Review and Assessment of Reusable Booster System for USAF Space Command
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Consideration on Liquid Hydrogen
Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
Nasa's Commercial Crew Development
NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................ -
Increasing Launch Rate and Payload Capabilities
Aerial Launch Vehicles: Increasing Launch Rate and Payload Capabilities Yves Tscheuschner1 and Alec B. Devereaux2 University of Colorado, Boulder, Colorado Two of man's greatest achievements have been the first flight at Kitty Hawk and pushing into the final frontier that is space. Air launch systems aim to combine these great achievements into a revolutionary way to deliver satellites, cargo and eventually people into space. Launching from an aircraft has many advantages, including the ability to launch at any inclination and from above bad weather, which could delay ground launches. While many concepts for launching rockets from an airplane have been developed, very few have made it past the drawing board. Only the Pegasus and, to a lesser extent, SpaceShipOne have truly shown the feasibility of such a system. However, a recent push for rapid, small payload to orbit launches by the military and a general need for cheaper, heavy lift options are leading to an increasing interest in air launch methods. In order for the efficiency and flexibility of the system to be realized, however, additional funding and research are necessary. Nomenclature ALASA = airborne launch assist space access ALS = air launch system DARPA = defense advanced research project agency LEO = low Earth orbit LOX = liquid oxygen RP-1 = rocket propellant 1 MAKS = Russian air launch system MECO = main engine cutoff SS1 = space ship one SS2 = space ship two I. Introduction W hat typically comes to mind when considering launching people or satellites to space are the towering rocket poised on the launch pad. These images are engraved in the minds of both the public and scientists alike. -
Round Trip to Orbit: Human Spaceflight Alternatives
Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space. -
Re-Usable Launch and Payload Delivery System MDDP 2012/3
Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 Re-usable Launch and Payload Delivery System MDDP Group 2 James Dobberson Robert Taylor Matthew Chapman Timothy West Mukudzei Muchengeti William Wou Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 1. Contents 1. Contents ..................................................................................................................................... i 2. Executive Summary .................................................................................................................. ii 3. Introduction .............................................................................................................................. 1 4. Down Selection and Integration Methodology ......................................................................... 2 5. Presentation of System Concept and Operations ...................................................................... 5 6. System Investment Plan ......................................................................................................... 20 7. Numerical Analysis and Statement of Feasibility .................................................................. 23 8. Conclusions and Future Work ................................................................................................ 29 9. Launch Philosophy ................................................................................................................. 31 10. Propulsion .............................................................................................................................. -
Stage Separation Aerodynamics of Future Space Transport Systems
Mochammad Agoes Moelyadi Stage Separation Aerodynamics of Future Space Transport Systems Lehrstühl für Aerodynamik der Technischen Universität München Lehrstuhl für aer Aerodynamik Lehrstuhl für Aerodynamik Technische Universität München Stage Separation Aerodynamics of Future Space Transport Systems Mochammad Agoes Moelyadi Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzender : Univ.-Prof. Dr. rer. nat. Ulrich Walter Prüfer der Dissertation : 1. Univ.-Prof. Dr. -Ing. Boris Laschka, em. 2. Univ.-Prof. Dr. -Ing. habil. Nikolaus A. Adams 3. Prof. Dr. i.r. H. R. Harijono Djojodihardjo, Sc.D., Univ. Al Azhar, Jakarta / Indonesien Die Dissertation wurde am 28.03.2006 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 05.09.2006 angenommen. ACKNOWLEDGEMENTS Many thanks need to go out, it is a monumental accomplishment for me to graduate. I would like to express firstly my utmost gratitude to God for His Help and Bounty and to my loving parents, Mochammad Sutadi and Murdaningsih, as well as my parents in law, Mochammad Faisal and Nuriah. I am very thankful to my supervisor, Univ.-Prof. Dr.-Ing. Boris Laschka, em., for giving me opportunity to work on this interesting research field and for his pioneering work on unsteady aerodynamics which served as a starting point for my doctoral research at Technical University München and also for his invaluable advice and discussion during the research time. My honourable thanks must also go out to Univ.-Prof. Dr. -Ing. Gottfried Sachs for his encouragement and support and for his valuable advice and discussion. -
A Conceptual Analysis of Spacecraft Air Launch Methods
A Conceptual Analysis of Spacecraft Air Launch Methods Rebecca A. Mitchell1 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80303 Air launch spacecraft have numerous advantages over traditional vertical launch configurations. There are five categories of air launch configurations: captive on top, captive on bottom, towed, aerial refueled, and internally carried. Numerous vehicles have been designed within these five groups, although not all are feasible with current technology. An analysis of mass savings shows that air launch systems can significantly reduce required liftoff mass as compared to vertical launch systems. Nomenclature Δv = change in velocity (m/s) µ = gravitational parameter (km3/s2) CG = Center of Gravity CP = Center of Pressure 2 g0 = standard gravity (m/s ) h = altitude (m) Isp = specific impulse (s) ISS = International Space Station LEO = Low Earth Orbit mf = final vehicle mass (kg) mi = initial vehicle mass (kg) mprop = propellant mass (kg) MR = mass ratio NASA = National Aeronautics and Space Administration r = orbital radius (km) 1 M.S. Student in Bioastronautics, [email protected] 1 T/W = thrust-to-weight ratio v = velocity (m/s) vc = carrier aircraft velocity (m/s) I. Introduction T HE cost of launching into space is often measured by the change in velocity required to reach the destination orbit, known as delta-v or Δv. The change in velocity is related to the required propellant mass by the ideal rocket equation: 푚푖 훥푣 = 퐼푠푝 ∗ 0 ∗ ln ( ) (1) 푚푓 where Isp is the specific impulse, g0 is standard gravity, mi initial mass, and mf is final mass. Specific impulse, measured in seconds, is the amount of time that a unit weight of a propellant can produce a unit weight of thrust. -
Exfit Flight Design and Structural Modeling for Falconlaunch VIII Sounding Rocket Michael J
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-10-2010 ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket Michael J. Vinacco Follow this and additional works at: https://scholar.afit.edu/etd Part of the Propulsion and Power Commons, and the Space Vehicles Commons Recommended Citation Vinacco, Michael J., "ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket" (2010). Theses and Dissertations. 2058. https://scholar.afit.edu/etd/2058 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket THESIS Michael J. Vinacco, Second Lieutenant, USAF AFIT/GAE/ENY/10-M27 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/GAE/ENY/10-M27 ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Michael J. -
The Future of Space Commercialization
Research Paper The Future of Space Commercialization Joshua Hampson Security Studies Fellow The Niskanen Center January 25, 2017 Executive Summary This paper argues for the importance of commercial uses of outer space to the economy and national security of the United States. It lays out a short history of developments in commercial outer space, enumerates the challenges facing this emerging market, and offers suggestions for policies to address these challenges. It’s not possible to provide comprehensive answers to all of the problems the United States may encounter in outer space, but the suggestions provided offer a starting point for creating a healthy, safe, and robust commercial space environment. Commercial outer space can promote economic growth, innovation, and stronger national security. However, achieving these goals will require several changes in space policy: ● The Office of Commercial Space Transportation (FAA AST) should be elevated to a separate bureau under the Department of Transportation; ● Responsibility for situational awareness of non-national-security-related space assets should be placed in a non-profit, non-governmental, multi-stakeholder organization; ● When the government requires space capabilities, it should buy privately-provided services and encourage competition in launch and non-launch markets; and ● Government agencies with regulatory or oversight authority over the commercial space industry should default to approval for new missions. Agency procedures for overruling default approval should be transparent and should include a process of appeal. The United States is on the cusp of having an independent commercial space market. With a few smart decisions and a policy of regulatory restraint, the government can simultaneously promote innovation, growth, and national security, while proving that enterprise in space does not require the backing of a large nation state. -
10 26 NASA Gerstenmaier Testimonyx
HOLD FOR RELEASE UNTIL PRESENTED BY WITNESS October 26, 2011 Statement of William Gerstenmaier Associate Administrator, Human Exploration and Operations National Aeronautics and Space Administration before the Committee on Science, Space and Technology U. S. House of Representatives Mr. Chairman and Members of the Committee, thank you for the opportunity to appear before you today to discuss NASA’s efforts to support the development of commercial crew transportation systems. We are pleased with the progress our industry partners have made in this new and innovative approach to human spaceflight development. Their success is critical to ensuring that we re-establish an American capability to transport U.S. astronauts – and their cargo – to the International Space Station (ISS), and quickly end the outsourcing of this work to foreign governments. And they need robust funding from NASA, to achieve timely success in this critical endeavor. Not only will the availability of one or more commercial crew transportation systems represent the emergence of a brand new domestic capability for carrying our astronauts to Low Earth Orbit (LEO) and the ISS, it will also enable the Agency to focus on developing its own systems for sending astronauts on missions of exploration beyond LEO. Commercial Crew Development (CCDev) NASA’s investments have been aimed at stimulating efforts within the private sector to develop and demonstrate human spaceflight capabilities through the CCDev initiative. Since 2009, NASA has conducted two CCDev rounds, soliciting proposals from U.S. industry participants to further advance commercial crew space transportation system concepts and mature the design and development of elements of the system, such as launch vehicles and spacecraft. -
Iaa Commission Iii Sg 2 – Nuclear Space Power and Propulsion
IAA COMMISSION III SG 2 – NUCLEAR SPACE POWER AND PROPULSION M. Auweter-Kurtz C. Bruno D. Fearn H. Kurtz T.J. Lawrence R.X. Lenard List of contents Introduction 8 1. Physics of Nuclear Propulsion – An Introduction 11 1.1. ABSTRACT 11 1.2. Introduction 11 1.3. Fundamental Physics 12 1.3.1. Forces 12 1.4. Propulsion 19 1.4.3. Power 23 1.4.4. Mass 25 1.5. Nuclear Propulsion Strategies 27 1.5.1. Nuclear Thermal Rockets (NTR) 27 1.5.2. Nuclear Electric Propulsion (NEP) 31 1.5.3. A Comparison between Chemical and NTR/NEP Isp 32 1.6. Massless (Photonic) Propulsion 33 1.7. Conclusions 34 1.8. References 35 2. Nulcear Thermal Rocket Propulsion Systems 38 2.1. ABSTRACT 38 2.2. Introduction 38 2.3. System Configuration and Operation 41 2.4. Particle-Bed Reactor 46 2.4.1. CERMET 47 2.5. Safety 49 2.6. MagOrion and Mini-MagOrion 51 2.7. Conclusions 53 2.8. References 54 3. The application of ion thrusters to high thrust, high specific impulse nuclear-electric missions 57 3.1. ABSTRACT 57 3.2. Introduction 60 3.3. Background 62 3.3.1. Space Nuclear Programmes 62 2 3.3.2. Advantages of Electric Propulsion 63 3.3.3. Propulsion System Parameters 64 3.3.4. Propulsion Technology Review 66 3.3.4.1. Gridded Ion Engines 66 3.3.4.2. The Hall-Effect Thruster 69 3.3.4.3. Magnetoplasmadynamic (MPD) Thrusters 71 3.3.4.4. Variable Specific Impulse Magnetoplasma Rocket (VASIMR) 72 3.4.