Snapshot, xelab . 135 Simulating the Design Snapshot, xsim . 146 Example of Running Vivado Simulator in Standalone Mode . 148 Project File (.prj) Syntax . 149 Predefined Macros. 150 Library Mapping File (xsim.ini) . 150 Running Simulation Modes . 151 Using Tcl Commands and Scripts . 154 export_simulation . 155 Logic Simulation Send Feedback 4 UG900 (v2018.2) June 6, 2018 www.xilinx.com export_ip_user_files . ..
Recommended publications
  • Prostep Ivip CPO Statement Template
    CPO Statement of Mentor Graphics For Questa SIM Date: 17 June, 2015 CPO Statement of Mentor Graphics Following the prerequisites of ProSTEP iViP’s Code of PLM Openness (CPO) IT vendors shall determine and provide a list of their relevant products and the degree of fulfillment as a “CPO Statement” (cf. CPO Chapter 2.8). This CPO Statement refers to: Product Name Questa SIM Product Version Version 10 Contact Ellie Burns [email protected] This CPO Statement was created and published by Mentor Graphics in form of a self-assessment with regard to the CPO. Publication Date of this CPO Statement: 17 June 2015 Content 1 Executive Summary ______________________________________________________________________________ 2 2 Details of Self-Assessment ________________________________________________________________________ 3 2.1 CPO Chapter 2.1: Interoperability ________________________________________________________________ 3 2.2 CPO Chapter 2.2: Infrastructure _________________________________________________________________ 4 2.3 CPO Chapter 2.5: Standards ____________________________________________________________________ 4 2.4 CPO Chapter 2.6: Architecture __________________________________________________________________ 5 2.5 CPO Chapter 2.7: Partnership ___________________________________________________________________ 6 2.5.1 Data Generated by Users ___________________________________________________________________ 6 2.5.2 Partnership Models _______________________________________________________________________ 6 2.5.3 Support of
    [Show full text]
  • Systemverilog
    SystemVerilog ● Industry's first unified HDVL (Hw Description and Verification language (IEEE 1800) ● Major extension of Verilog language (IEEE 1364) ● Targeted primarily at the chip implementation and verification flow ● Improve productivity in the design of large gate-count, IP- based, bus-intensive chips Sources and references 1. Accellera IEEE SystemVerilog page http://www.systemverilog.com/home.html 2. “Using SystemVerilog for FPGA design. A tutorial based on a simple bus system”, Doulos http://www.doulos.com/knowhow/sysverilog/FPGA/ 3. “SystemVerilog for Design groups”, Slides from Doulos training course 4. Various tutorials on SystemVerilog on Doulos website 5. “SystemVerilog for VHDL Users”, Tom Fitzpatrick, Synopsys Principal Technical Specialist, Date04 http://www.systemverilog.com/techpapers/date04_systemverilog.pdf 6. “SystemVerilog, a design and synthesis perspective”, K. Pieper, Synopsys R&D Manager, HDL Compilers 7. Wikipedia Extensions to Verilog ● Improvements for advanced design requirements – Data types – Higher abstraction (user defined types, struct, unions) – Interfaces ● Properties and assertions built in the language – Assertion Based Verification, Design for Verification ● New features for verification – Models and testbenches using object-oriented techniques (class) – Constrained random test generation – Transaction level modeling ● Direct Programming Interface with C/C++/SystemC – Link to system level simulations Data types: logic module counter (input logic clk, ● Nets and Variables reset, ● enable, Net type,
    [Show full text]
  • Development of Systemc Modules from HDL for System-On-Chip Applications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Development of SystemC Modules from HDL for System-on-Chip Applications Siddhartha Devalapalli University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Devalapalli, Siddhartha, "Development of SystemC Modules from HDL for System-on-Chip Applications. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2119 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. Dr. Donald W. Bouldin, Major Professor We have read this thesis and recommend its acceptance: Dr. Gregory D. Peterson, Dr. Chandra Tan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Siddhartha Devalapalli entitled "Development of SystemC Modules from HDL for System-on-Chip Applications".
    [Show full text]
  • Lattice Synthesis Engine User Guide and Reference Manual
    Lattice Synthesis Engine for Diamond User Guide April, 2019 Copyright Copyright © 2019 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation (“Lattice”). Trademarks All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made.
    [Show full text]
  • Powerplay Power Analysis 8 2013.11.04
    PowerPlay Power Analysis 8 2013.11.04 QII53013 Subscribe Send Feedback The PowerPlay Power Analysis tools allow you to estimate device power consumption accurately. As designs grow larger and process technology continues to shrink, power becomes an increasingly important design consideration. When designing a PCB, you must estimate the power consumption of a device accurately to develop an appropriate power budget, and to design the power supplies, voltage regulators, heat sink, and cooling system. The following figure shows the PowerPlay Power Analysis tools ability to estimate power consumption from early design concept through design implementation. Figure 8-1: PowerPlay Power Analysis From Design Concept Through Design Implementation PowerPlay Early Power Estimator Quartus II PowerPlay Power Analyzer Higher Placement and Simulation Routing Results Results Accuracy Quartus II Design Profile User Input Estimation Design Concept Design Implementation Lower PowerPlay Power Analysis Input For the majority of the designs, the PowerPlay Power Analyzer and the PowerPlay EPE spreadsheet have the following accuracy after the power models are final: • PowerPlay Power Analyzer—±20% from silicon, assuming that the PowerPlay Power Analyzer uses the Value Change Dump File (.vcd) generated toggle rates. • PowerPlay EPE spreadsheet— ±20% from the PowerPlay Power Analyzer results using .vcd generated toggle rates. 90% of EPE designs (using .vcd generated toggle rates exported from PPPA) are within ±30% silicon. The toggle rates are derived using the PowerPlay Power Analyzer with a .vcd file generated from a gate level simulation representative of the system operation. © 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S.
    [Show full text]
  • System-On-Chip Design with Arm® Cortex®-M Processors
    System-on-Chip Design with Arm® Cortex®-M Processors Reference Book JOSEPH YIU System-on-Chip Design with Arm® Cortex®-M Processors System-on-Chip Design with Arm® Cortex®-M Processors Reference Book JOSEPH YIU Arm Education Media is an imprint of Arm Limited, 110 Fulbourn Road, Cambridge, CBI 9NJ, UK Copyright © 2019 Arm Limited (or its affiliates). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any other information storage and retrieval system, without permission in writing from the publisher, except under the following conditions: Permissions You may download this book in PDF format from the Arm.com website for personal, non- commercial use only. You may reprint or republish portions of the text for non-commercial, educational or research purposes but only if there is an attribution to Arm Education. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods and professional practices may become necessary. Readers must always rely on their own experience and knowledge in evaluating and using any information, methods, project work, or experiments described herein. In using such information or methods, they should be mindful of their safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent permitted by law, the publisher and the authors, contributors, and editors shall not have any responsibility or liability for any losses, liabilities, claims, damages, costs or expenses resulting from or suffered in connection with the use of the information and materials set out in this textbook.
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • VHDL Modelling Guidelines Simulation and Documentation Aspects
    Second draft, 23 February 1997 CENELEC TC217/WG2 report 2.14 English version VHDL Modelling Guidelines Simulation and Documentation Aspects This CENELEC Report is under preparation and review by the Technical Committee CENELEC TC 217 Working Group 2. CENELEC members are the national electrotechnical committees of Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. CENELEC European Committee for Electrotechnical Standardisation Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B-1050 Brussels CENELEC TC217/WG2 report 2.142 Second draft, 23 February 1997 3DJH LQWHQWLRQDOO\ OHIW EODQN Second draft, 23 February 19973 CENELEC TC217/WG2 report 2.14 )25(:25' 7KLV 7HFKQLFDO 5HSRUW LV WKH ILUVW GUDIW RI WKH &(1(/(& 7&:* UHSRUW 7KH UHSRUW LV GHULYHG IURP WKH (XURSHDQ 6SDFH $JHQF\ V (6$©V 9+'/ 0RGHOOLQJ *XLGHOLQHV UHIHUHQFH $6,& LVVXH GDWHG 6HSWHPEHU 7KLV GUDIW KDV EHHQ SUHSDUHG WDNLQJ LQWR DFFRXQW FRPPHQWV IURP &(1(/(& :* PHPEHUV SUHVHQWHG RQ WKH GHGLFDWHG HPDLO UHIOHFWRU 7KH DXWKRU ZRXOG OLNH WR WKDQN DOO FRQWULEXWRUV IRU WKHLU YDOXDEOH LQSXW 7KH (6$ 9+'/ 0RGHOOLQJ *XLGHOLQHV KDYH EHHQ XVHG LQ (6$ GHYHORSPHQW DQG VWXG\ FRQWUDFWV WR HQVXUH KLJKTXDOLW\ PDLQWDLQDEOH 9+'/ PRGHOV 7KH\ KDYH EHHQ SUHSDUHG E\ 3HWHU 6LQDQGHU ZLWK VXSSRUW IURP 6DQGL +DELQF ERWK DW WKH (6$(67(& 0LFURHOHFWURQLFV DQG 7HFKQRORJ\ 6HFWLRQ :60 32 %R[ $* 1RRUGZLMN
    [Show full text]
  • 3. Verilog Hardware Description Language
    3. VERILOG HARDWARE DESCRIPTION LANGUAGE The previous chapter describes how a designer may manually use ASM charts (to de- scribe behavior) and block diagrams (to describe structure) in top-down hardware de- sign. The previous chapter also describes how a designer may think hierarchically, where one module’s internal structure is defined in terms of the instantiation of other modules. This chapter explains how a designer can express all of these ideas in a spe- cial hardware description language known as Verilog. It also explains how Verilog can test whether the design meets certain specifications. 3.1 Simulation versus synthesis Although the techniques given in chapter 2 work wonderfully to design small machines by hand, for larger designs it is desirable to automate much of this process. To automate hardware design requires a Hardware Description Language (HDL), a different nota- tion than what we used in chapter 2 which is suitable for processing on a general- purpose computer. There are two major kinds of HDL processing that can occur: simu- lation and synthesis. Simulation is the interpretation of the HDL statements for the purpose of producing human readable output, such as a timing diagram, that predicts approximately how the hardware will behave before it is actually fabricated. As such, HDL simulation is quite similar to running a program in a conventional high-level language, such as Java Script, LISP or BASIC, that is interpreted. Simulation is useful to a designer because it allows detection of functional errors in a design without having to fabricate the actual hard- ware. When a designer catches an error with simulation, the error can be corrected with a few keystrokes.
    [Show full text]
  • Version Control Friendly Project Management System for FPGA Designs
    Copyright 2016 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE (Proc. SPIE Vol. 10031, 1003146, DOI: http://dx.doi.org/10.1117/12.2247944 ) and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for com- mercial purposes, or modification of the content of the paper are prohibited. 1 Version control friendly project management system for FPGA designs Wojciech M. Zabołotnya aInstitute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warszawa, Poland ABSTRACT In complex FPGA designs, usage of version control system is a necessity. It is especially important in the case of designs developed by many developers or even by many teams. The standard development mode, however, offered by most FPGA vendors is the GUI based project mode. It is very convenient for a single developer, who can easily experiment with project settings, browse and modify the sources hierarchy, compile and test the design. Unfortunately, the project configuration is stored in files which are not suited for use with Version Control System (VCS). Another important problem in big FPGA designs is reuse of IP cores. Even though there are standard solutions like IEEE 1685-2014, they suffer from some limitations particularly significant for complex systems (e.g. only simple types are allowed for IP-core ports, it is not possible to use parametrized instances of IP-cores).
    [Show full text]
  • Waveform Editor
    1. Quartus II Simulator QII53017-9.1.0 This chapter describes how to perform different types of simulations with the Quartus II simulator. Introduction With today’s FPGAs becoming faster and more complex, designers face challenges in validating their designs. Simulation verifies the correctness of the design, reducing board testing and debugging time. The Altera® Quartus® II simulator is included in the Quartus II software to assist designers with design verification. The Quartus II simulator has a comprehensive set of features that are covered in the following sections: ■ “Simulation Flow” on page 1–2 ■ “Waveform Editor” on page 1–5 ■ “Simulator Settings” on page 1–13 ■ “Simulation Report” on page 1–16 ■ “Debugging with the Quartus II Simulator” on page 1–19 ■ “Scripting Support” on page 1–21 The Quartus II simulator supports the following device families: ■ ACEX® 1K ■ APEX™ 20KC, APEX 20KE, APEX II ■ Arria® GX ■ Cyclone® III, Cyclone II, Cyclone ■ FLEX® 10K, FLEX 10KA, FLEX 10KE, FLEX 6000 ■ HardCopy® II, HardCopy ■ MAX® II, MAX 3000A, MAX 7000AE, MAX 7000B, MAX 7000S ■ Stratix® III, Stratix II, Stratix, Stratix GX, Stratix II GX 1 The Quartus II simulator does not support newer devices introduced after Stratix III and Quartus II software version 8.1 and onwards. Use the ModelSim-Altera Edition to run simulations on designs targeting device introductions after Stratix III. For more information about the ModelSim-Altera Edition simulator, refer to the Mentor Graphics ModelSim Support chapter in volume 3 of the Quartus II Handbook. In the Quartus II software version 10.0 and onwards, the Quartus II simulator and Waveform Editor is removed.
    [Show full text]
  • VHDL Verification of FPGA Based ESF-CCS for Nuclear Power Plant I&C
    VHDL Verification of FPGA based ESF-CCS for Nuclear Power Plant I&C System Restu MAERANI1, and Jae Cheon JUNG2 1. Department of NPP Engineering, KINGS, Ulsan, 45014, Indonesia ([email protected]) 2. Department of NPP Engineering, KINGS, Ulsan, 45014, Republic of Korea ([email protected]) Abstract: Verification becomes the focus of activities during the integration phase of design life cycle in the development of the system. Verification methods that will not take much cost and time should be properly selected, accordance with the Measurement of Effectiveness (MOEs) need. Verification is one phase that must be done after completing the implementation process. Since Instrumentation & Control (I&C) system has a role as a very crucial to the control protection system in Nuclear Power Plant (NPP), then software verification is very essential and shall to be achieved for safety critical issue in system level. According to IEEE 1076-2008 standard, VHDL is a language that is easy to read by machines and humans; and make it easier for process development, verification, synthesis and testing for hardware reliability in the design. Because this design uses VHDL code for Field Programmable Gate Array (FPGA) based Engineered Safety features – Component Control System (ESF-CCS) and by referring to the NUREG/CR-7006 during VHDL verification on behavioral simulation process, it should be equivalent with the post layout simulation. Furthermore, Vivado will be used as the VHDL verifier, where the VHDL code itself is created, in order to simplify the process of verification with this design life cycle phase on re-engineering process.
    [Show full text]