Stage Separation Aerodynamics of Future Space Transport Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Consideration on Liquid Hydrogen
Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 -
Increasing Launch Rate and Payload Capabilities
Aerial Launch Vehicles: Increasing Launch Rate and Payload Capabilities Yves Tscheuschner1 and Alec B. Devereaux2 University of Colorado, Boulder, Colorado Two of man's greatest achievements have been the first flight at Kitty Hawk and pushing into the final frontier that is space. Air launch systems aim to combine these great achievements into a revolutionary way to deliver satellites, cargo and eventually people into space. Launching from an aircraft has many advantages, including the ability to launch at any inclination and from above bad weather, which could delay ground launches. While many concepts for launching rockets from an airplane have been developed, very few have made it past the drawing board. Only the Pegasus and, to a lesser extent, SpaceShipOne have truly shown the feasibility of such a system. However, a recent push for rapid, small payload to orbit launches by the military and a general need for cheaper, heavy lift options are leading to an increasing interest in air launch methods. In order for the efficiency and flexibility of the system to be realized, however, additional funding and research are necessary. Nomenclature ALASA = airborne launch assist space access ALS = air launch system DARPA = defense advanced research project agency LEO = low Earth orbit LOX = liquid oxygen RP-1 = rocket propellant 1 MAKS = Russian air launch system MECO = main engine cutoff SS1 = space ship one SS2 = space ship two I. Introduction W hat typically comes to mind when considering launching people or satellites to space are the towering rocket poised on the launch pad. These images are engraved in the minds of both the public and scientists alike. -
Round Trip to Orbit: Human Spaceflight Alternatives
Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space. -
Re-Usable Launch and Payload Delivery System MDDP 2012/3
Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 Re-usable Launch and Payload Delivery System MDDP Group 2 James Dobberson Robert Taylor Matthew Chapman Timothy West Mukudzei Muchengeti William Wou Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 1. Contents 1. Contents ..................................................................................................................................... i 2. Executive Summary .................................................................................................................. ii 3. Introduction .............................................................................................................................. 1 4. Down Selection and Integration Methodology ......................................................................... 2 5. Presentation of System Concept and Operations ...................................................................... 5 6. System Investment Plan ......................................................................................................... 20 7. Numerical Analysis and Statement of Feasibility .................................................................. 23 8. Conclusions and Future Work ................................................................................................ 29 9. Launch Philosophy ................................................................................................................. 31 10. Propulsion .............................................................................................................................. -
A Conceptual Analysis of Spacecraft Air Launch Methods
A Conceptual Analysis of Spacecraft Air Launch Methods Rebecca A. Mitchell1 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80303 Air launch spacecraft have numerous advantages over traditional vertical launch configurations. There are five categories of air launch configurations: captive on top, captive on bottom, towed, aerial refueled, and internally carried. Numerous vehicles have been designed within these five groups, although not all are feasible with current technology. An analysis of mass savings shows that air launch systems can significantly reduce required liftoff mass as compared to vertical launch systems. Nomenclature Δv = change in velocity (m/s) µ = gravitational parameter (km3/s2) CG = Center of Gravity CP = Center of Pressure 2 g0 = standard gravity (m/s ) h = altitude (m) Isp = specific impulse (s) ISS = International Space Station LEO = Low Earth Orbit mf = final vehicle mass (kg) mi = initial vehicle mass (kg) mprop = propellant mass (kg) MR = mass ratio NASA = National Aeronautics and Space Administration r = orbital radius (km) 1 M.S. Student in Bioastronautics, [email protected] 1 T/W = thrust-to-weight ratio v = velocity (m/s) vc = carrier aircraft velocity (m/s) I. Introduction T HE cost of launching into space is often measured by the change in velocity required to reach the destination orbit, known as delta-v or Δv. The change in velocity is related to the required propellant mass by the ideal rocket equation: 푚푖 훥푣 = 퐼푠푝 ∗ 0 ∗ ln ( ) (1) 푚푓 where Isp is the specific impulse, g0 is standard gravity, mi initial mass, and mf is final mass. Specific impulse, measured in seconds, is the amount of time that a unit weight of a propellant can produce a unit weight of thrust. -
Iaa Commission Iii Sg 2 – Nuclear Space Power and Propulsion
IAA COMMISSION III SG 2 – NUCLEAR SPACE POWER AND PROPULSION M. Auweter-Kurtz C. Bruno D. Fearn H. Kurtz T.J. Lawrence R.X. Lenard List of contents Introduction 8 1. Physics of Nuclear Propulsion – An Introduction 11 1.1. ABSTRACT 11 1.2. Introduction 11 1.3. Fundamental Physics 12 1.3.1. Forces 12 1.4. Propulsion 19 1.4.3. Power 23 1.4.4. Mass 25 1.5. Nuclear Propulsion Strategies 27 1.5.1. Nuclear Thermal Rockets (NTR) 27 1.5.2. Nuclear Electric Propulsion (NEP) 31 1.5.3. A Comparison between Chemical and NTR/NEP Isp 32 1.6. Massless (Photonic) Propulsion 33 1.7. Conclusions 34 1.8. References 35 2. Nulcear Thermal Rocket Propulsion Systems 38 2.1. ABSTRACT 38 2.2. Introduction 38 2.3. System Configuration and Operation 41 2.4. Particle-Bed Reactor 46 2.4.1. CERMET 47 2.5. Safety 49 2.6. MagOrion and Mini-MagOrion 51 2.7. Conclusions 53 2.8. References 54 3. The application of ion thrusters to high thrust, high specific impulse nuclear-electric missions 57 3.1. ABSTRACT 57 3.2. Introduction 60 3.3. Background 62 3.3.1. Space Nuclear Programmes 62 2 3.3.2. Advantages of Electric Propulsion 63 3.3.3. Propulsion System Parameters 64 3.3.4. Propulsion Technology Review 66 3.3.4.1. Gridded Ion Engines 66 3.3.4.2. The Hall-Effect Thruster 69 3.3.4.3. Magnetoplasmadynamic (MPD) Thrusters 71 3.3.4.4. Variable Specific Impulse Magnetoplasma Rocket (VASIMR) 72 3.4. -
Safety Considerations on Liquid Hydrogen on Liquid Considerations Safety Karl Verfondern Karl Energie & Umwelt Energie & Environment Energy
ISBN 978-3-89336-530-2 10 Band |Volume 10 Energie & Umwelt Karl Verfondern Energy & Environment Safety Considerations on Liquid Hydrogen Mitglied der Helmholtz-Gemeinschaft Karl Verfondern Karl Hydrogen onLiquid Considerations Safety TABLE OF CONTENTS 1. INTRODUCTION............................................................................................................................. 1 2. PROPERTIES OF LIQUID HYDROGEN..................................................................................... 3 2.1. Physical and Chemical Characteristics......................................................................................... 3 2.1.1. Physical Properties ................................................................................................................ 3 2.1.2. Chemical Properties .............................................................................................................. 7 2.2. Influence of Cryogenic Hydrogen on Materials........................................................................... 9 2.3. Physiological Problems in Connection with Liquid Hydrogen.................................................. 10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................. 13 3.1. Liquid Hydrogen Production Methods....................................................................................... 13 3.1.1. Energy Requirement............................................................................................................ 13 3.1.2. Linde Hampson Process ..................................................................................................... -
Medical Safety Considerations for Passengers on Short-Duration Commercial Orbital Space Flights”
“Medical Safety Considerations for Passengers on Short-Duration Commercial Orbital Space Flights” International Academy of Astronautics Study Group Chairs: Melchor J. Antuñano, M.D. (USA) Rupert Gerzer, M.D. (Germany) Secretary: Thais Russomano, M.D. (Brazil) Other Members: Denise Baisden, M.D. (USA) Volker Damann, M.D. (Germany) Jeffrey Davis M.D. (USA) Gary Gray, M.D. (Canada) Anatoli Grigoriev, M.D. (Russia) Helmut Hinghofer-Szalkay, M.D. (Austria) Stephan Hobe, Ph.D. (Germany) Gerda Horneck, Ph.D. (Germany) Petra Illig, M.D. (USA) Richard Jennings, M.D. (USA) Smith Johnston, M.D. (USA) Nick Kanas, M.D. (USA) Chrysoula Kourtidou-Papadeli, M.D. (Greece) Inessa Kozlovzkaya, M.D. (Russia) Jancy McPhee, Ph.D. (USA) William Paloski, Ph.D. (USA) Guillermo Salazar M.D. (USA) Victor Schneider, M.D. (USA) Paul Stoner M.D. (USA) James Vanderploeg, M.D. (USA) Joan Vernikos Ph.D. (USA-Greece) Ronald White, Ph.D. (USA) Richard Williams, M.D. (USA) OBJECTIVE To identify and prioritize medical screening considerations in order to preserve the health and promote the safety of paying passengers who intend to participate in short-duration flights onboard commercial orbital space vehicles. This document is intended to provide general guidance for operators of orbital manned commercial space vehicles for medical assessment of prospective passengers. Physicians supported by other appropriate health professionals who are trained and experienced in the concepts of aerospace medicine should perform the medical assessments of all prospective space passengers. In view of the wide variety of possible approaches that can be used to design and operate orbital manned commercial space vehicles in the foreseeable future, the IAA medical safety considerations are generic in scope and are based on current analysis of physiological and pathological changes that may occur as a result of human exposure to operational and environmental risk factors present during space flight. -
Physiological Effects During Aerobatic Flights on Science Astronaut Candidates
Publications 2020 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates Pedro Llanos Embry-Riddle Aeronautical University, [email protected] Diego M. Garcia Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Aerospace Engineering Commons, and the Medical Physiology Commons Scholarly Commons Citation Llanos, P., & Garcia, D. M. (2020). Physiological Effects during Aerobatic Flights on Science Astronaut Candidates. International Journal of Medical and Health Sciences, 14(9). Retrieved from https://commons.erau.edu/publication/1462 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. World Academy of Science, Engineering and Technology International Journal of Medical and Health Sciences Vol:14, No:9, 2020 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates Pedro Llanos, Diego García suborbital flight training in the context of the evolving commercial Abstract—Spaceflight is considered the last frontier in terms of human suborbital spaceflight industry. A more mature and integrative science, technology, and engineering. But it is also the next frontier medical assessment method is required to understand the physiology in terms of human physiology and performance. After more than state and response variability among highly diverse populations of 200,000 years humans have evolved under earth’s gravity and prospective suborbital flight participants. atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and Keywords—Aerobatic maneuvers, G force, hypoxia, suborbital radiation are among such stressors, our research involves suborbital flight, commercial astronauts. -
Human Spaceflight and Hypersonic Re-Entry Vehicles
cs & Aero ti sp au a n c o e r E Savino, J Aeronaut Aerospace Eng 2012, 1:2 e n 10.4172/2168-9792.1000e106 A DOI: g f i o n Journal of Aeronautics & Aerospace l e a e r n i r n u g o J Engineering ISSN: 2168-9792 Editorial Open Access Human Spaceflight and Hypersonic Re-entry Vehicles: Looking Backward to Step Forward Raffaele Savino* Department of Aerospace Engineering, University of Naples Federico II, Italy The main elements characterizing cutting-edge research and tech- Waiting for Single-Stage-To-Orbit (SSTO), expendable launchers nology in future human spaceflight and space exploration will certainly appear to be sufficiently reliable; what is still lacking is a reentry air- be related to the development of new access-to-space and atmospheric plane that is as simple and as light as a glider and that can land at any reentry systems. conventional airport within a large footprint. The termination of the Space Shuttle program corresponds indeed Hypersonic slender vehicles concepts are not new. Many studies to a radical change of the scenario for human space flight activities. began worldwide on winged, fully reusable launchers and hypersonic Along with the Russian Soyuz and the Chinese Shenzhou reentry cap- spaceplanes (HOTOL in the United Kingdom, Saenger in Germany, sules, the Shuttle was the only available human-rated vehicle able to Star-H in France, National Aerospace Plane and HL-20 in the USA, provide human access to Space. Continuous utilisation of the Interna- Hermes in Europe). Most of these concepts were abandoned due to lack tional Space Station and new exploration programmes will require new of funding or to the unavailability of materials able to withstand ex- space vehicles for access-to and reentry from space. -
Medical Safety Considerations for Passengers on Short-Duration Commercial Orbital Space Flights”
“Medical Safety Considerations for Passengers on Short-Duration Commercial Orbital Space Flights” International Academy of Astronautics Study Group Chairs: Melchor J. Antuñano, M.D. (USA) Rupert Gerzer, M.D. (Germany) Secretary: Thais Russomano, M.D. (Brazil) Other Members: Denise Baisden, M.D. (USA) Volker Damann, M.D. (Germany) Jeffrey Davis M.D. (USA) Gary Gray, M.D. (Canada) Anatoli Grigoriev, M.D. (Russia) Helmut Hinghofer-Szalkay, M.D. (Austria) Stephan Hobe, Ph.D. (Germany) Gerda Horneck, Ph.D. (Germany) Petra Illig, M.D. (USA) Richard Jennings, M.D. (USA) Smith Johnston, M.D. (USA) Nick Kanas, M.D. (USA) Chrysoula Kourtidou-Papadeli, M.D. (Greece) Inessa Kozlovzkaya, M.D. (Russia) Jancy McPhee, Ph.D. (USA) William Paloski, Ph.D. (USA) Guillermo Salazar M.D. (USA) Victor Schneider, M.D. (USA) Paul Stoner M.D. (USA) James Vanderploeg, M.D. (USA) Joan Vernikos Ph.D. (USA-Greece) Ronald White, Ph.D. (USA) Richard Williams, M.D. (USA) ABSTRACT This report identifies and prioritizes medical screening considerations in order to preserve the health and promote the safety of paying passengers who intend to participate in short- duration flights (up to 4 weeks) onboard commercial orbital space vehicles. This includes the identification of pre-existing medical conditions that could be aggravated or exacerbated by exposure to the environmental and operational risk factors encountered during launch, inflight and landing. Such risk factors include: acceleration, barometric pressure, microgravity, ionizing radiation, non-ionizing radiation, noise, vibration, temperature and humidity, cabin air, and behavioral and communications issues. Because of the wide variety of possible approaches that can be used to design and operate manned commercial orbital space vehicles, it is very difficult to make unequivocal recommendations on specific medical conditions that would not be compatible with ensuring safety during orbital space flight. -
Conceptual Design of a Reusable TSTO: Guess Data Estimation and Matching Analysis
Thesis for Master of Science degree in Aerospace Engineering Conceptual Design of a Reusable TSTO: Guess Data estimation and Matching Analysis Author: Tutor: Alberto Za Prof.ssa Nicole Viola Co-tutor: Prof.ssa Roberta Fusaro Prof. Davide Ferretto April 2021 This page has been intentionally left blank Index Abstract . 8 Chapter 1 . 1.1 The concept of TST . 10 1.2 Staging alternatives . 11 1.3 Propulsive technologies . 15 1.3.1 Turbojet . 16 1.3.2 Turbofan. 21 1.3.3 Afterburner . 26 1.3.4 Ramjet & Scramjet . 28 1.3.5 Rocket . 31 Chapter 2 . 2.1 Statistical analysis . 34 2.1.1 Subsonic first stage Database . 35 2.1.2 Supersonic first stage Database . 43 2.1.3 Rocket first stage Database . 54 2.2 Implementation of the Matlab GUI . 60 2.3 Example of GUI’s use . 68 Chapter 3 . 3.1 Iteration logic . 72 3.2 Matching chart analysis . 72 3.3 TSTO mission profile . 73 3.4 Weight Analysis and sizing . 76 3.4.1 Subsonic first stage weight estimation . 76 3.4.2 Supersonic first and second stage weight estimation . 79 Chapter 4 . 4.1 First stage requirements . 83 4.2 Take-off requirement . 83 4.3 Second segment requirement . 87 4.4 Climb and cruise requirement . 90 4.5 Landing requirement . 98 Chapter 5 . 5.1 Second stage requirements. 102 5.2 Orbit-achievement requirement . 102 5.3 Payload requirement . 114 5.4 Re-entry requirement . 117 5.5 Matlab GUI implementation . 120 Conclusion. 124 Bibliography . 126 This page has been intentionally left blank List of figures 1.1 Different stage combinations for TSTO .